Effect of Two-Step Formosolv Fractionation on the Structural Properties and Antioxidant Activity of Lignin
Abstract
:1. Introduction
2. Experimental Methods
2.1. Isolation of Lignin through Two-Step Formosolv Fractionation
2.2. Structural Characteristics of the Isolated Lignin Fractions
2.2.1. GPC Analysis
2.2.2. FTIR Analysis
2.2.3. HSQC-NMR Analysis
2.2.4. GC/MS Analysis
2.2.5. TGA Analysis
2.3. Antioxidant Activity of the Isolated Lignin Fraction
2.3.1. ABTS•+ Radical Scavenging Assay
2.3.2. DPPH Radical Scavenging Activity Assay
3. Results and Discussion
3.1. Molecular Weights of Isolated Lignin Fractions
3.2. FTIR Analysis of Isolated Lignin Fractions
3.3. NMR Analysis of Isolated Lignin Fractions
3.4. GC/MS Analysis of Aromatic Monomers
3.5. Proposed Mechanism of Depolymerization and Condensation of Lignin during Formosolv Fractionation
3.6. Thermal Stability of Isolated Lignin Fractions
3.7. Antioxidant Activity Analysis of Isolated Lignin Fractions
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, Y.; Naebe, M. Lignin: A Review on structural, Properties, and Applications as a Light-Colored UV Absorber. ACS Sustain. Chem. Eng. 2021, 9, 1427–1442. [Google Scholar] [CrossRef]
- Sheng, Y.; Ma, Z.; Wang, X.; Han, Y. Ethanol organosolv lignin from different agricultural residues: Toward basic structural units and antioxidant activity. Food Chem. 2022, 376, 131895. [Google Scholar] [CrossRef] [PubMed]
- Lourençon, T.V.; de Lima, G.G.; Ribeiro, C.S.; Hansel, F.A.; Maciel, G.M.; da Silva, K.; Winnischofer, S.M.; de Muniz, G.I.; Magalhães, W.L. Antioxidant, antibacterial and antitumoural activities of kraft lignin from hardwood fractionated by acid precipitation. Int. J. Biol. Macromol. 2021, 166, 1535–1542. [Google Scholar] [CrossRef] [PubMed]
- Zhou, H.; Zhang, R.; Zhan, W.; Wang, L.; Guo, L.; Liu, Y. High biomass loadings of 40 wt% for efficient fractionation in biorefineries with an aqueous solvent system without adding adscititious catalyst. Green Chem. 2016, 18, 6108–6114. [Google Scholar] [CrossRef]
- Izaguirre, N.; Robles, E.; Llano-Ponte, R.; Labidi, J.; Erdocia, X. Fine-tune of lignin properties by its fractionation with a sequential organic solvent extraction. Ind. Crops Prod. 2022, 175, 114251. [Google Scholar] [CrossRef]
- Monteiro, V.A.C.; da Silva, K.T.; da Silva, L.R.R.; Mattos, A.L.A.; de Freitas, R.M.; Mazzetto, S.E.; Lomonaco, D.; Avelino, F. Selective acid precipitation of Kraft lignin: A tool for tailored biobased additives for enhancing PVA films properties for packaging applications. React. Funct. Polym. 2021, 166, 104980. [Google Scholar] [CrossRef]
- Toledano, A.; Garcia, L.S.A.; Mondragon, I.; Labidi, J. Comparative study of lignin fractionation by ultrafiltration and selective precipitation. Chem. Eng. J. 2010, 157, 93–99. [Google Scholar] [CrossRef]
- Zheng, L.; Lu, G.; Pei, W.; Yan, W.; Li, Y.; Zhang, L.; Huang, C.; Jiang, Q. Understanding the relationship between the structural properties of lignin and their biological activities. Int. J. Biol. Macromol. 2021, 190, 291–300. [Google Scholar] [CrossRef]
- Yu, Y.; Xu, H.; Yu, H.; Hu, L.; Liu, Y. Formic acid fractionation towards highly efficient cellulose-derived PdAg bimetallic catalyst for H2 evolution. Green Energy Environ. 2022, 7, 172–183. [Google Scholar] [CrossRef]
- Shao, Z.; Fu, Y.; Wang, P.; Zhang, Y.; Qin, M.; Li, X.; Zhang, F. Modification of the aspen lignin structural during integrated fractionation process of autohydrolysis and formic acid delignification. Int. J. Biol. Macromol. 2020, 165, 1727–1737. [Google Scholar] [CrossRef]
