Investigation of Chemical Compositions and Biological Activities of Mentha suaveolens L. from Saudi Arabia
Abstract
:1. Introduction
2. Results
2.1. Analysis of Volatile Oils of Fresh and Dried M. suaveolens L. by GC/MS and GC/FID
2.2. Drying Effect on Volatile Oil Constituents of Mentha
2.3. Chemical Composition of Non-Volatile Constituents of Fresh and Dried Mentha by Using HPLC
2.4. Biological Activities of Mentha suaveolens
2.4.1. Antioxidant Activity of Volatile Oils and Non-Volatile Extracts of Fresh and Dried Mentha suaveolens L.
Antioxidant Activity of Volatile Oils from Mentha suaveolens L.
Antioxidant Activity Non-Volatile Constituents from Mentha
2.4.2. Antifungal Activity of Fresh and Dried M. suaveolens L.
Antifungal Activity of Volatile Oils from M. suaveolens L.
Antifungal Activity of Non-Volatile Constituents from Mentha
3. Discussion
4. Materials and Methods
4.1. Chemicals and Plant Material
4.2. Extraction Methods
4.2.1. Extraction of Volatile Oil of M. suaveolens L.
4.2.2. Extraction of Non-Volatile Constituents of M. suaveolens L.
4.3. Analysis of Volatile Oils of M. suaveolens L. by GC and GC/MS
4.3.1. GC Analysis
4.3.2. GC/MS Analysis
4.4. HPLC Analysis of Non-Volatile Compounds
4.5. Antioxidant Activity
4.6. Antifungal Activity
4.6.1. Detection and Isolation of Fungi
4.6.2. Identification of the Isolated Fungi
4.6.3. Effect of Volatile Oils and Non-Volatile Extract on Mycelium Growth of Isolated Fungi
4.7. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Shahbazi, Y. Application of Carboxymethyl Cellulose and Chitosan Coatings Containing Mentha spicata Essential Oil in Fresh Strawberries. Int. J. Biol. Macromol. 2018, 112, 264–272. [Google Scholar] [CrossRef] [PubMed]
- Božovic, M.; Pirolli, A.; Ragno, R. Mentha suaveolens Ehrh. (Lamiaceae) Essential Oil and Its Main Constituent Piperitenone Oxide: Biological Activities and Chemistry. Molecules 2015, 20, 8605–8633. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dwivedy, A.K.; Prakash, B.; Chanotiya, C.S.; Bisht, D.; Dubey, N.K. Chemically Characterized Mentha cardiaca L. Essential Oil as Plant Based Preservative in View of Efficacy against Biodeteriorating Fungi of Dry Fruits, Aflatoxin Secretion, Lipid Peroxidation and Safety Profile Assessment. Food Chem. Toxicol. 2017, 106, 175–184. [Google Scholar] [CrossRef] [PubMed]
- El-Kashoury, E.S.A.; El-Askary, H.I.; Kandil, Z.A.; Salem, M.A.; Sleem, A.A. Chemical Composition and Biological Activities of the Essential Oil of Mentha suaveolens Ehrh. Z. Für Naturforsch. C 2012, 67, 571–579. [Google Scholar] [CrossRef] [Green Version]
- El-Sayeda, A.E.-K.; Hesham, I.E.-A.; Zeinab, A.K.; Shahira, M.E.; Mohamed, A.S.; Amany, A.S. Chemical and Biological Study of Mentha suaveolens Ehrh. Cultivated in Egypt. J. Med. Plants Res. 2014, 8, 747–755. [Google Scholar] [CrossRef] [Green Version]
- Šarić-Kundalić, B.; Fialová, S.; Dobeš, C.; Ölzant, S.; Tekel’ová, D.; Grančai, D.; Reznicek, G.; Saukel, J. Multivariate Numerical Taxonomy of Mentha Species, Hybrids, Varieties and Cultivars. Sci. Pharm. 2009, 77, 851–876. [Google Scholar] [CrossRef]
- Burham, B.O.; Osman, O.A.; Mohammed Nour, A.A. Chemical Composition and Antibacterial Activity of Essential Oil of Mentha longifolia Leaf from Albaha Area Southern Saudi Arabia. Asian J. Biol. Life Sci. 2019, 8, 48–52. [Google Scholar] [CrossRef]
- Abdel-Hameed, E.S.S.; Salman, M.S.; Fadl, M.A.; Elkhateeb, A.; Hassan, M.M. Chemical Composition and Biological Activity of Mentha longifolia L. Essential Oil Growing in Taif, KSA Extracted by Hydrodistillation, Solvent Free Microwave and Microwave Hydrodistillation. J. Essent. Oil-Bearing Plants 2018, 21, 1–14. [Google Scholar] [CrossRef]
- Kohari, Y.; Yamashita, S.; Chiou, T.Y.; Shimotori, Y.; Ohtsu, N.; Nagata, Y.; Murata, M. Hydrodistillation by Solvent-Free Microwave Extraction of Fresh Japanese Peppermint (Mentha arvensis L.). J. Essent. Oil-Bear. Plants 2020, 23, 77–84. [Google Scholar] [CrossRef]
- El Hassani, F.Z. Characterization, Activities, and Ethnobotanical Uses of Mentha Species in Morocco. Heliyon 2020, 6, e05480. [Google Scholar] [CrossRef]
