Investigations on Potential Applications of CaMg(CO3)2 Nanoparticles
Abstract
:1. Introduction
2. Results and Discussion
2.1. Effect of CaMg(CO3)2 on Rice Seed Germination
2.2. Antibacterial Activity of the CaMg(CO3)2
2.3. Cytotoxicity of the CaMg(CO3)2
2.4. Changes in Appearance and Quality of Eggs with CaMg(CO3)2 NPs: In Vivo Experiment
3. Materials and Methods
3.1. Production Mechanism of Dolomite Nanoparticles
3.2. Characterization of Dolomite Nanoparticles
3.2.1. The Crystallinity XRD and DLS Study on Dolomite NPs
3.2.2. Nanoparticle Surface SEM and TEM Study
3.2.3. The Surface Chemical Analysis Using XPS
4. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Tsuzuki, T.; Pethick, K.; McCormick, P.G. Synthesis of CaCO3 Nanoparticles by Mechanochemical Processing. J. Nanopart. Res. 2000, 2, 375–380. [Google Scholar] [CrossRef]
- Wang, C.; Sheng, Y.; Zhao, X.; Pan, Y.; Hari-Bala; Wang, Z. Synthesis of hydrophobic CaCO3 nanoparticles. Mater. Lett. 2006, 60, 854–857. [Google Scholar] [CrossRef]
- Ghiasi, M.; Malekzadeh, A. Synthesis of CaCO3 nanoparticles via citrate method and sequential preparation of CaO and Ca(OH)2 nanoparticles. Cryst. Res. Technol. 2012, 47, 471–478. [Google Scholar] [CrossRef]
- Dong, Z.; Feng, L.; Zhu, W.; Sun, X.; Gao, M.; Zhao, H.; Chao, Y.; Liu, Z. CaCO3 nanoparticles as an ultra-sensitive tumor-pH-responsive nanoplatform enabling real-time drug release monitoring and cancer combination therapy. Biomaterials 2016, 110, 60–70. [Google Scholar] [CrossRef] [PubMed]
- Sunqing, Q.; Junxiu, D.; Guoxu, C. Wear and friction behaviour of CaCO3 nanoparticles used as additives in lubricating oils. Lubr. Sci. 2000, 12, 205–212. [Google Scholar] [CrossRef]
- Cui, Z.-G.; Shi, K.-Z.; Cui, Y.-Z.; Binks, B.P. Double phase inversion of emulsions stabilized by a mixture of CaCO3 nanoparticles and sodium dodecyl sulphate. Colloids Surf. A Physicochem. Eng. Asp. 2008, 329, 67–74. [Google Scholar] [CrossRef]
- Ji, X.; Chen, Y.; Zhao, G.; Wang, X.; Liu, W. Tribological Properties of CaCO3 Nanoparticles as an Additive in Lithium Grease. Tribol. Lett. 2011, 41, 113–119. [Google Scholar] [CrossRef]
- Zapata, P.A.; Palza, H.; Díaz, B.; Armijo, A.; Sepúlveda, F.; Ortiz, J.A.; Ramírez, M.P.; Oyarzún, C. Effect of CaCO3 Nanoparticles on the Mechanical and Photo-Degradation Properties of LDPE. Molecules 2019, 24, 126. [Google Scholar] [CrossRef] [Green Version]
- Zhang, M.; Wang, X.; Fu, X.; Xia, Y. Performance and anti-wear mechanism of CaCO3 nanoparticles as a green additive in poly-alpha-olefin. Tribol. Int. 2009, 42, 1029–1039. [Google Scholar] [CrossRef]
- Mumtaz, S.; Rana, J.N.; Choi, E.H.; Han, I. Microwave Radiation and the Brain: Mechanisms, Current Status, and Future Prospects. Int. J. Mol. Sci. 2022, 23, 9288. [Google Scholar] [CrossRef]
- Han, I.; Rana, J.N.; Kim, J.-H.; Choi, E.H.; Kim, Y. A Non-thermal Biocompatible Plasma-Modified Chitosan Scaffold Enhances Osteogenic Differentiation in Bone Marrow Stem Cells. Pharmaceutics 2022, 14, 465. [Google Scholar] [CrossRef]
- McSwiggen, P.L. Alternative solution model for the ternary carbonate system CaCO3-MgCO3-FeCO3. Phys. Chem. Miner. 1993, 20, 42–55. [Google Scholar] [CrossRef]
- Vinograd, V.L.; Burton, B.P.; Gale, J.D.; Allan, N.L.; Winkler, B. Activity–composition relations in the system CaCO3–MgCO3 predicted from static structure energy calculations and Monte Carlo simulations. Geochim. Cosmochim. Acta 2007, 71, 974–983. [Google Scholar] [CrossRef] [Green Version]
