New Synthetic Quinoline (Qui) Derivatives as Novel Antioxidants and Potential HSA’s Antioxidant Activity Modulators—Spectroscopic Studies
Abstract
:1. Introduction
2. Results and Discussion
2.1. Spectrophotometric (UV-Vis Spectroscopy) Analysis of the Qui1, Qui2, Qui3 and Their Interaction with HSA
2.2. Spectropolarimetric Analysis of the Effect of Qui1, Qui2, Qui3 on HSA’s Secondary Structure
2.3. Spectrophotometric Analysis of the Antioxidant Activity of HSA, Qui1, Qui2 and Qui3 in Denaturing (DPPH Assay) and Non-Denaturing (ABTS Assay) Conditions
3. Materials and Methods
3.1. Chemicals
3.2. Methods
3.2.1. Circular Dichroism (CD) Spectroscopy
3.2.2. UV–Vis Spectroscopy
Antioxidant Activity
Quinine Derivatives—HSA Interaction
3.3. Statistics
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Spikes, J.D. Photosensitizing properties of quinine and synthetic antimalarials. J. Photochem. Photobiol. B. 1998, 42, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Zięba, A.; Wojtyczka, D.R.; Idzik, D.; Kępa, M. Synthesis and in vitro Antimicrobial Activity of 1-methyl-3-sulfonylthio-4-aminoquinolinium Chlorides. Acta Pol. Pharm. 2013, 70, 163–166. [Google Scholar]
- Achan, J.; Talisuna, A.O.; Erhart, A.; Yeka, A.; Tibenderana, J.K.; Baliraine, F.N.; Rosenthal, P.J.; D’Alessandro, U. Quinine, an old anti-malarial drug in a modern world: Role in the treatment of malaria. Malar. J. 2011, 10, 144. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wolf, L.R.; Otten, E.J.; Spadafora, M.P. Cinchonism: Two case reports and review of acute quinine toxicity and treatment. J. Emerg. Med. 1992, 10, 295–301. [Google Scholar] [CrossRef] [PubMed]
- Prasad, R.S.; Kodali, V.R.; Khuraijam, G.S.; Cho, M.; Travers, J.P. Acute confusion and blindness from quinine toxicity. Eur. J. Emerg. Med. 2003, 10, 353–356. [Google Scholar] [CrossRef]
- Barrocas, A.M.; Cymet, T. Cinchonism in a patient taking Quinine for leg cramps. Compr. Ther. 2007, 33, 162–163. [Google Scholar] [CrossRef]
- Di Meo, S.; Venditti, P. Evolution of the Knowledge of Free Radicals and Other Oxidants. Oxid. Med. Cell. Longev. 2020, 2020, 9829176. [Google Scholar] [CrossRef] [Green Version]
- Dröge, W. Free radicals in the physiological control of cell function. Physiol. Rev. 2002, 82, 47–95. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rodrigo, R.; Miranda, A.; Vergara, L. Modulation of endogenous antioxidant system by wine polyphenols in human disease. Clin. Chim. Acta. 2011, 412, 410–424. [Google Scholar] [CrossRef]
- Rogóż, W.; Pożycka, J.; Kulig, K.; Owczarzy, A.; Szkudlarek, A.; Maciążek-Jurczyk, M. New look at the metabolism of nonsteroidal anti-inflammatory drugs: Influence on human serum albumin antioxidant activity. J. Biomol. Struct. Dyn. 2021, 2021, 1–11. [Google Scholar] [CrossRef]
- Iwao, Y.; Ishima, Y.; Yamada, J.; Noguchi, T.; Kragh-Hansen, U.; Mera, K.; Honda, D.; Suenaga, A.; Maruyama, T.; Otagiri, M. Quantitative evaluation of the role of cysteine and methionine residues in the antioxidant activity of human serum albumin using recombinant mutants. IUBMB Life 2012, 64, 450–454. [Google Scholar] [CrossRef]