- Llorens-Molina, J.A.; Rivera Seclén, C.F.; Vacas Gonzalez, S.; Boira Tortajada, H. Mentha suaveolens Ehrh. Chemotypes in Eastern Iberian Peninsula: Essential Oil Variation and Relation with Ecological Factors. Chem. Biodivers. 2017, 14, e1700320. [Google Scholar] [CrossRef] [PubMed]
- El-Kashoury, E.S.A.; El-Askary, H.I.; Kandil, Z.A.; Salem, M.A. Botanical and Genetic Characterization of Mentha suaveolens Ehrh. Cultivated in Egypt. Pharmacogn. J. 2013, 5, 228–237. [Google Scholar] [CrossRef]
- Benayad, N.; Ebrahim, W.; Hakiki, A.; Mosaddak, M. Chemical Characterization and Insecticidal Evaluation of the Essential Oil of Mentha suaveolens L. and Mentha pulegium L. Growing in Morocco. Sci. Study Res. Chem. Chem. Eng. Biotechnol. Food Ind. 2012, 13, 27–32. [Google Scholar]
- Kasrati, A.; Alaoui Jamali, C.; Bekkouche, K.; Spooner-Hart, R.; Leach, D.; Abbad, A. Chemical Characterization and Insecticidal Properties of Essential Oils from Different Wild Populations of Mentha suaveolens Subsp. Timija (Briq.) Harley from Morocco Properties. Chem. Biodivers. 2015, 12, 823–831. [Google Scholar] [CrossRef]
- Benali, T.; Bouyahya, A.; Habbadi, K.; Zengin, G.; Khabbach, A.; Achbani, E.H.; Hammani, K. Chemical Composition and Antibacterial Activity of the Essential Oil and Extracts of Cistus ladaniferus Subsp. Ladanifer and Mentha suaveolens against Phytopathogenic Bacteria and Their Ecofriendly Management of Phytopathogenic Bacteria. Biocatal. Agric. Biotechnol. 2020, 28, 101696. [Google Scholar] [CrossRef]
- Elansary, H.O.; Szopa, A.; Kubica, P.; Ekiert, H.; Klimek-Szczykutowicz, M.; El-Ansary, D.O.; Mahmoud, E.A. Polyphenol Profile and Antimicrobial and Cytotoxic Activities of Natural Mentha × Piperita and Mentha longifolia Populations in Northern Saudi Arabia. Processes 2020, 8, 479. [Google Scholar] [CrossRef] [Green Version]
- Farnad, N.; Heidari, R.; Aslanipour, B. Phenolic Composition and Comparison of Antioxidant Activity of Alcoholic Extracts of Peppermint (Mentha piperita). J. Food Meas. Charact. 2014, 8, 113–121. [Google Scholar] [CrossRef]
- Xu, D.P.; Li, Y.; Meng, X.; Zhou, T.; Zhou, Y.; Zheng, J.; Zhang, J.J.; Li, H. Bin Natural Antioxidants in Foods and Medicinal Plants: Extraction, Assessment and Resources. Int. J. Mol. Sci. 2017, 18, 96. [Google Scholar] [CrossRef]
- Adams, R.P. Identification of Essential Oil Components by Gas Chromatograpy/Mass Spectrometry, 4th ed.; Allured Publishing Corporation: Carol Stream, IL, USA, 2007; pp. 804–806. [Google Scholar]
- Alencar, J.W.; Craveiro, A.A.; Matos, F.D.A. Kovats’ Indices as a Preselection Routine in Mass Spectra Library Searches of Volatiles. J. Nat. Prod. 1984, 47, 890–892. [Google Scholar] [CrossRef]
- Babushok, V.I.; Linstrom, P.J.; Zenkevich, I.G. Retention Indices for Frequently Reported Compounds of Plant Essential Oils. J. Phys. Chem. Ref. Data 2011, 40, 043101. [Google Scholar] [CrossRef] [Green Version]
- Calva, J.; Castillo, J.M.; Bec, N.; Ramírez, J.; Andrade, J.M.; Larroque, C.; Armijos, C. Chemical Composition, Enantiomeric Distribution and AChE-BChE Activities of the Essential Oil of Myrteola Phylicoides (Benth) Landrum from Ecuador. Rec. Nat. Prod. 2019, 13, 355–362. [Google Scholar] [CrossRef]
- Judzentiene, A.; Tomi, F.; Casanova, J. Analysis of Essential Oils of Artemisia absinthium L. from Lithuania by CC, GC(RI), GC-MS and 13C NMR. 2010, 1, 1113–1118. [Google Scholar]
- Mostafa, E.M. Exploration of Aurora B and Cyclin-Dependent Kinase 4 Inhibitors Isolated from Scorzonera Tortuosissima Boiss. and Their Docking Studies. Pharmacogn. Mag. 2020, 16, 258. [Google Scholar] [CrossRef]
- Murbach Teles Andrade, B.F.; Nunes Barbosa, L.; Da Silva Probst, I.; Fernandes Júnior, A. Antimicrobial Activity of Essential Oils. J. Essent. Oil Res. 2014, 26, 34–40. [Google Scholar] [CrossRef]
- Ribeiro, P.H.S.; Dos Santos, M.L.; Da Camara, C.A.G.; Born, F.S.; Fagg, C.W. Seasonal Chemical Compositions of the Essential Oils of Two Eugenia Species and Their Acaricidal Properties. Quim. Nova 2016, 39, 38–43. [Google Scholar] [CrossRef]
