Analysis of Microplastics in Takeaway Food Containers in China Using FPA-FTIR Whole Filter Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection
2.2. Sample Preparation
2.3. Characterization of Microparticles
2.4. Data Analysis
3. Results
3.1. Abundances of Microplastics
3.2. Size and Shape Distribution of Microplastics
3.3. Characteristics of Microplastics
3.4. FPA-Based Micro-FT-IR Validation and Data Analysis of Takeaway Food Containers
3.5. Estimation of Microplastic Intake by Humans
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Gallego-Schmid, A.; Mendoza, J.M.F.; Azapagic, A. Environmental impacts of takeaway food containers. J. Clean. Prod. 2019, 211, 417–427. [Google Scholar] [CrossRef]
- IResearch. China Online-to Offline Takeaway Food Ordering in 2020. Available online: https://www.iresearch.com.cn//Detail/report?id=2615&isfree=0 (accessed on 10 April 2022).
- Wen, Z.; Zhang, Y.; Fu, D. The environmental impact assessment of a takeaway food delivery order based on of industry chain evaluation in China. China Environ. Sci. 2019, 39, 4017–4024. (In Chinese) [Google Scholar]
- Xu, X.Y.; Huang, Y.H. Restaurant information cues, Diners’ expectations, and need for cognition: Experimental studies of online-to offline mobile food ordering. J. Ret. Con. Ser. 2019, 51, 231–241. [Google Scholar] [CrossRef]
- E-Marketer. China Online-to-Offline Commerce: Understanding a Rapidly Evolving Marketplace. Available online: https://www.emarketer.com/Article/Understanding-Chinas-O2O-Commerce-Marketplace/1014374#sthash (accessed on 10 April 2022).
- Ragusa, A.; Svelato, A.; Santacroce, C.; Catalano, P.; Notarstefano, V.; Carnevali, O.; Papa, F.; Rongioletti, M.C.A.; Baiocco, F.; Draghi, S.; et al. Plasticenta: First evidence of microplastics in human placenta. Environ. Int. 2021, 146, 106274. [Google Scholar] [CrossRef]
- NDRC (National Development and Reform Commission) and MEE. Opinions on Further Strengthening the Control of Plastic Pollution. Available online: https://www.ndrc.gov.cn/fzggw/jgsj/hzs/sjdt/202001/t20200119_1219292.html (accessed on 10 April 2022).
- Hernandez, L.M.; Xu, E.G.; Larsson, H.C.E.; Tahara, R.; Maisuria, V.B.; Tufenkji, N. Plastic Teabags Release Billions of Microparticles and Nanoparticles into Tea. Environ. Sci. Technol. 2019, 53, 12300–12310. [Google Scholar] [CrossRef]
- Fadare, O.O.; Wan, B.; Guo, L.H.; Zhao, L.X. Microplastics from consumer plastic food containers: Are we consuming it? Chemosphere 2020, 253, 126787. [Google Scholar] [CrossRef]
- Du, F.N.; Cai, H.W.; Zhang, Q.; Chen, Q.Q.; Shi, H.H. Microplastics in takeaway food containers. J. Hazard. Mater. 2020, 399, 122969. [Google Scholar] [CrossRef]
- Li, D.Z.; Shi, Y.H.; Yang, L.M.; Xiao, L.W.; Kehoe, D.K.; Gun’ko, Y.K.; Boland, J.J.; Wang, J.J. Microplastic release from the degradation of polypropylene feeding bottles during infant formula preparation. Nat. Food. 2020, 1, 746–754. [Google Scholar] [CrossRef]
- van Raamsdonk, L.W.D.; van der Zande, M.; Koelmans, A.A.; Hoogenboom, R.L.A.P.; Peters, R.J.B.; Groot, M.J.; Peijnenburg, A.A.C.M.; Weesepoel, Y.J.A. Current Insights into Monitoring, Bioaccumulation, and Potential Health Effects of Microplastics Present in the Food Chain. Foods 2020, 9, 72. [Google Scholar] [CrossRef] [Green Version]
- Nel, A.; Xia, T.; Mädler, L.; Li, N. Toxic potential of materials at the nanolevel. Science 2006, 311, 622–627. [Google Scholar] [CrossRef] [Green Version]
- von Moos, N.; Burkhardt-Holm, P.; Köhler, A. Uptake and effects of microplastics on cells and tissue of the blue mussel Mytilus edulis L. after an experimental exposure. Environ. Sci. Technol. 2012, 46, 11327–11335. [Google Scholar] [CrossRef] [PubMed]
- Wright, S.L.; Kelly, F.J. Plastic and human health: A micro issue? Environ. Sci. Technol. 2017, 51, 6634–6647. [Google Scholar] [CrossRef] [PubMed]
- Tang, J.; Ni, X.Z.; Zhou, Z.; Wang, L.G.; Lin, S.J. Acute microplastic exposure raises stress response and suppresses detoxification and immune capacities in the scleractinian coral Pocillopora damicornis. Environ. Pollut. 2018, 243, 66–74. [Google Scholar] [CrossRef] [PubMed]
- Lu, L.; Luo, T.; Zhao, Y.; Cai, C.H.; Fu, Z.W.; Jin, Y.X. Interaction between microplastics and microorganism as well as gut microbiota: A consideration on environmental animal and human health. Sci. Total Environ. 2019, 667, 94–100. [Google Scholar] [CrossRef]
- Goncalves, C.; Martins, M.; Sobral, P.; Costa, P.M.; Costa, M.H. An assessment of the ability to ingest and excrete microplastics by filter-feeders: A case study with the Mediterranean mussel. Environ. Pollut. 2019, 245, 600–606. [Google Scholar] [CrossRef]
- Shen, M.C.; Zhang, Y.; Zhu, X.Y.; Song, B.; Zeng, G.M.; Hu, D.F.; Wen, X.F.; Ren, X.Y. Recent advances in toxicological research of nanoplastics in the environment: A review. Environ. Pollut. 2019, 252, 511–521. [Google Scholar] [CrossRef]
- Prata, J.C.; DaCosta, J.P.; Lopes, I.; Duarte, A.C.; Rocha-Santos, T. Environmental exposure to microplastics: An overview on possible human health effects. Sci. Total Environ. 2020, 702, 134455. [Google Scholar] [CrossRef]
- Dris, R.; Gasperi, J.; Saad, M.; Mirande, C.; Tassin, B. Synthetic fibers in atmospheric fallout: A source of microplastics in the environment? Mar. Pollut. Bull. 2016, 104, 290–293. [Google Scholar] [CrossRef]
- Loder, M.G.J.; Gerdts, G. Methodology Used for the Detection and Identification of Microplastics—A Critical Appraisal. Available online: https://link.springer.com/chapter/10.1007/978-3-319-16510-3_8#citeas (accessed on 10 April 2022).