- Grigoryan, H.; Li, H.; Iavarone, A.T.; Williams, E.R.; Rappaport, S.M. Cys34 adducts of reactive oxygen species in human serum albumin. Chem. Res. Toxicol. 2012, 25, 1633–1642. [Google Scholar] [CrossRef] [Green Version]
- Carballal, S.; Alvarez, B.; Turell, L.; Botti, H.; Freeman, B.A.; Radi, R. Sulfenic acid in human serum albumin. Amino Acids. 2007, 32, 543–551. [Google Scholar] [CrossRef]
- Anraku, M.; Chuang, V.T.; Maruyama, T.; Otagiri, M. Redox properties of serum albumin. Biochim. Biophys. Acta 2013, 1830, 5465–5472. [Google Scholar] [CrossRef]
- Fanali, G.; di Masi, A.; Trezza, V.; Marino, M.; Fasano, M.; Ascenzi, P. Human serum albumin: From bench to bedside. Mol. Asp. Med. 2012, 33, 209–290. [Google Scholar] [CrossRef] [PubMed]
- Rogóż, W.; Pożycka, J.; Owczarzy, A.; Kulig, K.; Maciążek-Jurczyk, M. Comparison of Losartan and Furosemide Interaction with HSA and Their Influence on HSA Antioxidant Potential. Pharmaceuticals 2022, 15, 499. [Google Scholar] [CrossRef]
- Rogóż, W.; Lemańska, O.; Pożycka, J.; Owczarzy, A.; Kulig, K.; Muhammetoglu, T.; Maciążek-Jurczyk, M. Spectroscopic Analysis of Antimalarial Drug (Quinine) Influence on Human Serum Albumin Reduction and Antioxidant Potential. Molecules 2022, 27, 6027. [Google Scholar] [CrossRef] [PubMed]
- Tsukamoto, T.; Mitsutsuka, Y.; Fujimoto, T.; Zhao, J. Photoassisted degradation of trifluoromethyl benzoic acid isomers in aqueous media by Ga2O3 under UVC irradiation. Res. Chem. Intermed. 2019, 45, 4607–4623. [Google Scholar] [CrossRef]
- Selvaraj, S.; Rajkumar, P.; Kesavan, M.; Gunasekaran, S.; Kumaresan, S.; Rajasekar, R.; Renuga Devi, T.S. Spectroscopic and quantum chemical investigations on structural isomers of dihydroxybenzene. J. Mol. Struct. 2019, 1196, 291–305. [Google Scholar] [CrossRef]
- Bhattarai, A.; Wilczura-Wachnik, H. Interaction between morin and AOT reversed micelles—Studies with UV-vis at 25 °C. Int. J. Pharm. 2014, 461, 14–21. [Google Scholar] [CrossRef]
- Zhang, Q.J.; Liu, B.S.; Li, G.X.; Han, R. Using resonance light scattering and UV/vis absorption spectroscopy to study the interaction between gliclazide and bovine serum albumin. Luminescence 2016, 31, 1109–1114. [Google Scholar] [CrossRef] [PubMed]
- Ren, G.; Sun, H.; Guo, J.; Fan, J.; Li, G.; Xu, S. Molecular mechanism of the interaction between resveratrol and trypsin via spectroscopy and molecular docking. Food Funct. 2019, 10, 3291–3302. [Google Scholar] [CrossRef]
- Greenfield, N.J. Using circular dichroism spectra to estimate protein secondary structure. Nat. Protoc. 2006, 1, 2876–2890. [Google Scholar] [CrossRef]
- Whitmore, L.; Wallace, B.A. Protein secondary structure analyses from circular dichroism spectroscopy: Methods and reference databases. Biopolymers 2008, 89, 392–400. [Google Scholar] [CrossRef]
- Maciążek-Jurczyk, M.; Janas, K.; Pożycka, J.; Szkudlarek, A.; Rogóż, W.; Owczarzy, A.; Kulig, K. Human Serum Albumin Aggregation/Fibrillation and its Abilities to Drugs Binding. Molecules 2020, 25, 618. [Google Scholar] [CrossRef] [Green Version]