- Tian, M.; Zhao, X.; Wu, X.; Hong, Y.; Chen, Q.; Liu, X.; Zhou, Y. Chemical Composition, Antibacterial and Cytotoxic Activities of the Essential Oil from Ficus Tikoua Bur. Rec. Nat. Prod. 2020, 14, 219–224. [Google Scholar] [CrossRef]
- Yan, J.; Liu, X.B.; Zhu, W.W.; Zhong, X.; Sun, Q.; Liang, Y.Z. Retention Indices for Identification of Aroma Compounds by GC: Development and Application of a Retention Index Database. Chromatographia 2015, 78, 89–108. [Google Scholar] [CrossRef]
- Petretto, G.L.; Fancello, F.; Zara, S.; Foddai, M.; Mangia, N.P.; Sanna, M.L.; Omer, E.A.; Menghini, L.; Chessa, M.; Pintore, G. Antimicrobial Activity against Beneficial Microorganisms and Chemical Composition of Essential Oil of Mentha suaveolens ssp. Insularis Grown in Sardinia. J. Food Sci. 2014, 79, 369–377. [Google Scholar] [CrossRef]
- Barchan, A.; Bakkali, M.; Arakrak, A.; Pagán, R.; Laglaoui, A. The Effects of Solvents Polarity on the Phenolic Contents and Antioxidant Activity of Three Mentha Species Extracts. Int. J. Curr. Microbiol. Appl. Sci. 2014, 3, 399–412. [Google Scholar]
- Fatiha, B.; Didier, H.; Naima, G.; Khodir, M.; Martin, K.; Léocadie, K.; Caroline, S.; Mohamed, C.; Pierre, D. Phenolic Composition, in Vitro Antioxidant Effects and Tyrosinase Inhibitory Activity of Three Algerian Mentha Species: M. spicata (L.), M. pulegium (L.) and M. rotundifolia (L.) Huds (Lamiaceae). Ind. Crops Prod. 2015, 74, 722–730. [Google Scholar] [CrossRef]
- El-Ghorab, A.H. The Chemical Composition of the Mentha pulegium L. Essential Oil from Egypt and Its Antioxidant Activity. J. Essent. Oil-Bearing Plants 2006, 9, 183–195. [Google Scholar] [CrossRef]
- Hendriks, H.; Van Os, F.H.L. Essential Oil of Two Chemotypes of Mentha suaveolens during Ontogenesis. Phytochemistry 1976, 15, 1127–1130. [Google Scholar] [CrossRef]
- Hussain, A.I.; Anwar, F.; Nigam, P.S.; Ashraf, M.; Gilani, A.H. Seasonal Variation in Content, Chemical Composition and Antimicrobial and Cytotoxic Activities of Essential Oils from Four Mentha Species. J. Sci. Food Agric. 2010, 90, 1827–1836. [Google Scholar] [CrossRef] [PubMed]
- Boukhebti, H.; Chaker, A.N.; Belhadj, H.; Sahli, F.; Ramdhani, M.; Laouer, H.; Harzallah, D. Chemical Composition and Antibacterial Activity of Mentha pulegium L. and Mentha spicata L. Essential Oils. Der Pharm. Lett. 2011, 3, 267–275. [Google Scholar]
- Sutour, S.; Bradesi, P.; de Rocca-Serra, D.; Casanova, J.; Tomi, F. Chemical Composition and Antibacterial Activity of the Essential Oil from Mentha suaveolens Ssp. Insularis (Req.) Greuter. Flavour Fragr. J. 2008, 23, 107–114. [Google Scholar] [CrossRef]
- Salhi, A.; Bouyanzer, A.; Chetouani, A.; El Ouariachi, E.; Zarrouk, A.; Hammouti, B.; Desjobert, J.M.; Costa, J. Chemical Composition, Antioxidant and Anticorrosion Activities of Mentha suaveolens. J. Mater. Environ. Sci. 2017, 8, 1718–1728. [Google Scholar]
- Diop, S.M.; Guèye, M.T.; Ndiaye, I.; Hadji, E.; Ndiaye, B.; Diop, M.B.; Heuskin, S.; Lognay, G. Chemical Composition of Essential Oils and Floral Waters of Mentha longifolia (L.) Huds. from Senegal. Am. J. Essent. Oils Nat. Prod. 2016, 4, 46–49. [Google Scholar]
- Ahmed, A.; Ayoub, K.; Chaima, A.J.; Hanaa, L.; Abdelaziz, C. Effect of Drying Methods on Yield, Chemical Composition and Bioactivities of Essential Oil Obtained from Moroccan Mentha pulegium L. Biocatal. Agric. Biotechnol. 2018, 16, 638–643. [Google Scholar] [CrossRef]
- Zrira, S.; Benjilali, B. Effect of Drying on Leaf Oil Production of Moroccan Eucalyptus Camaldulensis. J. Essent. Oil Res. 1991, 3, 117–118. [Google Scholar] [CrossRef]
- Hamdani, I.; Chikri, M.; Fethi, F.; Salhi, A.; Bouyanzer, A.; Zarrouk, A.; Hammouti, B.; Costa, J.; Desjobert, J.M. Essential Oil Mentha suaveolens L: Chemical Composition, Anticorrosive Properties on Mild Steel in 0.5 M H2SO4 and Chemometric Approach. J. Mater. Environ. Sci. 2017, 8, 526–538. [Google Scholar]
