Dating Sediments by EPR Using Al-h Centre: A Comparison between the Properties of Fine (4–11 µm) and Coarse (>63 µm) Quartz Grains
Abstract
:1. Introduction
2. Materials and Methods
2.1. Samples
2.2. EPR Measurements
2.3. Al-h Signal Simulations
3. Results and Discussion
3.1. Contribution of Peroxy Signals to Al-h Signal Measurements
3.1.1. Sample ROX 1.14
3.1.2. Sample STY 1.10
3.1.3. Sample 2 MV 80
3.2. Comparison of DRCs of Coarse and Fine Grains
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Preusser, F.; Chithambo, M.L.; Götte, T.; Martini, M.; Ramseyer, K.; Sendezera, E.J.; Susino, G.J.; Wintle, A.G. Quartz as a Natural Luminescence Dosimeter. Earth-Sci. Rev. 2009, 97, 184–214. [Google Scholar] [CrossRef]
- Götze, J. Chemistry, Textures and Physical Properties of Quartz—Geological Interpretation and Technical Application. Mineral. Mag. 2009, 73, 645–671. [Google Scholar] [CrossRef]
- Malik, D.M.; Kohnke, E.E.; Sibley, W.A. Low-temperature Thermally Stimulated Luminescence of High Quality Quartz. J. Appl. Phys. 1981, 52, 3600–3605. [Google Scholar] [CrossRef]
- Toyoda, S. Paramagnetic Lattice Defects in Quartz for Applications to ESR Dating. Quat. Geochronol. 2015, 30, 498–505. [Google Scholar] [CrossRef]
- Ikeya, M. New Applications of Electron Spin Resonance: Dating, Dosimetry and Microscopy; World Scientific: Singapore; Hackensack, NJ, USA; London, UK; Hong Kong, China, 1993. [Google Scholar]
- Duval, M.; Arnold, L.J.; Guilarte, V.; Demuro, M.; Santonja, M.; Pérez-González, A. Electron Spin Resonance Dating of Optically Bleached Quartz Grains from the Middle Palaeolithic Site of Cuesta de La Bajada (Spain) Using the Multiple Centres Approach. Quat. Geochronol. 2017, 37, 82–96. [Google Scholar] [CrossRef] [Green Version]
- Tsukamoto, S.; Long, H.; Richter, M.; Li, Y.; King, G.E.; He, Z.; Yang, L.; Zhang, J.; Lambert, R. Quartz Natural and Laboratory ESR Dose Response Curves: A First Attempt from Chinese Loess. Radiat. Meas. 2018, 120, 137–142. [Google Scholar] [CrossRef]
- Timar-Gabor, A.; Vandenberghe, D.A.G.; Vasiliniuc, S.; Panaoitu, C.E.; Panaiotu, C.G.; Dimofte, D.; Cosma, C. Optical Dating of Romanian Loess: A Comparison between Silt-Sized and Sand-Sized Quartz. Quat. Int. 2011, 240, 62–70. [Google Scholar] [CrossRef]
- Tissoux, H.; Toyoda, S.; Falguères, C.; Voinchet, P.; Takada, M.; Bahain, J.-J.; Despriée, J. ESR Dating of Sedimentary Quartz from Two Pleistocene Deposits Using Al and Ti-Centers. Geochronometria 2008, 30, 23–31. [Google Scholar] [CrossRef] [Green Version]
- Weil, J.A. A Review of Electron Spin Spectroscopy and Its Application to the Study of Paramagnetic Defects in Crystalline Quartz. Phys. Chem. Miner. 1984, 10, 149–165. [Google Scholar] [CrossRef]
- Duval, M.; Guilarte, V. ESR Dosimetry of Optically Bleached Quartz Grains Extracted from Plio-Quaternary Sediment: Evaluating Some Key Aspects of the ESR Signals Associated to the Ti-Centers. Radiat. Meas. 2015, 78, 28–41. [Google Scholar] [CrossRef] [Green Version]
- Laurent, M.; Falguères, C.; Bahain, J.; Rousseau, L.; Van Vliet Lanoé, B. ESR Dating of Quartz Extracted from Quaternary and Neogene Sedimentsmethod, Potential and Actual Limits. Quat. Sci. Rev. 1998, 17, 1057–1062. [Google Scholar] [CrossRef]
- Parés, J.M.; Álvarez, C.; Sier, M.; Moreno, D.; Duval, M.; Woodhead, J.D.; Ortega, A.I.; Campaña, I.; Rosell, J.; Bermúdez de Castro, J.M.; et al. Chronology of the Cave Interior Sediments at Gran Dolina Archaeological Site, Atapuerca (Spain). Quat. Sci. Rev. 2018, 186, 1–16. [Google Scholar] [CrossRef]