- Owczarzy, A.; Zięba, A.; Pożycka, J.; Kulig, K.; Rogóż, W.; Szkudlarek, A.; Maciążek-Jurczyk, M. Spectroscopic Studies of Quinobenzothiazine Derivative in Terms of the In Vitro Interaction with Selected Human Plasma Proteins. Part 1. Molecules 2021, 26, 4776. [Google Scholar] [CrossRef] [PubMed]
- Chaves, O.A.; Mathew, B.; Parambi, D.G.T.; De Oliveira, C.H.C.S.; Cesarin-Sobrinho, D.; Lakshminarayanan, B.; Najeeb, S.; Nafna, E.K.; Marathakam, A.; Uddin, S.; et al. Studies on the interaction between HSA and new halogenated metformin derivatives: Influence of lipophilic groups in the binding ability. J. Biomol. Struct. Dyn. 2020, 38, 2128–2140. [Google Scholar] [CrossRef]
- Beigoli, S.; Sharifi Rad, A.; Askari, A.; Assaran Darban, R.; Chamani, J. Isothermal titration calorimetry and stopped flow circular dichroism investigations of the interaction between lomefloxacin and human serum albumin in the presence of amino acids. J. Biomol. Struct. Dyn. 2019, 37, 2265–2282. [Google Scholar] [CrossRef]
- Matei, I.; Hillebrand, M. Interaction of kaempferol with human serum albumin: A fluorescence and circular dichroism study. J. Pharm. Biomed. Anal. 2010, 51, 768–773. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Chen, D.; Wang, G.; Lu, Y. Study of interaction between human serum albumin and three antioxidants: Ascorbic acid, α-tocopherol, and proanthocyanidins. Eur. J. Med. Chem. 2013, 70, 22–36. [Google Scholar] [CrossRef]
- Liu, Y.; Chen, M.; Wang, S.; Lin, J.; Cai, L.; Song, L. New insight into the stereoselective interactions of quinine and quinidine, with bovine serum albumin. J. Mol. Recognit. 2014, 27, 239–249. [Google Scholar] [CrossRef] [PubMed]
- Sharma, V.; Arora, E.K.; Cardoza, S. 4-hydroxy-benzoic acid (4-diethylamino-2-hydroxy-benzylidene)hydrazide: DFT, antioxidant, spectroscopic and molecular docking studies with BSA. Luminescence 2016, 31, 738–745. [Google Scholar] [CrossRef] [PubMed]
- Geetha, C.; Rajakumar, P.R. In vitro and molecular docking and analysis of isoxazoline derivatives with DPPH. Bioinformation 2020, 16, 807–816. [Google Scholar] [CrossRef] [PubMed]
- Krishnaveni, M.; Suresh, K.; Rajasekar, M. Antioxidant and free radical scavenging activity of quinine determined by using different in vitro models. Int. J. Modn. Res. Revs. 2015, 3, 569–574. [Google Scholar]
- Schenk, G.H.; Brown, D.J. Free radical oxidation of dihydric phenols with diphenylpicrylhydrazyl. Talanta. 1967, 14, 257–261. [Google Scholar] [CrossRef]
- Giacomelli, C.; Miranda Fda, S.; Gonçalves, N.S.; Spinelli, A. Antioxidant activity of phenolic and related compounds: A density functional theory study on the O-H bond dissociation enthalpy. Redox Rep. 2004, 9, 263–269. [Google Scholar] [CrossRef]
- Lu, D.L.; Ding, D.J.; Yan, W.J.; Li, R.R.; Dai, F.; Wang, Q.; Yu, S.S.; Li, Y.; Jin, X.L.; Zhou, B. Influence of glucuronidation and reduction modifications of resveratrol on its biological activities. Chembiochem. 2013, 14, 1094–1104. [Google Scholar] [CrossRef] [PubMed]