- Benabdallah, A.; Boumendjel, M.; Aissi, O.; Rahmoune, C.; Boussaid, M.; Messaoud, C. Chemical Composition, Antioxidant Activity and Acetylcholinesterase Inhibitory of Wild Mentha Species from Northeastern Algeria. South African J. Bot. 2018, 116, 131–139. [Google Scholar] [CrossRef]
- Wu, Z.; Tan, B.; Liu, Y.; Dunn, J.; Martorell Guerola, P.; Tortajada, M.; Cao, Z.; Ji, P. Chemical Composition and Antioxidant Properties of Essential Oils from Peppermint, Native Spearmint and Scotch Spearmint. Molecules 2019, 24, 2825. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mišan, A.Č.; Mimica-Dukić, N.M.; Mandić, A.I.; Sakač, M.B.; Milovanović, I.L.; Sedej, I.J. Development of a Rapid Resolution HPLC Method for the Separation and Determination of 17 Phenolic Compounds in Crude Plant Extracts. Cent. Eur. J. Chem. 2011, 9, 133–142. [Google Scholar] [CrossRef]
- Kulig, D.; Matysiak, M.; Baldovská, S.; Štefániková, J.; Maruniaková, N.; Mňahončáková, E.; Árvay, J.; Galbavý, D.; Kolesárová, A. Screening of Polyphenolic Compounds from Traditional Medicinal Herbs. J. Microbiol. Biotechnol. Food Sci. 2019, 9, 487–491. [Google Scholar] [CrossRef]
- Elmastaş, M.; Dermirtas, I.; Isildak, O.; Aboul-Enein, H.Y. Antioxidant Activity of S-Carvone Isolated from Spearmint (Mentha spicata L. Fam Lamiaceae). J. Liq. Chromatogr. Relat. Technol. 2006, 29, 1465–1475. [Google Scholar] [CrossRef]
- Türkez, H.; Çelik, K.; Toğar, B. Effects of Copaene, a Tricyclic Sesquiterpene, on Human Lymphocytes Cells in Vitro. Cytotechnology 2014, 66, 597–603. [Google Scholar] [CrossRef] [Green Version]
- Bardaweel, S.K.; Bakchiche, B.; ALSalamat, H.A.; Rezzoug, M.; Gherib, A.; Flamini, G. Chemical Composition, Antioxidant, Antimicrobial and Antiproliferative Activities of Essential Oil of Mentha spicata L. (Lamiaceae) from Algerian Saharan Atlas. BMC Complement. Altern. Med. 2018, 18, 201. [Google Scholar] [CrossRef] [Green Version]
- Mata, A.T.; Proença, C.; Ferreira, A.R.; Serralheiro, M.L.M.; Nogueira, J.M.F.; Araújo, M.E.M. Antioxidant and Antiacetylcholinesterase Activities of Five Plants Used as Portuguese Food Spices. Food Chem. 2007, 103, 778–786. [Google Scholar] [CrossRef]
- Shahidi, F. Antioxidants in Food and Food Antioxidants. Nahrung Food 2000, 44, 158–163. [Google Scholar] [CrossRef]
- Erkan, N.; Ayranci, G.; Ayranci, E. Antioxidant Activities of Rosemary (Rosmarinus officinalis L.) Extract, Blackseed (Nigella sativa L.) Essential Oil, Carnosic Acid, Rosmarinic Acid and Sesamol. Food Chem. 2008, 110, 76–82. [Google Scholar] [CrossRef]
- Yang, J.; Guo, J.; Yuan, J. In Vitro Antioxidant Properties of Rutin. LWT Food Sci. Technol. 2008, 41, 1060–1066. [Google Scholar] [CrossRef]
- Kikuzaki, H.; Hisamoto, M.; Hirose, K.; Akiyama, K.; Taniguchi, H. Antioxidant Properties of Ferulic Acid and Its Related Compounds. J. Agric. Food Chem. 2002, 50, 2161–2168. [Google Scholar] [CrossRef] [PubMed]
- Mundlia, J.; Ahuja, M.; Kumar, P.; Pillay, V. Improved Antioxidant, Antimicrobial and Anticancer Activity of Naringenin on Conjugation with Pectin. 3 Biotech 2019, 9, 312. [Google Scholar] [CrossRef]
- Soković, M.D.; Vukojević, J.; Marin, P.D.; Brkić, D.D.; Vajs, V.; Van Griensven, L.J.L.D. Chemical Composition of Essential Oils of Thymus and Mentha Species and Their Antifungal Activities. Molecules 2009, 14, 238–249. [Google Scholar] [CrossRef]
- Flamini, G.; Cioni, P.L.; Puleio, R.; Morelli, I.; Panizzi, L. Antimicrobial Activity of the Essential Oil of Calamintha Nepeta and Its Constituent Pulegone against Bacteria and Fungi. Phyther. Res. 1999, 13, 349–351. [Google Scholar] [CrossRef]
- Griffin, S.G.; Markham, J.L.; Leach, D.N. An Agar Dilution Method for the Determination of the Minimum Inhibitory Concentration of Essential Oils. J. Essent. Oil Res. 2000, 12, 249–255. [Google Scholar] [CrossRef]
- Fialová, S.B.; Kello, M.; Čoma, M.; Slobodníková, L.; Drobná, E.; Holková, I.; Garajová, M.; Mrva, M.; Zachar, V.; Lukáč, M. Derivatization of Rosmarinic Acid Enhances Its in Vitro Antitumor, Antimicrobial and Antiprotozoal Properties. Molecules 2019, 24, 1078. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alves, C.T.; Ferreira, I.C.F.R.; Barros, L.; Silva, S.; Azeredo, J.; Henriques, M. Antifungal Activity of Phenolic Compounds Identified in Flowers from North Eastern Portugal against Candida Species. Future Microbiol. 2014, 9, 139–146. [Google Scholar] [CrossRef] [Green Version]