- Primpke, S.; Lorenz, C.; Rascher-Friesenhausen, R.; Gerdts, G. An automated approach for microplastics analysis using focal plane array (FPA) FTIR microscopy and image analysis. Anal. Methods 2017, 9, 1499–1511. [Google Scholar] [CrossRef] [Green Version]
- Simon, M.; van Last, N.; Vollertsen, J. Quantification of microplastic mass and removal rates at wastewater treatment plants applying Focal Plane Array (FPA)-based Fourier Transform Infrared (FT-IR) imaging. Water Res. 2018, 142, 1–9. [Google Scholar] [CrossRef]
- Renner, G.; Sauerbier, P.; Schmidt, T.C.; Schram, J. Robust Automatic Identification of Microplastics in Environmental Samples Using FTIR Microscopy. Anal. Chem. 2019, 91, 9656–9664. [Google Scholar] [CrossRef] [PubMed]
- Qu, M.; Liu, Y.; Xu, K.; Wang, D. Activation of p38 MAPK signaling-mediated endoplasmic reticulum unfolded protein response by Nanopolystyrene particles. Adv. Biosyst. 2019, 3, e1800325. [Google Scholar] [CrossRef] [PubMed]
- Urbaniak-Domagala, W. The Use of the Spectrometric Technique FTIR-ATR to Examine the Polymers Surface. Available online: https://www.intechopen.com/chapters/38545 (accessed on 10 April 2022).
Sample | Same Microplastics Percentage (%) | Other Polymer Microplastics Percentage (%) |
---|---|---|
HKW(PE) | PE (0.00) | 100 |
CB(Nylon) | Nylon (28.57) | 71.43 |
GZB(PP) | PP (0.00) | 100 |
SB(PP) | PP (0.00) | 100 |
SSH(PS) | PS (59.39) | 40.61 |
SLH(PET) | PET (3.44) | 96.56 |
DBH(PP) | PP (14.1) | 85.9 |
Sample | Microplastic Abundance (Items/Container) | Sample | Microplastic Abundance (Items/Container) |
---|---|---|---|
HKW(PE) | Cellulose 138, PA 10, PET 6, PS 11, PU 2 | Glass beaker | Cellulose 6 |
CB(Nylon) | Cellulose 61, PA 40, PET 2, PS 2, PE 2, PVC 2, PU 33 | Glass beaker | Cellulose 4 |
GZB(PP) | Cellulose 38, PA 18, PET 3 | Glass beaker | Not found |
SB(PP) | Cellulose 8, PA 3, PVC 6, PS 1, PU 7 | Glass beaker | Not found |
SSH(PS) | Cellulose 20, PA 47, PET 1, PS117, PU12 | Glass beaker | Cellulose 4 |
SLH(PET) | Cellulose 496, PA 229, PET 36,PS 2,PU 266,PVC 1, PP 18 | Glass beaker | Cellulose 12, PA 5 |
DBH(PP) | Cellulose 32, PA 62, PS 12, PU 6, PVC 12, PP 22 | Glass beaker | Cellulose 5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, X.; Wang, J.; Ren, J. Analysis of Microplastics in Takeaway Food Containers in China Using FPA-FTIR Whole Filter Analysis. Molecules 2022, 27, 2646. https://doi.org/10.3390/molecules27092646
Zhou X, Wang J, Ren J. Analysis of Microplastics in Takeaway Food Containers in China Using FPA-FTIR Whole Filter Analysis. Molecules. 2022; 27(9):2646. https://doi.org/10.3390/molecules27092646
Chicago/Turabian StyleZhou, Xuejun, Jin Wang, and Jiefang Ren. 2022. "Analysis of Microplastics in Takeaway Food Containers in China Using FPA-FTIR Whole Filter Analysis" Molecules 27, no. 9: 2646. https://doi.org/10.3390/molecules27092646
APA StyleZhou, X., Wang, J., & Ren, J. (2022). Analysis of Microplastics in Takeaway Food Containers in China Using FPA-FTIR Whole Filter Analysis. Molecules, 27(9), 2646. https://doi.org/10.3390/molecules27092646