- Moazzen, A.; Öztinen, N.; Ak-Sakalli, E.; Koşar, M. Structure-antiradical activity relationships of 25 natural antioxidant phenolic compounds from different classes. Heliyon 2022, 8, e10467. [Google Scholar] [CrossRef] [PubMed]
- Ali, H.M.; Abo-Shady, A.; Sharaf Eldeen, H.A.; Soror, H.; Shousha, W.G.; Abdel-Barry, O.A.; Saleh, A.M. Structural features, kinetics and SAR study of radical scavenging and antioxidant activities of phenolic and anilinic compounds. Chem. Cent. J. 2013, 7, 53. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, X.; Chen, D.; Wang, G.; Lu, Y. Probing the interaction of human serum albumin with DPPH in the absence and presence of the eight antioxidants. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2015, 137, 1144–1152. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Gao, X.; Huang, J.; Wang, H. Probing the Interaction between Human Serum Albumin and 9-Hydroxyphenanthrene: A Spectroscopic and Molecular Docking Study. ACS Omega 2020, 5, 16833–16840. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.; Zhang, J.; Chen, L.; Zhu, Y.; Zhang, Y. Study on the Binding of Methylphenanthrene Isomers with Different Methylated Positions to Human Serum Albumin Employing Spectroscopic Techniques Combined with Molecular Docking. Polycycl. Aromat. Compd. 2020, 42, 2704–2722. [Google Scholar] [CrossRef]
- Guimarães, R.; Barros, L.; Carvalho, A.M.; Ferreira, I.C. Infusions and decoctions of mixed herbs used in folk medicine: Synergism in antioxidant potential. Phytother. Res. 2011, 25, 1209–1214. [Google Scholar] [CrossRef] [PubMed]
- Yang, M.; Wu, Y.; Li, J.; Zhou, H.; Wang, X. Binding of curcumin with bovine serum albumin in the presence of ι-carrageenan and implications on the stability and antioxidant activity of curcumin. J. Agric. Food Chem. 2013, 61, 7150–7155. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.; Wang, X.; Bao, Y.; Zhang, C.; Liu, H.; Li, Z.; Chen, M.; Wang, C.; Guo, Q.; Peng, X. Molecular insight on the binding of monascin to bovine serum albumin (BSA) and its effect on antioxidant characteristics of monascin. Food Chem. 2020, 315, 126228. [Google Scholar] [CrossRef] [PubMed]
- Aminjafari, A.; Miroliaei, M.; Angelova, V.T.; Emamzadeh, R.; Djukic, M.M.; Djuric, A.; Saso, S. Antioxidant activity and protective role on protein glycation of synthetic aminocoumarins. Electron. J. Biotechnol. 2016, 24, 43–48. [Google Scholar] [CrossRef] [Green Version]
- Naz, S.; Zahoor, M.; Umar, M.N.; Ali, B.; Ullah, R.; Shahat, A.A.; Mahmood, H.M.; Sahibzada, M.U.K. Enzyme Inhibitory, Antioxidant And Antibacterial Potentials Of Synthetic Symmetrical And Unsymmetrical Thioureas. Drug Des. Devel. Ther. 2019, 13, 3485–3495. [Google Scholar] [CrossRef] [Green Version]
- Floegel, A.; Kim, D.O.; Chung, S.J.; Koo, S.I.; Chun, O.K. Comparison of ABTS/DPPH assays to measure antioxidant capacity in popular antioxidant-rich US foods. J. Food Compost. Anal. 2011, 24, 1043–1048. [Google Scholar] [CrossRef]