- Rashed, K.; Ćirić, A.; Glamočlija, J.; Soković, M. Antibacterial and Antifungal Activities of Methanol Extract and Phenolic Compounds from Diospyros virginiana L. Ind. Crops Prod. 2014, 59, 210–215. [Google Scholar] [CrossRef]
- Zabka, M.; Pavela, R. Antifungal Efficacy of Some Natural Phenolic Compounds against Significant Pathogenic and Toxinogenic Filamentous Fungi. Chemosphere 2013, 93, 1051–1056. [Google Scholar] [CrossRef]
- Ramadan, M.; El-Ghorab, A.; Ghanem, K. Volatile Compounds, Antioxidants, and Anticancer Activities of Cape Gooseberry Fruit (Physalis peruviana L.): An in-Vitro Study. J. Arab Soc. Med. Res. 2015, 10, 56. [Google Scholar] [CrossRef]
- El-Massrry, K.F.; El-Ghorab, A.H.; Shaaban, H.A.; Shibamoto, T. Chemical Compositions and Antioxidant/Antimicrobial Activities of Various Samples Prepared from Schinus Terebinthifolius Leaves Cultivated in Egypt. J. Agric. Food Chem. 2009, 57, 5265–5270. [Google Scholar] [CrossRef] [PubMed]
- Yue, X.; Xu, Z. Changes of Anthocyanins, Anthocyanidins, and Antioxidant Activity in Bilberry Extract during Dry Heating. J. Food Sci. 2008, 73, 494–499. [Google Scholar] [CrossRef] [PubMed]
- Duncan, D.B. Multiple Range and Multiple F Tests. Biometrics 1955, 11, 1–42. [Google Scholar] [CrossRef]
- Freed, R.; Einensmith, S.P.; Guets, S.; Reicosky, D.; Smail, V.W.; Wolberg, P. User’s Guide to MSTAT-C Analysis of Agronomic Research Experiments; Michigan State University: East Lansing, MI, USA, 1989. [Google Scholar]
a Conc. % | b Calculated KI | c KI Data Average | Name | d Type | Identification Methods | |||||
---|---|---|---|---|---|---|---|---|---|---|
Whole Plant | Leaves | Stems | ||||||||
Fresh | Dried | Fresh | Dried | Fresh | Dried | |||||
0.01 | 3.22 | 0.03 | 0.18 | 0.01 | 0.08 | 978 | 977 | Octen-2-ol | LOC | KI and MS |
0.03 | 0.12 | 0.02 | 0.1 | 0.02 | 0 | 989 | 989 | Decan<1> | M | KI and MS and St. |
0.07 | 0.31 | 0.04 | 0.14 | 0.67 | 0.23 | 998 | 999 | Ethyl hexanoate | LOC | KI and MS |
0.04 | 0.05 | 0.02 | 0 | 0.34 | 0.22 | 1005 | 1007 | Hexenyl acetate(3Ƶ) | LOC | KI and MS |
0.07 | 0.06 | 0 | 0.02 | 0.03 | 0.02 | 1007 | 1007 | Hexenoic acid (2E) | LOC | KI and MS |
0.09 | 0.03 | 0.03 | 0 | 0.03 | 0.01 | 1008 | 1008 | Linalool oxide (dehydroxy-cis) | LOC | KI and MS |
0.1 | 0.06 | 0 | 0.04 | 0.01 | 0.01 | 1011 | 10,011 | δ-Carene (3) | M | KI and MS |
0.03 | 0.03 | 0 | 0.01 | 0.03 | 0.01 | 1013 | 1013 | Hexenyl acetate (2E) | LOC | KI and MS |
0.54 | 0.01 | 0.25 | 0 | 0.35 | 0 | 1014 | 1013 | 1,8 Cineole | LOC | KI and MS and St. |
0.39 | 0.03 | 0.16 | 0.02 | 0.24 | 0.86 | 1017 | 1017 | Terpinene(α) | M | KI and MS |
0.01 | 0 | 0 | 0 | 0.01 | 0.04 | 1024 | 1025 | p-Cymene | M | KI and MS |
0.12 | 0 | 0 | 0.08 | 0 | 0.08 | 1026 | 1026 | Menthene (1-p) | M | KI and MS |
0.04 | 0.01 | 0 | 0.01 | 0.03 | 0.09 | 1029 | 1029 | β-Phellandrene | M | KI and MS |
0.04 | 0.01 | 0.01 | 0.01 | 0.02 | 0 | 1037 | 1038 | Ocimene(Ƶ-β) | M | KI and MS |
0.62 | 0.15 | 0.33 | 0.31 | 0.1 | 0.18 | 1050 | 1048 | Ocimene(Ε-β) | M | KI and MS and St. |
0.09 | 0.03 | 0.04 | 0.01 | 0.03 | 0.01 | 1059 | 1060 | Terpinene(-γ-) | M | KI and MS |
0.13 | 0.03 | 0.03 | 0 | 0 | 0.1 | 1066 | 1065 | Octen-1-ol(2Ε) | LOC | KI and MS |
1.71 | 0.29 | 0.71 | 0.56 | 1.26 | 0.2 | 1076 | 1076 | Benzyl formate | LOC | KI and MS and St. |
0.81 | 0.25 | 0.49 | 0.48 | 0.34 | 0.25 | 1088 | 1086 | Terpinolene | M | KI and MS and St. |
1.54 | 0.46 | 1.13 | 0.9 | 1.18 | 0.18 | 1096 | 1097 | Linalool | LOC | KI and MS and St. |
0.03 | 0 | 0.01 | 0.01 | 0 | 0.05 | 1101 | 1102 | Hexyl propanoate | LOC | KI and MS |
0.05 | 0.03 | 0.04 | 0.01 | 0.03 | 0.01 | 1104 | 1103 | Methyl butyl isovalerate(2) | LOC | KI and MS |
0.13 | 0 | 0.08 | 0.05 | 0.02 | 0.05 | 1113 | 1115 | Camphenol(6-) | LOC | KI and MS |
0 | 0.01 | 0.01 | 0.01 | 0.02 | 0.03 | 1121 | 1122 | Menth-2-en-1-ol(cis-p) | LOC | KI and MS |