- Hearse, D.J.; Stewart, D.A.; Braimbridge, M.V. Myocardial protection during ischemic cardiac arrest: The importance of magnesium in cardioplegic infusates. J. Thorac. Cardiovasc. Surg. 1978, 75, 877–885. [Google Scholar] [CrossRef]
- Gottlieb, S.S.; Baruch, L.; Kukin, M.L.; Bernstein, J.L.; Fisher, M.L.; Packer, M. Prognostic importance of the serum magnesium concentration in patients with congestive heart failure. J. Am. Coll. Cardiol. 1990, 16, 827–831. [Google Scholar] [CrossRef] [Green Version]
- Gelli, R.; Ridi, F.; Baglioni, P. The importance of being amorphous: Calcium and magnesium phosphates in the human body. Adv. Colloid Interface Sci. 2019, 269, 219–235. [Google Scholar] [CrossRef]
- Welsh, P.G.; Lipton, J.; Chapman, G.A.; Podrabsky, T.L. Relative importance of calcium and magnesium in hardness-based modification of copper toxicity. Environ. Toxicol. Chem. 2000, 19, 1624–1631. [Google Scholar] [CrossRef]
- Ryszewska-Pokraśniewicz, B.; Mach, A.; Skalski, M.; Januszko, P.; Wawrzyniak, Z.M.; Poleszak, E.; Nowak, G.; Pilc, A.; Radziwoń-Zaleska, M. Effects of Magnesium Supplementation on Unipolar Depression: A Placebo-Controlled Study and Review of the Importance of Dosing and Magnesium Status in the Therapeutic Response. Nutrients 2018, 10, 1014. [Google Scholar] [CrossRef] [Green Version]
- Shao, Y.; Wang, J.; Du, H.; Sun, K.; Zhang, Z.; Zhang, L.; Li, Q.; Zhang, S.; Liu, Q.; Hu, X. Importance of Magnesium in Cu-Based Catalysts for Selective Conversion of Biomass-Derived Furan Compounds to Diols. ACS Sustain. Chem. Eng. 2020, 8, 5217–5228. [Google Scholar] [CrossRef]
- Shen, C.; Pan, Y.; Wu, D.; Liu, Y.; Ma, C.; Li, F.; Ma, H.; Zhang, Y. A crosslinking-induced precipitation process for the simultaneous removal of poly(vinyl alcohol) and reactive dye: The importance of covalent bond forming and magnesium coagulation. Chem. Eng. J. 2019, 374, 904–913. [Google Scholar] [CrossRef]
- Lauth, V.; Maas, M.; Rezwan, K. An evaluation of colloidal and crystalline properties of CaCO3 nanoparticles for biological applications. Mater. Sci. Eng. C 2017, 78, 305–314. [Google Scholar] [CrossRef]
- Abdi, A.; Eslami-Farsani, R.; Khosravi, H. Evaluating the Mechanical Behavior of Basalt Fibers/Epoxy Composites Containing Surface-modified CaCO3 Nanoparticles. Fibers Polym. 2018, 19, 635–640. [Google Scholar] [CrossRef]
- Li, R.; He, J.; Xie, H.; Wang, W.; Bose, S.K.; Sun, Y.; Hu, J.; Yin, H. Effects of chitosan nanoparticles on seed germination and seedling growth of wheat (Triticum aestivum L.). Int. J. Biol. Macromol. 2019, 126, 91–100. [Google Scholar] [CrossRef] [PubMed]
- Baz, H.; Creech, M.; Chen, J.; Gong, H.; Bradford, K.; Huo, H. Water-Soluble Carbon Nanoparticles Improve Seed Germination and Post-Germination Growth of Lettuce under Salinity Stress. Agronomy 2020, 10, 1192. [Google Scholar] [CrossRef]
- Prażak, R.; Święciło, A.; Krzepiłko, A.; Michałek, S.; Arczewska, M. Impact of Ag Nanoparticles on Seed Germination and Seedling Growth of Green Beans in Normal and Chill Temperatures. Agriculture 2020, 10, 312. [Google Scholar] [CrossRef]
- Zhang, K.; Wang, Y.; Mao, J.; Chen, B. Effects of biochar nanoparticles on seed germination and seedling growth. Environ. Pollut. 2020, 256, 113409. [Google Scholar] [CrossRef]