- Damgaard, T.D.; Otte, J.A.; Meinert, L.; Jensen, K.; Lametsch, R. Antioxidant capacity of hydrolyzed porcine tissues. Food Sci. Nutr. 2014, 2, 282–288. [Google Scholar] [CrossRef]
- Aime, S.; Digilio, G.; Bruno, E.; Mainero, V.; Baroni, S.; Fasano, M. Modulation of the antioxidant activity of HO* scavengers by albumin binding: A 19F-NMR study. Biochem. Biophys. Res. Commun. 2003, 307, 962–966. [Google Scholar] [CrossRef]
- Ihara, H.; Hashizume, N.; Hasegawa, T.; Yoshida, M. Antioxidant capacities of ascorbic acid, uric acid, alpha-tocopherol, and bilirubin can be measured in the presence of another antioxidant, serum albumin. J. Clin. Lab. Anal. 2004, 18, 45–49. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.M.; Abas, F.; Park, Y.S.; Park, Y.K.; Ham, K.S.; Kang, S.G.; Lubinska-Szczygeł, M.; Ezra, A.; Gorinstein, S. Bioactivities of Phenolic Compounds from Kiwifruit and Persimmon. Molecules 2021, 26, 4405. [Google Scholar] [CrossRef] [PubMed]
- Kopjar, M.; Lončarić, A.; Mikulinjak, M.; Šrajbek, Ž.; Šrajbek, M.; Pichler, A. Evaluation of Antioxidant Interactions of Combined Model Systems of Phenolics in the Presence of Sugars. Nat. Prod. Commun. 2016, 11, 1445–1448. [Google Scholar] [CrossRef] [Green Version]
- Noguer, M.; Cerezo, A.B.; Moyá, M.L.; Troncoso, A.M.; García-Parrilla, M.C. Synergism Effect between Phenolic Metabolites and Endogenous Antioxidants in Terms of Antioxidant Activity. Adv. Chem. Eng. Sci. 2014, 4, 258–265. [Google Scholar] [CrossRef] [Green Version]
- Benzie, I.F.; Strain, J.J. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: The FRAP assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef] [Green Version]
- Zięba, A.; Maślankiewicz, A.; Suwińska, K. 1-Alkyl-4-(arylamino)quinolinium-3-thiolate and 7-alkyl-12(H)-quino [3,4-b]1,4-benzothiazinium salts. Eur. J. Org. Chem. 2000, 16, 2947–2953. [Google Scholar] [CrossRef]
- Zięba, A.; Sochanik, A.; Szurko, A.; Rams, M.; Mrozek, A.; Cmoch, P. Synthesis and in vitro antiproliferative activity of 5-alkyl-12(H)-quino[3,4-b][1,4]benzothiazinium salts. Eur. J. Med. Chem. 2010, 45, 4733–4739. [Google Scholar] [CrossRef]
- Venyaminov, S.Y.; Vassilenko, K.S. Determination of protein tertiary structure class from circular dichroism spectra. Anal. Biochem. 1994, 222, 176–184. [Google Scholar] [CrossRef]
- Sreerama, N.; Woody, R.W. Estimation of protein secondary structure from circular dichroism spectra: Comparison of CONTIN, SELCON, and CDSSTR methods with an expanded reference set. Anal. Biochem. 2000, 287, 252–260. [Google Scholar] [CrossRef]
- Siegei, S.; Frost, P.; Porto, F. Effects of Indoleacetic Acid and Other Oxidation Regulators on in Vitro Peroxidation and Experimental Conversion of Eugenol to Lignin. Plant. Physiol. 1960, 35, 163–167. [Google Scholar] [CrossRef] [Green Version]
- Molyneux, P. The use of the stable free radical diphenlpicrylhydrazyl (DPPH) for estimating antioxidant activity. Songklanakarin. J. Sci. Technol. 2004, 2, 211–219. [Google Scholar]
- Mayerhöfer, T.G.; Pahlow, S.; Popp, J. The Bouguer-Beer-Lambert Law: Shining Light on the Obscure. ChemPhysChem 2020, 21, 2029–2046. [Google Scholar] [CrossRef] [PubMed]