- Oregui-Bengoechea, M.; Gandarias, I.; Arias, P.L.; Barth, T. Unraveling the role of formic acid and the type of solvent in the catalytic conversion of lignin: A holistic approach. ChemSusChem 2017, 10, 754–766. [Google Scholar] [CrossRef] [PubMed]
- Rahimi, A.; Ulbrich, A.; Coon1, J.J.; Stahl, S.S. Formic-acid-induced depolymerization of oxidized lignin to aromatics. Nature 2014, 515, 249–252. [Google Scholar] [CrossRef] [PubMed]
- Shuai, L.; Amiri, M.T.; Questell-Santiago, Y.M.; Héroguel, F.; Li, Y.; Kim, H.; Meilan, R.; Chapple, C.; Ralph, J.; Luterbache, J.S. Formaldehyde stabilization facilitates lignin monomer production during biomass depolymerization. Science 2016, 354, 329–333. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Halleraker, H.V.; Ghoreishi, S.; Barth, T. Investigating reaction pathways for formic acid and lignin at HTL conditions using 13C-labeled formic acid and 13C NMR. Results Chem. 2020, 2, 100019. [Google Scholar] [CrossRef]
- Qiao, H.; Ouyang, S.; Shi, J.; Zheng, Z.; Ouyang, J. Mild and efficient two-step pretreatment of lignocellulose using formic acid solvent followed by alkaline salt. Cellulose 2021, 28, 1283–1293. [Google Scholar] [CrossRef]
- Guo, T.-S.; Xu, Y.-H.; Li, M.-F.; Ma, J.-F. Flow-through strategy to fractionate lignin from eucalyptus with formic acid/hydrochloric solution under mild conditions. Int. J. Biol. Macromol. 2022, 204, 364–372. [Google Scholar] [CrossRef]
- Zhong, X.; Yuan, R.; Zhang, B.; Wang, B.; Chu, Y.; Wang, Z. Full fractionation of cellulose, hemicellulose, and lignin in pith-leaf containing corn stover by one-step treatment using aqueous formic acid. Ind. Crops Prod. 2021, 172, 113962. [Google Scholar] [CrossRef]
- Wang, P.; Fu, Y.; Shao, Z.; Zhang, F.; Qin, M. Structural changes to aspen wood lignin during autohydrolysis pretreatment. BioResources 2016, 11, 4086–4103. [Google Scholar] [CrossRef] [Green Version]
- Wen, J.L.; Sun, S.L.; Xue, B.L.; Sun, R.C. Recent advances in characterization of lignin polymer by solution-state nuclear magnetic resonance (NMR) methodology. Materials 2013, 6, 359–391. [Google Scholar] [CrossRef] [Green Version]
- Dizhbite, T.; Telysheva, G.; Jurkjane, V.; Viesturs, U. Characterization of the radical scavenging activity of lignins–natural antioxidants. Bioresoure Technol. 2004, 95, 309–317. [Google Scholar] [CrossRef]
- Wei, X.; Liu, Y.; Luo, Y.; Shen, Z.; Wang, S.; Li, M.; Zhang, L. Effect of organosolv extraction on the structural and antioxidant activity of eucalyptus kraft lignin. Int. J. Biol. Macromol. 2021, 187, 462–470. [Google Scholar] [CrossRef] [PubMed]
- Ma, Q.; Li, Z.; Guo, L.; Zhai, H.; Ren, H. Formation of high carbohydrate and acylation condensed lignin from formic acid-acetic acid-H2O biorefinery of corn stalk rind. Ind. Crops Prod. 2021, 161, 113165. [Google Scholar] [CrossRef]
- Li, X.-Y.; Li, M.-F. Discrepancy of lignin dissolution from eucalyptus during formic acid fractionation. Int. J. Biol. Macromol. 2020, 164, 4662–4670. [Google Scholar] [CrossRef] [PubMed]
- Rana, M.; Nshizirungu, T.; Park, J.-H. Synergistic effect of water-ethanol-formic acid for the depolymerization of industrial waste (black liquor) lignin to phenolic monomers. Biomass Bioenergy 2021, 153, 106204. [Google Scholar] [CrossRef]
- El Mansouri, N.-E.; Salvadó, J. Analytical methods for determining functional groups in various technical lignins. Ind. Crops Prod. 2007, 26, 116–124. [Google Scholar] [CrossRef]
- Villaverde, J.J.; Li, J.; Ek, M.; Ligero, P.; Vega, A.D. Native lignin structural of Miscanthus x giganteus and its changes during acetic and formic acid fractionation. J. Agric. Food Chem. 2009, 57, 6262–6270. [Google Scholar] [CrossRef]