5.88 | 2.81 | 3.93 | 4.98 | 3.85 | 2.85 | 1122 | 1122 | Myrcenol | LOC | KI and MS and St. |
4.29 | 1.84 | 5.61 | 2.44 | 4.4 | 1.04 | 1133 | 1132 | Terpineol<1-> | LOC | KI and MS and St. |
0.22 | 0.05 | 0.17 | 0.09 | 0.1 | 0.04 | 1144 | 1143 | Ocimene(neo-allo) | M | KI and MS |
0.02 | 0.01 | 0.01 | 0 | 0.05 | 0.04 | 1153 | 1155 | Thujanol(neo-3) | LOC | KI and MS |
1.38 | 0.23 | 0.83 | 0.52 | 0.13 | 0.09 | 1159 | 1159 | Isopulegol(iso) | LOC | KI and MS |
0 | 0.01 | 0.03 | 0.03 | 0 | 0.08 | 1160 | 1159 | Isoborneol | LOC | KI and MS |
0.09 | 0.01 | 0.05 | 0.02 | 0.07 | 0.08 | 1164 | 1164 | Terpineol(cis dihydro) | LOC | KI and MS |
0.03 | 0.06 | 0.03 | 0.01 | 0.01 | 0.33 | 1165 | 1164 | Menthol(neo) | LOC | KI and MS |
0.3 | 0.07 | 0.17 | 0.11 | 0.07 | 0.15 | 1170 | 1170 | Pinocampheol | LOC | KI and MS |
0.26 | 0.03 | 0.13 | 0.06 | 0.07 | 0.06 | 1171 | 1171 | Iso pulegol (neoiso) | LOC | KI and MS |
0.16 | 0.05 | 0.09 | 0.04 | 0 | 0.09 | 1174 | 1174 | Linalool oxide (cis) | LOC | KI and MS |
0 | 0.03 | 0.01 | 0.03 | 0.02 | 0.05 | 1176 | 1176 | Linalool oxide (Trans) | LOC | KI and MS |
0.09 | 0.01 | 0.06 | 0 | 0.06 | 0.01 | 1177 | 1177 | Terpinen-4-ol | LOC | KI and MS and St. |
0.18 | 0.02 | 0.06 | 0.02 | 0.2 | 0.05 | 1186 | 1187 | Dillether | LOC | KI and MS |
0.15 | 0.07 | 0.08 | 0.04 | 0.05 | 0.01 | 1188 | 1188 | α-Terpineol | LOC | KI and MS and St. |
0.07 | 0.01 | 0.04 | 0.01 | 0.03 | 0 | 1189 | 1189 | Verbanol (neoiso) | LOC | KI and MS |
0.02 | 0.02 | 0.04 | 0.01 | 0.04 | 0.03 | 1192 | 1192 | Dihydro carveol | LOC | KI and MS |
0.05 | 0.01 | 0.01 | 0.01 | 0.05 | 0 | 1193 | 1194 | Dihydro carveol(neo) | LOC | KI and MS |
0.03 | 0.03 | 0.01 | 0 | 0.03 | 0.02 | 1196 | 1196 | Decanol(3-) | LOC | KI and MS |
0.27 | 0.15 | 0.45 | 0.23 | 0.11 | 0.06 | 1199 | 1199 | γ-Terpineol | LOC | KI and MS and St. |
0.91 | 0.09 | 0.44 | 0.15 | 0.08 | 0.08 | 1200 | 1201 | Dihydro carveol (Trans) | LOC | KI and MS |
0.15 | 0.01 | 0.11 | 0.03 | 0.72 | 0.03 | 1208 | 1208 | Piperitol | LOC | KI and MS |
0.01 | 0.03 | 0.02 | 0.05 | 0.9 | 0.69 | 1214 | 1213 | Pulegol (Trans) | LOC | KI and MS |
0.11 | 1.62 | 0 | 2.52 | 0.48 | 1.28 | 1215 | 1216 | Dihydro myrcenol acetate | LOC | KI and MS |
1.77 | 0.49 | 3.45 | 0.88 | 2.12 | 0.63 | 1216 | 1216 | Carveol (Trans) | LOC | KI and MS and St. |
0.05 | 0.01 | 0.1 | 0.02 | 0.05 | 0.01 | 1219 | 1220 | Cyclo citral | LOC | KI and MS |
0.05 | 0.07 | 0.27 | 0.13 | 0.01 | 0.11 | 1227 | 1227 | Prenyl cyclo pentanone | LOC | KI and MS |
0 | 1.84 | 2.24 | 2.65 | 2.5 | 0.02 | 1229 | 1229 | Carveol(cis) | LOC | KI and MS and St. |
0.54 | 0 | 0 | 0 | 0.03 | 1.69 | 1230 | 1232 | Mentha-1,8-dien-2-ol (cis-p) | LOC | KI and MS |
0.11 | 0 | 0 | 0.01 | 0 | 0.01 | 1234 | 1235 | linalool acetate (tetrahydro) | LOC | KI and MS |
43.65 | 45 | 64.31 | 53.45 | 58.8 | 49 | 1234 | 1234 | Carvone | LOC | KI and MS and St. |
3.8 | 4 | 2.1 | 0 | 2.2 | 0.01 | 1237 | 1237 | Pulegone | LOC | KI and MS and St. |
0.03 | 0.08 | 0.01 | 0 | 0.04 | 0.02 | 1242 | 1242 | Verbenyl acetate(Trans) | LOC | KI and MS |
0.12 | 0.07 | 0.06 | 0.02 | 0.2 | 0.06 | 1244 | 1244 | Isomenthene(2-ethyl) | S | KI and MS |
0 | 0.03 | 0.01 | 0 | 0.06 | 0.05 | 1247 | 1247 | Carvotan aceton | LOC | KI and MS |
0.01 | 0.02 | 0.15 | 0.01 | 0.05 | 0.01 | 1253 | 1254 | Myrtanal (cis) | LOC | KI and MS |
0.11 | 0.02 | 0 | 0.02 | 0.05 | 0.01 | 1254 | 1253 | Piperitone epoxide (cis) | LOC | KI and MS |
0.09 | 0.01 | 0 | 0.01 | 0.01 | 0.01 | 1255 | 1254 | Piperitone epoxide (trans) | LOC | KI and MS |
0.01 | 0.03 | 0.01 | 0.02 | 0.02 | 0.11 | 1256 | 1256 | Sabinene hydrate acetate | LOC | KI and MS |
0.34 | 0 | 0.13 | 0 | 0.32 | 0 | 1258 | 1257 | Carvenone | LOC | KI and MS |
0.11 | 0.02 | 0.03 | 0.01 | 0.17 | 1.26 | 1261 | 1262 | Myrtanol(Trans) | LOC | KI and MS |
0.05 | 0.01 | 0.02 | 0.02 | 0.07 | 0.04 | 1263 | 1263 | Carvonoxide(cis) | LOC | KI and MS |
0.05 | 0.06 | 0.05 | 0.01 | 0.06 | 0.06 | 1265 | 1265 | Cauaiacol acetate<o> | LOC | KI and MS |
0.03 | 0.01 | 0.15 | 0.01 | 0.05 | 0.34 | 1276 | 1267 | Thujanol acetate(neo-3) | LOC | KI and MS |