- Rink, W.J.; Bartoll, J.; Schwarcz, H.P.; Shane, P.; Bar-Yosef, O. Testing the Reliability of ESR Dating of Optically Exposed Buried Quartz Sediments. Radiat. Meas. 2007, 42, 1618–1626. [Google Scholar] [CrossRef]
- Tissoux, H.; Voinchet, P.; Lacquement, F.; Prognon, F.; Moreno, D.; Falguères, C.; Bahain, J.-J.; Toyoda, S. Investigation on Non-Optically Bleachable Components of ESR Aluminium Signal in Quartz. Radiat. Meas. 2012, 47, 894–899. [Google Scholar] [CrossRef]
- Voinchet, P.; Bahain, J.J.; Falguères, C.; Laurent, M.; Dolo, J.M.; Despriée, J.; Gageonnet, R.; Chaussé, C. ESR Dating of Quartz Extracted from Quaternary Sediments Application to Fluvial Terraces System of Northern France [Datation Par Résonance Paramagnétique Électronique (RPE) de Quartz Fluviatiles Quaternaires: Application Aux Systèmes de Terrasses Du Nord]. Quaternaire 2004, 15, 135–141. [Google Scholar] [CrossRef]
- Voinchet, P.; Yin, G.; Falguères, C.; Liu, C.; Han, F.; Sun, X.; Bahain, J.J. Dating of the Stepped Quaternary Fluvial Terrace System of the Yellow River by Electron Spin Resonance (ESR). Quat. Geochronol. 2019, 49, 278–282. [Google Scholar] [CrossRef]
- Moreno, D.; Duval, M.; Rubio-Jara, S.; Panera, J.; Bahain, J.J.; Shao, Q.; Pérez-González, A.; Falguères, C. ESR Dating of Middle Pleistocene Archaeo-Paleontological Sites from the Manzanares and Jarama River Valleys (Madrid Basin, Spain). Quat. Int. 2019, 520, 23–38. [Google Scholar] [CrossRef]
- Moreno, D.; Gutiérrez, F.; del Val, M.; Carbonel, D.; Jiménez, F.; Jesús Alonso, M.; Martínez-Pillado, V.; Guzmán, O.; López, G.I.; Martínez, D. A Multi-Method Dating Approach to Reassess the Geochronology of Faulted Quaternary Deposits in the Central Sector of the Iberian Chain (NE Spain). Quat. Geochronol. 2021, 65, 101185. [Google Scholar] [CrossRef]
- Beerten, K.; Lomax, J.; Clémer, K.; Stesmans, A.; Radtke, U. On the Use of Ti Centres for Estimating Burial Ages of Pleistocene Sedimentary Quartz: Multiple-Grain Data from Australia. Quat. Geochronol. 2006, 1, 151–158. [Google Scholar] [CrossRef]
- Timar-Gabor, A.; Buylaert, J.-P.; Guralnik, B.; Trandafir-Antohi, O.; Constantin, D.; Anechitei-Deacu, V.; Jain, M.; Murray, A.S.; Porat, N.; Hao, Q.; et al. On the Importance of Grain Size in Luminescence Dating Using Quartz. Radiat. Meas. 2017, 106, 464–471. [Google Scholar] [CrossRef]
- Timar-Gabor, A. Electron Spin Resonance Characterisation of Sedimentary Quartz of Different Grain Sizes. Radiat. Meas. 2018, 120, 59–65. [Google Scholar] [CrossRef]
- Yokoyama, Y.; Falgueres, C.; Quaegebeur, J.P. ESR Dating of Quartz from Quaternary Sediments: First Attempt. Nucl. Tracks Radiat. Meas. 1985, 10, 921–928. [Google Scholar] [CrossRef]
- Toyoda, S.; Ikeya, M. ESR Dating of Quartz and Plagioclase from Volcanic Ashes Using E′1, A1 and Ti Centers. Int. J. Radiat. Appl. Instrumentation. Part D. Nucl. Tracks Radiat. Meas. 1991, 18, 179–184. [Google Scholar] [CrossRef]
- Imai, N.; Shimokawa, K. ESR Dating of Quaternary Tephra from Mt. Osore-Zan Using Al and Ti Centres in Quartz. Quat. Sci. Rev. 1988, 7, 523–527. [Google Scholar] [CrossRef]
- Lin, M.; Yin, G.; Ding, Y.; Cui, Y.; Chen, K.; Wu, C.; Xu, L. Reliability Study on ESR Dating of the Aluminum Center in Quartz. Radiat. Meas. 2006, 41, 1045–1049. [Google Scholar] [CrossRef]