- Abdelkafi, F.; Ammar, H.; Rousseau, B.; Tessier, M.; el Gharbi, R.; Fradet, A. Structural analysis of alfa grass (Stipa tenacissima L.) lignin obtained by acetic acid/formic acid delignification. Biomacromolecules 2011, 12, 3895–3902. [Google Scholar] [CrossRef]
- Wang, K.; Yang, H.; Yao, X.; Xu, F.; Sun, R.C. Structural transformation of hemicelluloses and lignin from triploid poplar during acid-pretreatment based biorefinery process. Bioresoure Technol. 2012, 116, 99–106. [Google Scholar] [CrossRef]
- Wadrzyk, M.; Janus, R.; Lewandowski, M.; Magdziarz, A. On mechanism of lignin decomposition e Investigation using microscale techniques: Py-GC-MS, Py-FT-IR and TGA. Renew. Energy 2021, 177, 942–952. [Google Scholar] [CrossRef]
- Kim, J.; Oh, S.; Hwang, H.; Kim, U.; Choi, J.W. Structural features and thermal degradation properties of various lignin macromolecules obtained from poplar wood (Populus albaglandulosa). Polym. Degrad. Stab. 2013, 98, 1671–1678. [Google Scholar] [CrossRef]
- Jin, C.; Yang, M.; Shuang, E.; Liu, J.; Zhang, S.; Zhang, X.; Sheng, K.; Zhang, X. Corn stover valorization by one-step formic acid fractionation and formylation for 5-hydroxymethylfurfural and high guaiacyl lignin production. Bioresour. Technol. 2020, 299, 122586. [Google Scholar] [CrossRef] [PubMed]
- Ponomarenko, J.; Lauberts, M.; Dizhbite, T.; Lauberte, L.; Jurkjane, V.; Telysheva, G. Antioxidant activity of various lignins and lignin-related phenylpropanoid units with high and low molecular weight. Holzforschung 2015, 69, 795–805. [Google Scholar] [CrossRef]
- Meng, X.; Parikh, A.; Seemala, B.; Kumar, R.; Pu, Y.; Christopher, P.; Wyman, C.E.; Cai, C.M.; Ragauskas, A.J. Chemical transformations of poplar lignin during cosolvent enhanced lignocellulosic fractionation process. ACS Sustain. Chem. Eng. 2018, 6, 8711–8718. [Google Scholar] [CrossRef] [Green Version]
- García, A.; Toledano, A.; Andŕes, M.Á.; Labidi, J. Study of the antioxidant capacity of Miscanthus sinensis lignins. Process Biochem. 2010, 45, 935–940. [Google Scholar] [CrossRef]
FL-88% Fraction (g) | FIL-70% Fraction | FSL-70% Fraction a | FL-EtAc Fraction b | |||
---|---|---|---|---|---|---|
Mass (g) | Percentage (%) | Mass (g) | Percentage (%) | Mass (g) | Percentage (%) | |
5.0001 | 2.4625 | 49.25 | 2.498 | 49.96 | 2.1275 | 42.55 |
Trial | Lignin Fraction | Mn (Da) | Mw (Da) | PDI |
---|---|---|---|---|
1 | FL-88% | 2758 | 7417 | 2.7 |
2 | FSL-70% | 3398 | 9270 | 2.7 |
3 | FIL-70% | 4108 | 14314 | 3.5 |
4 | FL-EtAc | 1876 | 2748 | 1.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Duan, X.; Wang, X.; Huang, A.; Liu, G.; Liu, Y. Effect of Two-Step Formosolv Fractionation on the Structural Properties and Antioxidant Activity of Lignin. Molecules 2022, 27, 2905. https://doi.org/10.3390/molecules27092905
Duan X, Wang X, Huang A, Liu G, Liu Y. Effect of Two-Step Formosolv Fractionation on the Structural Properties and Antioxidant Activity of Lignin. Molecules. 2022; 27(9):2905. https://doi.org/10.3390/molecules27092905
Chicago/Turabian StyleDuan, Xiaoxia, Xueke Wang, Ao Huang, Guijiang Liu, and Yun Liu. 2022. "Effect of Two-Step Formosolv Fractionation on the Structural Properties and Antioxidant Activity of Lignin" Molecules 27, no. 9: 2905. https://doi.org/10.3390/molecules27092905
APA StyleDuan, X., Wang, X., Huang, A., Liu, G., & Liu, Y. (2022). Effect of Two-Step Formosolv Fractionation on the Structural Properties and Antioxidant Activity of Lignin. Molecules, 27(9), 2905. https://doi.org/10.3390/molecules27092905