0.42 | 0 | 0 | 0 | 0.04 | 0 | 1277 | 1275 | Isopulegyl acetate | LOC | KI and MS |
0.33 | 0.46 | 0.19 | 0.85 | 0.22 | 0.04 | 1282 | 1282 | Verbenyl acetate(cis) | LOC | KI and MS |
0.22 | 0.08 | 0.07 | 0.11 | 0.08 | 0.01 | 1283 | 1282 | Thujanol acetate(neo iso-3) | LOC | KI and MS |
0 | 0.02 | 0.01 | 0 | 0.09 | 0.02 | 1285 | 1285 | Terpinen-7-al(α) | LOC | KI and MS |
0.09 | 0.34 | 0.4 | 0.02 | 0.27 | 0.01 | 1288 | 1288 | Fenchol(2-ethyl-endo) | LOC | KI and MS |
2.79 | 1.23 | 1.24 | 1.85 | 0.15 | 0.7 | 1289 | 1288 | Limonen-10-ol | LOC | KI and MS |
0.04 | 0.26 | 0.02 | 0 | 0.07 | 0.06 | 1290 | 1291 | Thymol | LOC | KI and MS |
2.66 | 2.32 | 1.09 | 2.14 | 0.65 | 1.2 | 1328 | 1329 | Silphiperfol-5-ene | S | KI and MS |
0.1 | 0.01 | 0 | 0.03 | 0.05 | 0.01 | 1333 | 1334 | cis-Carvyl acetate | LOC | KI and MS |
0.05 | 0.08 | 0.02 | 0.05 | 0.04 | 0.02 | 1336 | 1336 | Presilphiperfol-7-ene | S | KI and MS |
0.06 | 0.03 | 0.05 | 0.08 | 0.02 | 0.01 | 1338 | 1338 | Elemene(δ-) | S | KI and MS and St. |
1.69 | 1.29 | 0.68 | 1.31 | 0.44 | 0.7 | 1351 | 1351 | Cubebene(α) | S | KI and MS |
0.47 | 0.11 | 0 | 0.15 | 0.01 | 0.04 | 1352 | 1353 | Thymol acetate | LOC | KI and MS |
0.52 | 0.26 | 0.26 | 0.55 | 0.25 | 0.22 | 1353 | 1354 | Lengipinene(α) | S | KI and MS |
0.06 | 0 | 0.02 | 0.02 | 0.45 | 0.01 | 1354 | 1354 | Ethyl nerolate | LOC | KI and MS |
0.21 | 0.06 | 0.04 | 0.06 | 0.45 | 0.01 | 1359 | 1358 | Dihydro carveol acetate | LOC | KI and MS |
1.41 | 0.58 | 0.56 | 0.95 | 0.71 | 0.59 | 1371 | 1372 | Cyclo sativene | S | KI and MS |
0.17 | 0.02 | 0 | 0.06 | 0 | 0.08 | 1372 | 1373 | p-Menthane-1,2,3-triol | LOC | KI and MS |
1.37 | 0.6 | 0.53 | 0.8 | 0.13 | 0.57 | 1376 | 1375 | Copaene(α) | S | KI and MS and St. |
0.53 | 0.16 | 0.18 | 0.29 | 0.01 | 0.09 | 1380 | 1380 | cis-Jasmone | LOC | KI and MS |
0.04 | 0.02 | 0 | 0.01 | 0.02 | 0.04 | 1381 | 1381 | Patchoulene(β-) | S | KI and MS |
0.19 | 0.01 | 0.07 | 0.07 | 0.05 | 0 | 1382 | 1383 | Daucene | S | KI and MS |
0.57 | 0.21 | 0.23 | 0.3 | 0.06 | 0.24 | 1388 | 1388 | Cubebene(β-) | S | KI and MS |
0.25 | 0.1 | 0.07 | 0.1 | 0.08 | 0.13 | 1390 | 1391 | Longifolene(iso) | S | KI and MS |
0.14 | 0.06 | 0.07 | 0.04 | 0.09 | 0.07 | 1391 | 1392 | Elemene(β-) | S | KI and MS |
0.07 | 0.05 | 0.02 | 0.04 | 0.04 | 0.02 | 1392 | 1393 | Sativene | S | KI and MS |
0.32 | 0.17 | 0.16 | 0.08 | 0.27 | 0.1 | 1400 | 1400 | Longipinene(β-) | S | KI and MS |
0.83 | 0.04 | 0.35 | 0.36 | 0.54 | 0.14 | 1402 | 1403 | Funebrene(α) | S | KI and MS |
0.04 | 0.03 | 0.07 | 0.03 | 0.09 | 0.04 | 1408 | 1408 | Caryophyllene(Ƶ) | S | KI and MS |
0.19 | 0.12 | 0.1 | 0.05 | 0.1 | 0.11 | 1409 | 1409 | Gurjunene(α) | S | KI and MS |
0.07 | 0.03 | 0 | 0.03 | 0.04 | 0 | 1412 | 1412 | β-Caryophyllene | S | KI and MS |
0.56 | 0.16 | 0.29 | 0.2 | 0.13 | 14 | 1417 | 1416 | Santalene | S | KI and MS |
0 | 0.03 | 0.05 | 0.04 | 0.03 | 0.07 | 1419 | 1418 | Caryophyllene(Ε-) | S | KI and MS |
0.08 | 0.01 | 0.05 | 0.08 | 0.07 | 0.21 | 1423 | 1424 | Menth-1-on-9-ol acetate | LOC | KI and MS |
0.08 | 0.01 | 0.05 | 0.03 | 0.03 | 0.29 | 1430 | 1430 | Ionone(Ε-α) | LOC | KI and MS |
4 | 11 | 0.03 | 3.81 | 0.01 | 0.08 | 1431 | 1431 | Copaene(β) | S | KI and MS |
0.02 | 0.02 | 0.02 | 0.07 | 0.04 | 0.02 | 1436 | 1435 | Elemene(-γ) | S | KI and MS |
0.09 | 0.03 | 0.07 | 0.05 | 0.05 | 0.02 | 1441 | 1441 | Aromadendrene | S | KI and MS and St. |
0.03 | 0.04 | 0 | 0.1 | 0.03 | 0.08 | 1444 | 1444 | α-Humulene | S | KI and MS |
0.04 | 0.05 | 0 | 0.05 | 0.06 | 0.1 | 1446 | 1445 | γ-Muurolene | S | KI and MS |
0.13 | 0.04 | 0.1 | 0.03 | 0.01 | 0.02 | 1447 | 1447 | Cabreuva(A) | S | KI and MS |
0.14 | 0.07 | 0.07 | 0.05 | 0.18 | 0.13 | 1451 | 1451 | Himachalene(α) | S | KI and MS |
0.04 | 0.13 | 0.04 | 0.09 | 0.21 | 0.2 | 1454 | 1454 | Neryl propanoate | LOC | KI and MS |
0.02 | 0.05 | 0.03 | 0.1 | 0.07 | 0.01 | 1456 | 1457 | Carvyl propanoate(Trans) | HOC | KI and MS |
0.19 | 3.63 | 0.1 | 0.12 | 0.14 | 0.05 | 1460 | 1462 | Aromadendrene(allo) | S | KI and MS |