- Toyoda, S.; Falguères, C. The Method to Represent the ESR Signal Intensity of the Aluminum Hole Center in Quartz for the Purpose of Dating. Adv. ESR Appl. 2003, 20, 7–10. [Google Scholar]
- Friebele, E.J.; Griscom, D.L.; Stapelbroek, M.; Weeks, R.A. Fundamental Defect Centers in Glass: The Peroxy Radical in Irradiated, High-Purity, Fused Silica. Phys. Rev. Lett. 1979, 42, 1346–1349. [Google Scholar] [CrossRef]
- Botis, S.; Nokhrin, S.M.; Pan, Y.; Xu, Y.; Bonli, T.; Sopuck, V. Natural Radiation-Induced Damage in Quartz. I. Correlations between Cathodoluminence Colors and Paramagnetic Defects. Can. Mineral. 2005, 43, 1565–1580. [Google Scholar] [CrossRef] [Green Version]
- Botis, S.M.; Pan, Y.; Nokhrin, S.; Nilges, M.J. Natural Radiation-Induced Damage in Quartz. III. A New Ozonide Radical in Drusy Quartz from the Athabasca Basin, Saskatchewan. Can. Miner. 2008, 46, 125–138. [Google Scholar] [CrossRef]
- Nilges, M.J.; Pan, Y.; Mashkovtsev, R.I. Radiation-Damage-Induced Defects in Quartz. I. Single-Crystal W-Band EPR Study of Hole Centers in an Electron-Irradiated Quartz. Phys. Chem. Miner. 2008, 35, 103–115. [Google Scholar] [CrossRef]
- Nilges, M.J.; Pan, Y.; Mashkovtsev, R.I. Radiation-Induced Defects in Quartz. III. Single-Crystal EPR, ENDOR and ESEEM Study of a Peroxy Radical. Phys. Chem. Miner. 2009, 36, 61–73. [Google Scholar] [CrossRef]
- Pan, Y.; Nilges, M.J.; Mashkovtsev, R.I. Radiation-Induced Defects in Quartz. II. Single-Crystal W-Band EPR Study of a Natural Citrine Quartz. Phys. Chem. Miner. 2008, 35, 387–397. [Google Scholar] [CrossRef]
- Pan, Y.; Nilges, M.J.; Mashkovtsev, R.I. Radiation-Induced Defects in Quartz: A Multifrequency EPR Study and DFT Modelling of New Peroxy Radicals. Mineral. Mag. 2009, 73, 519–535. [Google Scholar] [CrossRef]
- Skuja, L.; Ollier, N.; Kajihara, K. Luminescence of Non-Bridging Oxygen Hole Centers as a Marker of Particle Irradiation of α-Quartz. Radiat. Meas. 2020, 135, 106373. [Google Scholar] [CrossRef]
- Richter, M.; Tsukamoto, S. Investigation of Quartz Electron Spin Resonance Residual Signals in the Last Glacial and Early Holocene Fluvial Deposits from the Lower Rhine. Geochronology 2022, 4, 55–63. [Google Scholar] [CrossRef]
- Anechitei-Deacu, V.; Timar-Gabor, A.; Thomsen, K.J.; Buylaert, J.-P.; Jain, M.; Bailey, M.; Murray, A.S. Single and Multi-Grain OSL Investigations in the High Dose Range Using Coarse Quartz. Radiat. Meas. 2018, 120, 124–130. [Google Scholar] [CrossRef]
- Veres, D.; Tecsa, V.; Gerasimenko, N.; Zeeden, C.; Hambach, U.; Timar-Gabor, A. Short-Term Soil Formation Events in Last Glacial East European Loess, Evidence from Multi-Method Luminescence Dating. Quat. Sci. Rev. 2018, 200, 34–51. [Google Scholar] [CrossRef]
- Groza-Săcaciu, Ș.-M.; Panaiotu, C.; Timar-Gabor, A. Single Aliquot Regeneration (SAR) Optically Stimulated Luminescence Dating Protocols Using Different Grain-Sizes of Quartz: Revisiting the Chronology of Mircea Vodă Loess-Paleosol Master Section (Romania). Methods Protoc. 2020, 3, 19. [Google Scholar] [CrossRef] [Green Version]
- Timar, A.; Vandenberghe, D.; Panaiotu, E.C.; Panaiotu, C.G.; Necula, C.; Cosma, C.; van den Haute, P. Optical Dating of Romanian Loess Using Fine-Grained Quartz. Quat. Geochronol. 2010, 5, 143–148. [Google Scholar] [CrossRef]
- Stoll, S.; Schweiger, A. EasySpin, a Comprehensive Software Package for Spectral Simulation and Analysis in EPR. J. Magn. Reson. 2006, 178, 42–55. [Google Scholar] [CrossRef]
