The Bio-Patina on a Hypogeum Wall of the Matera-Sassi Rupestrian Church “San Pietro Barisano” before and after Treatment with Glycoalkaloids
Abstract
:1. Introduction
2. Results and Discussion
2.1. XPS Analysis
2.2. Biological Analysis
2.3. SEM/EDS Results
3. Materials and Methods
3.1. Sampling
3.2. Glycoalkaloids Extraction
3.3. Surface Treatment of the Hypogeum Wall
3.4. X-ray Photoelectron Spectroscopy (XPS)
3.5. Biological Analysis
3.6. SEM/EDS Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Kosznik-Kwasnicka, K.; Golec, P.; Jaroszewicz, V.; Lubomska, D.; Piechowicz, L. Into the Unknown: Microbial Communities in Caves, Their Role, and Potential Use. Microorganisms 2022, 10, 222. [Google Scholar] [CrossRef] [PubMed]
- Ortega-Morales, B.O.; Gaylar, C.C. Bioconservation of Historic Stone Buildings—An Updated Review. Appl. Sci. 2021, 11, 5695. [Google Scholar] [CrossRef]
- Soffritti, I.; D’Accolti, M.; Lanzoni, L.; Volta, A.; Bisi, M.; Mazzacane, S.; Caselli, E. The Potential Use of Microorganisms as Restorative Agents: An Update. Sustainability 2019, 11, 3853. [Google Scholar] [CrossRef] [Green Version]
- Warscheida, T.; Braamsb, J. Biodeterioration of stone: A review. Int. Biodeterior. Biodegrad. 2000, 46, 343–368. [Google Scholar] [CrossRef]
- O’Toole, G.; Kaplan, H.B.; Kolter, R. Biofilm formation as microbial development. Annu. Rev. Microbiol. 2000, 54, 49–79. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.-L.; Wang, L.-F.; Ren, X.-M.; Ye, X.-D.; Li, W.-W.; Yuan, S.-J.; Sun, M.; Sheng, G.-P.; Yu, H.-Q.; Wang, X.-K. pH dependence of structure and surface properties of microbial EPS. Environ. Sci. Technol. 2012, 46, 737–744. [Google Scholar] [CrossRef] [PubMed]
- Saiz-Jimenez, C. Biodeterioration vs biodegradation: The role of microorganisms in the removal of pollutants deposited on historic buildings. Int. Biodeterior. Biodegrad. 1997, 40, 225–232. [Google Scholar] [CrossRef] [Green Version]
- Lepinay, C.; Mihajlovski, A.; Touron, S.; Seyer, D.; Bousta, F.; Di Martino, P. Bacterial diversity associated with saline efflorescences damaging the walls of a French decorated prehistoric cave registered as a World Cultural Heritage Site. Int. Biodeterior. Biodegrad. 2018, 130, 55–64. [Google Scholar] [CrossRef]
- Gabriele, F.; Bruno, L.; Casieri, C.; Ranaldi, R.; Rugnini, L.; Spreti, N. Application and monitoring of oxidative alginate–biocide hydrogels for two case studies in “The Sassi and the Park of the Rupestrian Churches of Matera”. Coatings 2022, 12, 462. [Google Scholar] [CrossRef]
- Gizzi, F.T.; Sileo, M.; Biscione, M.; Danese, M.; de Buergo, M.A. The conservation state of the Sassi of Matera site (Southern Italy) and its correlation with the environmental conditions analyzed through spatial analysis techniques. J. Cult. Herit. 2016, 17, 61–74. [Google Scholar] [CrossRef]
- Albertano, P.; Moscone, D.; Palleschi, G.; Hermosin, B.; Saiz-Jimenez, C.; Sanchez-Moral, S.; Hernandez-Marine, M.; Urzi, C.; Groth, I.; Schroeckh, V.; et al. Cyanobacteria attack rocks (CATS): Control and preventive strategies to avoid damage caused by cyanobacteria and associated microorganisms in Roman hypogean monuments. In Molecular Biology and Cultural Heritage; Routledge: Oxfordshire, UK, 2003; pp. 151–162. [Google Scholar] [CrossRef]
- Cardellicchio, F. Monitoring and Conservation of Stone Cultural Heritage: Diagnostic Investigations Using Surface Techniques and Innovative Methodologies for Sustainable Maintenance Interventions. Ph.D. Thesis, University of Basilicata, Potenza, Italy, 2022. Not yet published. 233p. [Google Scholar]
- Mang, S.; Scrano, L.; Camele, I. Preliminary studies on fungal contamination of two rupestrian churches from Matera (Southern Italy). Sustainability 2020, 12, 6988. [Google Scholar] [CrossRef]
- Blazquez, A.B.; Lorenzo, J.; Flores, M.; Gómez-Alarcón, G. Evaluation of the effect of some biocides against organisms isolated from historic monuments. Aerobiologia 2000, 16, 423–428. [Google Scholar] [CrossRef]
- Balliana, E.; Ricci, G.; Pesce, C.; Zendri, E. Assessing the value of green conservation for cultural heritage: Positive and critical aspects of already available methodologies. Int. J. Conserv. Sci. 2016, 7, 185–202. Available online: https://www.researchgate.net/publication/303788227 (accessed on 4 November 2021).