0.04 | 0.93 | 0.03 | 1.37 | 0.11 | 0.54 | 1466 | 1467 | Dodecanal | S | KI and MS |
0.1 | 0.43 | 0.07 | 0.21 | 0.07 | 0.05 | 1469 | 1469 | Ethyl-(2Ε,4Ƶ)-decadienoate | HOC | KI and MS |
0.02 | 0.72 | 0.01 | 1.08 | 0.07 | 0.01 | 1470 | 1471 | Pinchotene acetate | HOC | KI and MS |
0.02 | 0.8 | 0.05 | 0 | 0.02 | 0.04 | 1477 | 1478 | Geranyl propanoate | HOC | KI and MS |
0.06 | 0.06 | 0.02 | 2.43 | 0.09 | 2.81 | 1478 | 1478 | Allyl decanoate | HOC | KI and MS |
0.05 | 0.11 | 0.03 | 0 | 0.07 | 0.1 | 1480 | 1481 | Cabreuva oxide D | HOC | KI and MS |
0.01 | 0.03 | 0.02 | 0.08 | 0.06 | 0.06 | 1482 | 1482 | Menthyl lactate | HOC | KI and MS |
1.44 | 0.32 | 0.19 | 0.03 | 1.88 | 0.17 | 1515 | 1516 | Gernyl isobutanoate | HOC | KI and MS |
0.03 | 0.24 | 0.15 | 0.17 | 0.14 | 0.21 | 1517 | 1517 | Himachalene(α-dehydro-ar) | HOC | KI and MS |
0.13 | 2.68 | 0.1 | 2.23 | 0.13 | 1.91 | 1522 | 1522 | Isobornyl isovalerate | HOC | KI and MS |
0.13 | 2.34 | 0.18 | 2.86 | 0.26 | 7.06 | 1524 | 1524 | Isobornyl-2-methyl butanoate | HOC | KI and MS |
2.5 | 3.07 | 0.2 | 2.67 | 4.01 | 2.44 | 1640 | 1640 | Epi-α-Muurolol | HOC | KI and MS |
Phenolic Compounds | Concentration (µg/g) ± SD | |||||
---|---|---|---|---|---|---|
Whole Plant | LEAVES | Stems | ||||
Fresh | Dried | Fresh | Dried | Fresh | Dried | |
Protocatechuic acid | 5.5 ± 0.3 | n.d | 45.4 ± 3.21 | 3.5 ± 0.17 | 19.96 ± 1.56 | 3.6 ± 1.23 |
p-hydroxybenzoic acid | n.d | 3.95 ± 0.23 | 526.9 ± 21.87 | 2.23 ± 0.15 | n.d | 2.62 ± 0.12 |
Catechin | 198.3 ± 1.8 | 85.03 ± 0.98 | 462.3 ± 12.45 | 54.19 ± 3.14 | 1340.4 ± 13.76 | 68.1 ± 2.56 |
Vanilic acid | n.d | n.d | 12.13 ± 1.12 | n.d | n.d | n.d |
Cinnamic acid | 0.33 ± 0.01 | 10.51 ± 1.02 | 46.3 ± 3.05 | 15.35 ± 1.16 | 1.54 ± 0.13 | 1.84 ± 0.13 |
Naringenin | 2.3 ± 0.15 | 53.22 ± 3.23 | 13 ± 1.23 | 7.2 ± 0.54 | 371.8 ± 3.89 | 130.3 ± 10.23 |
Eugenol | n.d | n.d | n.d | n.d | 86.6 ± 7.34 | n.d |
Caffeic Acid | n.d | 13.84 ± 1.08 | 1141.5 ± 13.35 | 1.79 ± 0.09 | n.d | 3.7 ± 023 |
Coumaric acid | 0.05 ± 0.001 | n.d | 51 ± 3.67 | n.d | 5.8 ± 0.43 | n.d |
Ferulic acid | 226.7 ± 3.8 | 3.89 ± 0.22 | 1520 ± 17.34 | 0.63 ± 0.0054 | 1.92 ± 0.12 | 1.95 ± 0.12 |
Rutin | 676.7 ± 4.45 | 252.16 ± 12.92 | 3383.8 ± 15.45 | 194.7 ± 12.7 | 194.6 ± 12.43 | 41.6 ± 2.34 |
Luteolin | 122.3 ± 1.17 | 78.65 ± 4.34 | 514.9 ± 12.34 | 83.7 ± 6.42 | 41.6 ± 3.52 | 38.6 ± 2.12 |
Quercetin | 22.5 ± 1.08 | 153.8 ± 7.8 | 377.3 ± 24.20 | 156.98 ± 11.65 | n.d | 58.6 ± 6.23 |
Rosmarinic acid | 2223.3 ± 9.8 | 21,191.9 ± 24.8 | 28,002.5 ± 32.6 | 15,165.1 ± 17.15 | 6558 ± 15.25 | 8378.4 ± 23.75 |
Source of Variation | df | Volatile Oils | Ethanolic Non-Volatile Extracts |
---|---|---|---|
Between | 6 | 182.952 ** | 2160.532 ** |
Within | 14 | 0.025 | 0.013 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aldogman, B.; Bilel, H.; Moustafa, S.M.N.; Elmassary, K.F.; Ali, H.M.; Alotaibi, F.Q.; Hamza, M.; Abdelgawad, M.A.; El-Ghorab, A.H. Investigation of Chemical Compositions and Biological Activities of Mentha suaveolens L. from Saudi Arabia. Molecules 2022, 27, 2949. https://doi.org/10.3390/molecules27092949
Aldogman B, Bilel H, Moustafa SMN, Elmassary KF, Ali HM, Alotaibi FQ, Hamza M, Abdelgawad MA, El-Ghorab AH. Investigation of Chemical Compositions and Biological Activities of Mentha suaveolens L. from Saudi Arabia. Molecules. 2022; 27(9):2949. https://doi.org/10.3390/molecules27092949
Chicago/Turabian StyleAldogman, Bashayr, Hallouma Bilel, Shaima Mohamed Nabil Moustafa, Khaled F. Elmassary, Hazim M. Ali, Faddaa Qayid Alotaibi, Mohamed Hamza, Mohamed A. Abdelgawad, and Ahmed H. El-Ghorab. 2022. "Investigation of Chemical Compositions and Biological Activities of Mentha suaveolens L. from Saudi Arabia" Molecules 27, no. 9: 2949. https://doi.org/10.3390/molecules27092949
APA StyleAldogman, B., Bilel, H., Moustafa, S. M. N., Elmassary, K. F., Ali, H. M., Alotaibi, F. Q., Hamza, M., Abdelgawad, M. A., & El-Ghorab, A. H. (2022). Investigation of Chemical Compositions and Biological Activities of Mentha suaveolens L. from Saudi Arabia. Molecules, 27(9), 2949. https://doi.org/10.3390/molecules27092949