Sample | Wavelength λ [nm] | Absorbance (Mean ± SD *) | Molar Absorptivity (ɛ) [dm3 × mol−1 × cm−1] (Mean ± SD *) |
Qui1 | λmax1 232.0 | 0.842 ± 0.002 | 33677 ± 65 |
λmax2 358.8 | 0.335 ± 0.001 | 13387 ± 45 | |
λmin1 218.8 | 0.553 ± 0.002 | 22105 ± 68 | |
λmin2 312.6 | 0.094 ± 0.001 | 3773 ± 49 | |
Qui2 | λmax1 230.4 | 0.492 ± 0.000 | 19682 ± 20 |
λmax2 358.6 | 0.222 ± 0.001 | 8876 ± 32 | |
λmin1 222.2 | 0.459 ± 0.001 | 18380 ± 29 | |
λmin2 312.6 | 0.064 ± 0.001 | 2541 ± 17 | |
Qui3 | λmax1 233.6 | 0.752 ± 0.000 | 30088 ± 16 |
λmax2 358.2 | 0.256 ± 0.000 | 10249 ± 18 | |
λmin1 216.2 | 0.492 ± 0.001 | 19662 ± 21 | |
λmin2 318.0 | 0.105 ± 0.001 | 4209 ± 28 |
Sample | Wavelength λ [nm] | Absorbance (Mean ± SD *) | |
---|---|---|---|
Measured | Mathematically Calculated (Quicalc) | ||
Qui1 | 250.8 | 0.449 ± 0.001 | 0.445 ± 0.001 |
267.2 | 0.268 ± 0.001 | 0.268 ± 0.002 | |
278.6 | 0.177 ± 0.001 | 0.178 ± 0.000 | |
291.2 | 0.126 ± 0.001 | 0.126 ± 0.001 | |
358.8 | 0.335 ± 0.001 | 0.322 ± 0.001 | |
Qui2 | 250.8 | 0.312 ± 0.000 | 0.307 ± 0.001 |
263.8 | 0.240 ± 0.000 | 0.234 ± 0.001 | |
278.6 | 0.134 ± 0.001 | 0.124 ± 0.002 | |
285.0 | 0.111 ± 0.000 | 0.102 ± 0.003 | |
358.6 | 0.222 ± 0.001 | 0.213 ± 0.003 | |
Qui3 | 250.8 | 0.421 ± 0.000 | 0.445 ± 0.042 |
265.6 | 0.261 ± 0.000 | 0.284 ± 0.025 | |
278.6 | 0.172 ± 0.000 | 0.195 ± 0.017 | |
285.0 | 0.154 ± 0.000 | 0.173 ± 0.016 | |
358.2 | 0.256 ± 0.000 | 0.256 ± 0.021 |
Sample | λmin[nm] | [ΘMRW] [deg × cm2 × dmol−1] (Mean ± SD *) |
HSA | 209 | −20,922 ± 65 |
221 | −19,371 ± 75 | |
(Qui1 + HSA)complex | 209 | −20,459 ± 153 |
221 | −18,994 ± 82 | |
(Qui2 + HSA)complex | 209 | −20,793 ± 146 |
221 | −19,141 ± 114 | |
(Qui3 + HSA)complex | 209 | −20,533 ± 80 |
221 | −19,021 ± 8 |
Sample | % α-Helix (Mean ± SD *) | % β-Sheet (Mean ± SD *) | % Turn (Mean ± SD *) | % Other (Mean ± SD *) |
---|---|---|---|---|
HSA | 34.17 ± 0.21 | 13.43 ± 0.12 | 20.70 ± 0.17 | 31.73 ± 0.12 |
(Qui1 + HSA)complex | 34.10 ± 0.69 | 13.77 ± 0.46 | 20.47 ± 0.06 | 31.70 ± 0.26 |
(Qui2 + HSA)complex | 32.70 ± 0.10 | 13.77 ± 0.21 | 20.97 ± 0.15 | 32.57 ± 0.06 |
(Qui3 + HSA)complex | 33.40 ± 0.10 | 13.37 ± 0.25 | 20.93 ± 0.21 | 32.23 ± 0.15 |
DPPH Assay % Inhibition (Mean± SD *) | |||||
---|---|---|---|---|---|
Samples | Time [min] | ||||
5 | 15 | 25 | 45 | 60 | |
HSA | 4.48 ± 1.73 | 10.35 ± 5.07 | 14.07 ± 1.82 | 15.54 ± 3.84 | 20.45 ± 4.54 |
Qui1 | ND ** | 0.00 ± 2.09 | 4.26 ± 3.71 | 3.39 ± 6.66 | ND ** |
Qui2 | ND ** | 2.90 ± 0.43 | 6.41 ± 1.27 | 5.00 ± 2.41 | 3.58 ± 0.05 |
Qui3 | 20.09 ± 1.44 | 17.94 ± 4.36 | 19.81 ± 3.63 | 22.69 ± 1.52 | 17.83 ± 1.99 |
(Qui1 + HSA)complex | 7.99 ± 1.97 | 11.58 ± 4.62 | 15.59 ± 0.89 | 16.58 ± 3.10 | 12.87 ± 1.93 |
(Qui2 + HSA)complex | 5.40 ± 0.25 | 7.02 ± 4.38 | 10.06 ± 0.33 | 10.03 ± 4.50 | 9.92 ± 8.44 |
(Qui3 + HSA)complex | 25.08 ± 0.67 | 25.17 ± 2.24 | 21.56 ± 6.34 | 25.57 ± 0.20 | 19.25 ± 1.35 |
DPPH Assay Antioxidant Activity AAEAC (Mean ± SD *) [µM AA] | |||||
---|---|---|---|---|---|