- Ansari, M.I.; Schiwon, K.; Malik, A.; Grohman, E. Biofilm formation by environmental bacteria. environmental protection strategies for sustainable development. In Environmental Protection Strategies for Sustainable Development; Springer: Berlin/Heidelberg, Germany, 2012; Chapter 11; pp. 341–367. [Google Scholar] [CrossRef]
- Scrano, L.; Laviano, R.; Salzano, G.; Santacroce, M.; De Franchi, S.A.; Baranek, J.; Bufo, S.A. Natural biocides and bio-calcite: Innovative tools for cultural heritage. In Proceedings of the International Conference Florence Heri-tech: The Future of Heritage Science and Technologies, Florence, Italy, 14–16 October 2020; 949, p. 012096. Available online: https://iopscience.iop.org/article/10.1088/1757-899X/949/1/012096 (accessed on 1 November 2022).
- Fewell, A.M.; Roddick, J.G. Interactive antifungal activity of the glycoalkaloids α-solanine and chaconine. Phytochemistry 1993, 33, 323–328. [Google Scholar] [CrossRef]
- Fewell, A.M.; Roddick, J.G.; Weissenberg, M. Interactions between the glycoalkaloids solasonine and solamargine in relation to inhibition of fungal growth. Phytochemistry 1994, 37, 1007–1011. [Google Scholar] [CrossRef]
- Shamim, S.; Ahmed, S.W.; Azhar, I. Antifungal activity of allium, aloe, and Solanum species. Pharm. Biol. 2004, 42, 491–498. [Google Scholar] [CrossRef]
- Rani, P.; Khullar, N. Antimicrobial evaluation of some medicinal plants for their anti-enteric potential against multi-drug resistant Salmonella typhi. Phytother Res. 2003, 18, 670–673. [Google Scholar] [CrossRef]
- Milner, S.E.; Brunton, N.P.; Jones, P.W.; O’Brien, N.M.; Collins, S.G.; Maguire, A.R. Bioactivities of glycoalkaloids and their aglycones from Solanum species. J. Agric. Food Chem. 2011, 59, 3454–3484. [Google Scholar] [CrossRef]
- Sasso, S.; Scrano, L.; Ventrella, E.; Bonomo, M.G.; Crescenzi, A.; Salzano, G.; Bufo, S.A. Natural biocides to prevent the microbial growth on cultural heritage. Built Herit. 2013, 1, 1035–1042. [Google Scholar] [CrossRef]
- Caneva, G.; Bartoli, F.; Imperi, F.; Visca, P. Changes in biodeterioration patterns of mural paintings: Multi-temporal mapping for a preventive conservation strategy in the Crypt of the Original Sin (Matera, Italy). J. Cult. Herit. 2019, 40, 59–68. [Google Scholar] [CrossRef]
- Alfano, G.; Lustrato, G.; Belli, C.; Zanardini, E.; Cappitelli, F.; Mello, E.; Sorlini, C.; Ranalli, G. The bioremoval of nitrate and sulfate alterations on artistic stonework: The case-study of Matera Cathedral after six years from the treatment. Int. Biodeterior. Biodegrad. 2011, 65, 1004–1011. [Google Scholar] [CrossRef]
- Scrano, L.; Fraddosio-Boccone, L.; Langerame, F.; Laviano, R.; Adamski, Z.; Bufo, S.A. Application of different methods of surface analysis for the early diagnosis of art-stone (calcarenite) deterioration. Karaelmas Sci. Eng. J. 2011, 1, 1–14. Available online: https://www.researchgate.net/publication/233862726 (accessed on 4 November 2021).