- Nuttall, R.H.D.; Weil, J.A. The Magnetic Properties of the Oxygen–Hole Aluminum Centers in Crystalline SiO2. I. [AlO4]0. Can. J. Phys. 1981, 59, 1696–1708. [Google Scholar] [CrossRef]
- Benzid, K.; Timar-Gabor, A. Phenomenological Model of Aluminium-Hole ([AlO4/H+]0) Defect Formation in Sedimentary Quartz upon Room Temperature Irradiation: Electron Spin Resonance (ESR) Study. Radiat. Meas. 2020, 130, 106187. [Google Scholar] [CrossRef]
- Timar-Gabor, A.; Chruścińska, A.; Benzid, K.; Fitzsimmons, K.E.; Begy, R.; Bailey, M. Bleaching Studies on Al-Hole ([AlO4/h]0) Electron Spin Resonance (ESR) Signal in Sedimentary Quartz. Radiat. Meas. 2020, 130, 106221. [Google Scholar] [CrossRef]
- Tissoux, H.; Falguères, C.; Voinchet, P.; Toyoda, S.; Bahain, J.J.; Despriée, J. Potential Use of Ti-Center in ESR Dating of Fluvial Sediment. Quat. Geochronol. 2007, 2, 367–372. [Google Scholar] [CrossRef]
- Toyoda, S.; Voinchet, P.; Falguères, C.; Dolo, J.M.; Laurent, M. Bleaching of ESR Signals by the Sunlight: A Laboratory Experiment for Establishing the ESR Dating of Sediments. Appl. Radiat. Isot. 2000, 52, 1357–1362. [Google Scholar] [CrossRef]
- Tsukamoto, S.; Porat, N.; Ankjærgaard, C. Dose Recovery and Residual Dose of Quartz ESR Signals Using Modern Sediments: Implications for Single Aliquot ESR Dating. Radiat. Meas. 2017, 106, 472–476. [Google Scholar] [CrossRef]
- Voinchet, P.; Falguères, C.; Laurent, M.; Toyoda, S.; Bahain, J.J.; Dolo, J.M. Artificial Optical Bleaching of the Aluminium Center in Quartz Implications to ESR Dating of Sediments. Quat. Sci. Rev. 2003, 22, 1335–1338. [Google Scholar] [CrossRef]
- Liu, C.-R.; Yin, G.-M.; Han, F. Effects of Grain Size on Quartz ESR Dating of Ti–Li Center in Fluvial and Lacustrine Sediments. Quat. Geochronol. 2015, 30, 513–518. [Google Scholar] [CrossRef] [Green Version]
- Buhay, W.M.; Schwarcz, H.P.; Grün, R. ESR Dating of Fault Gouge: The Effect of Grain Size. Quat. Sci. Rev. 1988, 7, 515–522. [Google Scholar] [CrossRef]
- Lee, H.-K.; Yang, J.-S. ESR Dating of the Wangsan Fault, South Korea. Quat. Sci. Rev. 2003, 22, 1339–1343. [Google Scholar] [CrossRef]
Parameter | x | y | z | |
---|---|---|---|---|
g-Tensor | 2.0603 | 2.0083 | 2.0021 | |
A | (MHz) | 14 | 17 | 18.2 |
(mT) | 0.499 | 0.606 | 0.649 | |
Q | (MHz) | −0.62 | −0.43 | 1.05 |
(mT) | −0.022 | −0.015 | 0.037 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kabacińska, Z.; Timar-Gabor, A. Dating Sediments by EPR Using Al-h Centre: A Comparison between the Properties of Fine (4–11 µm) and Coarse (>63 µm) Quartz Grains. Molecules 2022, 27, 2683. https://doi.org/10.3390/molecules27092683
Kabacińska Z, Timar-Gabor A. Dating Sediments by EPR Using Al-h Centre: A Comparison between the Properties of Fine (4–11 µm) and Coarse (>63 µm) Quartz Grains. Molecules. 2022; 27(9):2683. https://doi.org/10.3390/molecules27092683
Chicago/Turabian StyleKabacińska, Zuzanna, and Alida Timar-Gabor. 2022. "Dating Sediments by EPR Using Al-h Centre: A Comparison between the Properties of Fine (4–11 µm) and Coarse (>63 µm) Quartz Grains" Molecules 27, no. 9: 2683. https://doi.org/10.3390/molecules27092683
APA StyleKabacińska, Z., & Timar-Gabor, A. (2022). Dating Sediments by EPR Using Al-h Centre: A Comparison between the Properties of Fine (4–11 µm) and Coarse (>63 µm) Quartz Grains. Molecules, 27(9), 2683. https://doi.org/10.3390/molecules27092683