Samples | Time [min] | ||||
5 | 15 | 25 | 45 | 60 | |
HSA | 2.25 ± 1.01 | 4.11 ± 3.10 | 5.95 ± 1.13 | 6.90 ± 2.47 | 9.54 ± 3.00 |
Qui1 | ND ** | ND ** | ND ** | ND ** | ND ** |
Qui2 | ND ** | ND ** | 1.19 ± 0.79 | 0.12 ± 1.55 | ND ** |
Qui3 | 11.40 ± 0.84 | 8.75 ± 2.66 | 9.51 ± 2.25 | 11.50 ± 0.98 | 7.81 ± 1.32 |
(Qui1 + HSA)complex | 4.31 ± 1.15 | 4.86 ± 2.83 | 6.89 ± 0.55 | 7.56 ± 2.00 | 4.54 ± 1.27 |
(Qui2 + HSA)complex | 2.79 ± 0.15 | 2.07 ± 2.68 | 3.46 ± 0.20 | 3.36 ± 2.89 | 2.59 ± 5.57 |
(Qui3 + HSA)complex | 14.32 ± 0.39 | 13.18 ± 1.37 | 10.59 ± 3.94 | 13.35 ± 0.13 | 8. 75 ± 0.89 |
DPPH Assay Antioxidant Activity AAEAC (Mean ± SD *) [µM AA] | ||||||
---|---|---|---|---|---|---|
Sample | Time [min] | |||||
5 | 15 | 25 | 45 | 60 | ||
(Qui3 + HSA)complex | De | 14.32 ± 0.39 | 13.18 ± 1.37 | 10.59 ± 3.94 | 13.35 ± 0.13 | 8.75 ± 0.89 |
Ex | 6.82 ± 0.49 | 6.43 ± 1.84 | 7.73 ± 1.48 | 9.20 ± 0.75 | 8.68 ± 0.84 | |
Effect | s # | s # | s | s # | add |
ABTS Assay Antioxidant Activity AAEAC (Mean ± SD *) [µM AA] | |||||
---|---|---|---|---|---|
Samples | Time [min] | ||||
5 | 15 | 30 | 45 | 60 | |
HSA | 14.97 ± 0.63 | 25.63 ± 0.51 | 35.24 ± 0.88 | 40.96 ± 0.71 | 44.04 ± 1.22 |
Qui1 | 1.06 ± 0.67 | 9.23 ± 0.96 | 19.45 ± 0.78 | 24.48 ± 1.22 | 27.57 ± 1.20 |
Qui2 | 33.24 ± 1.59 | 35.47 ± 1.64 | 38.91 ± 1.75 | 41.16 ± 2.02 | 41.94 ± 1.76 |
Qui3 | 19.67 ± 4.12 | 20.70 ± 4.19 | 21.81 ± 2.81 | 21.91 ± 3.15 | 21.63 ± 2.69 |
(Qui1 + HSA)complex | 9.30 ± 0.22 | 19.56 ± 0.18 | 29.51 ± 0.30 | 35.71 ± 0.48 | 40.58 ± 0.22 |
(Qui2 + HSA)complex | 25.02 ± 0.35 | 30.25 ± 0.37 | 36.81 ± 0.84 | 41.52 ± 1.00 | 43.93 ± 0.81 |
(Qui3 + HSA)complex | 21.06 ± 0.24 | 25.93 ± 0.06 | 32.81 ± 0.06 | 38.06 ± 0.47 | 40.69 ± 0.70 |
ABTS Assay Antioxidant Activity AAEAC (Mean ± SD *) [µM AA] | ||||||
---|---|---|---|---|---|---|
Samples | Time [min] | |||||
5 | 15 | 30 | 45 | 60 | ||
(Qui1 + HSA)complex | De | 9.30 ± 0.22 | 19.56 ± 0.18 | 29.51 ± 0.30 | 35.71 ± 0.48 | 40.58 ± 0.22 |
Ex | 8.02 ± 0.65 | 17.43 ± 0.65 | 27.35 ± 0.76 | 32.72 ± 0.81 | 35.80 ± 1.10 | |
Effect | s # | s # | s # | s # | s # | |
(Qui2 + HSA)complex | De | 25.02 ± 0.35 | 30.25 ± 0.37 | 36.81 ± 0.84 | 41.52 ± 1.00 | 43.93 ± 0.81 |
Ex | 24.11 ± 0.50 | 30.55 ± 0.59 | 37.08 ± 0.46 | 41.06 ± 0.79 | 42.99 ± 0.49 | |
Effect | add # | add | add | add | add | |
(Qui3 + HSA)complex | De | 21.06 ± 0.24 | 25.93 ± 0.06 | 32.81 ± 0.06 | 38.06 ± 0.47 | 40.69 ± 0.70 |
Ex | 17.32 ± 1.78 | 23.16 ± 2.35 | 28.53 ± 1.83 | 31.44 ± 1.91 | 32.83 ± 1.93 | |
Effect | s # | s # | s # | s # | s # |
FRAP Assay ΔA (Mean ± SD *) | |||||
---|---|---|---|---|---|
Samples | Time [min] | ||||
15 | 30 | 45 | 60 | 90 | |
HSA | ND ** | ND ** | ND ** | ND ** | ND ** |
Qui1 | 0.02 ± 0.00 | 0.02 ± 0.00 | 0.02 ± 0.01 b | 0.03 ± 0.01 | 0.04 ± 0.01 |
Qui2 | 0.07 ± 0.00 | 0.08 ± 0.01 c | 0.08 ± 0.00 c | 0.09 ± 0.00 c | 0.09 ± 0.01 |
Qui3 | 0.39 ± 0.00 d | 0.43 ± 0.01 | 0.45 ± 0.02 d | 0.48 ± 0.02 d | 0.50 ± 0.02 d |
(Qui1 + HSA)complex | ND ** | ND ** | 0.04 ± 0.01 b | 0.01 ± 0.01 a | 0.06 ± 0.01 |