- Muniz, F.T.L.; Miranda, M.A.R.; dos Santos, C.; Sasaki, J.M. The Scherrer equation and the dynamical theory of X-ray diffraction. Acta Crystallogr. Sect. A 2016, 72, 385–390. [Google Scholar] [CrossRef]
- Wang, H.; Huang, W.; Han, Y. Diffusion-reaction compromise the polymorphs of precipitated calcium carbonate. Particuology 2013, 11, 301–308. [Google Scholar] [CrossRef]
- Park, W.K.; Ko, S.-J.; Lee, S.W.; Cho, K.-H.; Ahn, J.-W.; Han, C. Effects of magnesium chloride and organic additives on the synthesis of aragonite precipitated calcium carbonate. J. Cryst. Growth 2008, 310, 2593–2601. [Google Scholar] [CrossRef]
- Safaei, S.; Asgari, F.; Arzi, M.; Hojaji, A.; Sadrnezhaad, S.K. Synthesis and Characterization of Carbon-Stabilized Magnesium Nanoparticles. J. Clust. Sci. 2017, 28, 881–889. [Google Scholar] [CrossRef]
- Krajczewski, J.; Kędziora, M.; Kołątaj, K.; Kudelski, A. Improved synthesis of concave cubic gold nanoparticles and their applications for Raman analysis of surfaces. RSC Adv. 2019, 9, 18609–18618. [Google Scholar] [CrossRef] [Green Version]
- Wagner, C.D.; Zatko, D.A.; Raymond, R.H. Use of the oxygen KLL Auger lines in identification of surface chemical states by electron spectroscopy for chemical analysis. Anal. Chem. 1980, 52, 1445–1451. [Google Scholar] [CrossRef]
- Rajumon, M.K.; Prabhakaran, K.; Rao, C.N.R. Adsorption of oxygen on (100), (110) and (111) surfaces of Ag, Cu and Ni: An electron spectroscopic study. Surf. Sci. 1990, 233, L237–L242. [Google Scholar] [CrossRef]
- Hoogewijs, R.; Fiermans, L.; Vennik, J. Electronic relaxation processes in the KLL′ auger spectra of the free magnesium atom, solid magnesium and MgO. J. Electron Spectros. Relat. Phenom. 1977, 11, 171–183. [Google Scholar] [CrossRef]
- Carlini, L.; Fasolato, C.; Postorino, P.; Fratoddi, I.; Venditti, I.; Testa, G.; Battocchio, C. Comparison between silver and gold nanoparticles stabilized with negatively charged hydrophilic thiols: SR-XPS and SERS as probes for structural differences and similarities. Colloids Surf. A Physicochem. Eng. Asp. 2017, 532, 183–188. [Google Scholar] [CrossRef]
Name | Start BE | Peak BE | End BE | Height CPS | FWHM eV | Area (P) CPS.eV | Area (N) TPP-2M | Atomic % |
---|---|---|---|---|---|---|---|---|
C1s | 296 | 289.19 | 281 | 4906.63 | 2.15 | 25,060.28 | 352.4 | 35.1 |
Ca2p | 355 | 347.3 | 342.03 | 16,307.06 | 2.21 | 57,068.56 | 139.64 | 13.91 |
Mg1s | 1308.98 | 1304.97 | 1298 | 458.31 | 2.49 | 1283.33 | 4.35 | 0.43 |
O1s | 540 | 531.81 | 526 | 29,711.11 | 2.73 | 87,514.01 | 507.65 | 50.56 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Han, I.; Rhee, C.; Kim, D. Investigations on Potential Applications of CaMg(CO3)2 Nanoparticles. Molecules 2023, 28, 316. https://doi.org/10.3390/molecules28010316
Han I, Rhee C, Kim D. Investigations on Potential Applications of CaMg(CO3)2 Nanoparticles. Molecules. 2023; 28(1):316. https://doi.org/10.3390/molecules28010316
Chicago/Turabian StyleHan, Ihn, Chulwoo Rhee, and Doyoung Kim. 2023. "Investigations on Potential Applications of CaMg(CO3)2 Nanoparticles" Molecules 28, no. 1: 316. https://doi.org/10.3390/molecules28010316
APA StyleHan, I., Rhee, C., & Kim, D. (2023). Investigations on Potential Applications of CaMg(CO3)2 Nanoparticles. Molecules, 28(1), 316. https://doi.org/10.3390/molecules28010316