(Qui2 + HSA)complex | ND ** | 0.01 ± 0.00 c | 0.06 ± 0.01 c | 0.06 ± 0.01 c | 0.09 ± 0.01 |
(Qui3 + HSA)complex | 0.32 ± 0.01 d | 0.43 ± 0.04 | 0.56 ± 0.05 d | 0.57 ± 0.06 d | 0.72 ± 0.09 d |
FRAP Assay AAERP (Mean ± SD *) [µM AA] | |||||
---|---|---|---|---|---|
Samples | Time [min] | ||||
15 | 30 | 45 | 60 | 90 | |
HSA | ND ** | ND ** | ND ** | ND ** | ND ** |
Qui1 | 15.79 ± 0.74 | 10.38 ± 0.27 | 13.28 ± 1.74 b | 13.57 ± 1.35 b | 13.76 ± 1.08 b |
Qui2 | 26.98 ± 0.10 | 20.61 ± 1.23 | 24.37 ± 0.63 | 21.32 ± 0.22 | 20.63 ± 1.37 |
Qui3 | 89.45 ± 1.03 | 78.56 ± 1.64 | 85.42 ± 3.40 | 77.50 ± 2.64 | 79.24 ± 2.71 |
(Qui1 + HSA)complex | ND ** | ND ** | 9.13 ± 1.84 b | 7.68 ± 1.57 b | 9.63 ± 1.36 b |
(Qui2 + HSA)complex | ND ** | 10.29 ± 0.62 c | 12.08 ± 0.85 c | 14.08 ± 0.72 c | 14.29 ± 1.36 c |
(Qui3 + HSA)complex | 80.79 ± 2.82 d | 81.11 ± 6.50 | 95.57 ± 8.50 d | 88.10 ± 7.98 d | 104.18 ± 12.55 d |
FRAP Assay AAERP (Mean ± SD *) [µM AA] | |||||
---|---|---|---|---|---|
Sample | Time [min] | ||||
15 | 30 | 45 | 60 | 90 | |
(Qui1 + HSA)complex | ** ND | ** ND | an | an | an |
(Qui2 + HSA)complex | ** ND | an | an | an | an |
(Qui3 + HSA)complex | an | add | s | s | s |
Time [min] | Calibration Curve Patterns | R2 | |
---|---|---|---|
DPPH assay | 5 | y = 1.707x + 0.636 | 0.99540 |
15 | y = 1.635x + 3.627 | 0.99872 | |
25 | y = 1.611x + 4.489 | 0.99984 | |
45 | y = 1.555x + 4.813 | 0.99849 | |
60 | y = 1.515x + 5.929 | 0.99521 | |
ABTS assay | 5 | y = 1.434x + 2.341 | 0.99547 |
15 | y = 1.411x + 2.407 | 0.99658 | |
25 | y = 1.373x + 2.732 | 0.99668 | |
45 | y = 1.357x + 2.152 | 0.99663 | |
60 | y = 1.343x + 3.451 | 0.99755 | |
FRAP assay | 15 | y = 0.005x − 0.008 | 0.99152 |
30 | y = 0.006x + 0.016 | 0.99156 | |
45 | y = 0.006x + 0.003 | 0.99593 | |
60 | y = 0.007x − 0.006 | 0.99608 | |
90 | y = 0.007x + 0.006 | 0.99463 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rogóż, W.; Owczarzy, A.; Kulig, K.; Zięba, A.; Maciążek-Jurczyk, M. New Synthetic Quinoline (Qui) Derivatives as Novel Antioxidants and Potential HSA’s Antioxidant Activity Modulators—Spectroscopic Studies. Molecules 2023, 28, 320. https://doi.org/10.3390/molecules28010320
Rogóż W, Owczarzy A, Kulig K, Zięba A, Maciążek-Jurczyk M. New Synthetic Quinoline (Qui) Derivatives as Novel Antioxidants and Potential HSA’s Antioxidant Activity Modulators—Spectroscopic Studies. Molecules. 2023; 28(1):320. https://doi.org/10.3390/molecules28010320
Chicago/Turabian StyleRogóż, Wojciech, Aleksandra Owczarzy, Karolina Kulig, Andrzej Zięba, and Małgorzata Maciążek-Jurczyk. 2023. "New Synthetic Quinoline (Qui) Derivatives as Novel Antioxidants and Potential HSA’s Antioxidant Activity Modulators—Spectroscopic Studies" Molecules 28, no. 1: 320. https://doi.org/10.3390/molecules28010320
APA StyleRogóż, W., Owczarzy, A., Kulig, K., Zięba, A., & Maciążek-Jurczyk, M. (2023). New Synthetic Quinoline (Qui) Derivatives as Novel Antioxidants and Potential HSA’s Antioxidant Activity Modulators—Spectroscopic Studies. Molecules, 28(1), 320. https://doi.org/10.3390/molecules28010320