- Alessandrini, G.; Toniolo, L.; Cariati, F.; Daminelli, G.; Polesello, S.; Pozzi, A.; Salvi, A.M. A black paint on the facade of a renaissance building in Bergamo, Italy. Stud. Conserv. 1996, 41, 193–204. [Google Scholar] [CrossRef]
- Briggs, D.; Grant, J.T. Surface Analysis by Auger and X-ray Photoelectron Spectroscopy; I.M. Publications: Chichester, UK; Surface Spectra Limited: Manchester, UK, 2003; pp. 345–375. [Google Scholar]
- Kjærvik, M.; Ramstedt, M.; Schwibbert, K.; Dietrich, P.M.; Unger, W.E.S. Comparative Study of NAP-XPS and Cryo-XPS for the Investigation of Surface Chemistry of the Bacterial Cell-Envelope. Front. Chem. 2021, 9, 666161. [Google Scholar] [CrossRef]
- Boyd, A.; Chakrabarty, A.M. Pseudomonas aeruginosa biofilms: Role of the alginate exopolysaccharide. J. Ind. Microbiol. 1995, 15, 162–168. [Google Scholar] [CrossRef]
- Bonomo, A.E.; Amodio, A.M.; Prosser, G.; Sileo, M.; Rizzo, G. Evaluation of soft limestone degradation in the Sassi UNESCO site (Matera, Southern Italy): Loss of material measurement and classification. J. Cult. Herit. 2020, 42, 191–201. [Google Scholar] [CrossRef]
- Chen, J.P.; Hong, L.; Wu, S.; Wang, L. Elucidation of interactions between metal ions and Ca alginate-based ion-exchange resin by spectroscopic analysis and modeling simulation. Langmuir 2002, 18, 9413–9421. [Google Scholar] [CrossRef]
- Campanella, L.; Dell’Aglio, E.; Reale, R.; Cardellicchio, F.; Salvi, A.M.; Casieri, C.; Cerichelli, G.; Gabriele, F.; Spreti, N.; Bernardo, G.; et al. Culture Economy: Innovative strategies to sustainable restoration of artistic heritage. Part I—Development of natural gels for cleaning the stone materials of cultural heritage from iron stains and biodeteriogenic microorganisms. In Proceedings of the Conference: Diagnosis for the Conservation and Valorization of Cultural Heritage, Naples, Italy, 9–10 December 2021; Cervino Ed.. pp. 313–324, ISBN 978 88 95609 61 4. [Google Scholar]
- Urzì, C.; De Leo, F.; Krakova, L.; Pangallo, D.; Bruno, L. Effects of biocide treatments on the biofilm community in Domitilla’s catacombs in Rome. Sci. Total Environ. 2016, 572, 252–262. [Google Scholar] [CrossRef]
- Bruno, L.; Rugnini, L.; Spizzichino, V.; Caneve, L.; Canini, A.; Ellwood, N.T.W. Biodeterioration of Roman hypogea: The case study of the Catacombs of S.S. Marcellino and Pietro (Rome, Italy). Ann. Microbiol. 2019, 69, 1023–1032. [Google Scholar] [CrossRef]
- Sasso, S.; Miller, A.Z.; Rogerio-Candelera, M.A.; Cubero, B.; Coutinho, M.L.; Scrano, L.; Bufo, S.A. Potential of natural biocides for biocontrolling phototrophic colonization on limestone. Int. Biodeter. Biodegr. 2016, 107, 102–110. [Google Scholar] [CrossRef]
- Martin, G.; Guggiari, M.; Bravo, D.; Zopfi, J.; Cailleau, G.; Aragno, M.; Job, D.; Verrecchia, E.; Junier, P. Fungi, bacteria and soil pH: The oxalate-carbonate pathway as a model for metabolic interaction. Environ. Microbiol. 2012, 14, 2960–2970. [Google Scholar] [CrossRef]
- Casieri, C.; Gabriele, F.; Spreti, N.; Cardellicchio, F.; Scrano, L.; Salvi, A.M. Novel hydrogels for the selective removal of bio-contaminants from stone artworks. A case study: Rupestrian Church Madonna dei Derelitti in Matera. In Proceedings of the XI AIAr National Congress, Naples, Italy, 28–30 July 2021. [Google Scholar]
- Gabriele, F.; Tortora, M.; Bruno, L.; Casieri, C.; Chiarini, M.; Germani, R.; Spreti, N. Alginate-biocide hydrogel for the removal of biofilms from calcareous stone artworks. J. Cult. Herit. 2021, 49, 106–114. [Google Scholar] [CrossRef]
- Campanella, L.; Cardellicchio, F.; Dell’Aglio, E.; Reale, R.; Salvi, A.M. A green approach to clean iron stains from marble surfaces. Herit. Sci. 2022, 10, 79. [Google Scholar] [CrossRef]
- Bernardo, G.; Guida, A.; Porcari, V.; Campanella, L.; Dell’Aglio, E.; Reale, R.; Cardellicchio, F.; Salvi, A.M.; Casieri, C.; Cerichelli, G.; et al. Culture Economy: Innovative strategies to sustainable restoration of artistic heritage. Part II—New materials and diagnostic techniques to prevent and control calcarenite degradation. In Proceedings of the Conference: Diagnosis for the Conservation and Valorization of Cultural Heritage, Naples, Italy, 9–10 December 2021; Cervino Ed. pp. 325–334, ISBN 978 88 95609 61. [Google Scholar]
- Normal Recommendations 1/88: Macroscopic Alterations of Stone Materials: Lexica, CNR, ICR, 1990, Rome. English Translation by Pusuluri, Pullarao. 2017. Available online: https://www.researchgate.net/publication/320467086_Normal_188_Translated_in_English (accessed on 4 November 2021).
- Cataldi, T.R.I.; Lelario, F.; Bufo, S.A. Analysis of tomato glycoalkaloids by liquid chromatography coupled with electrospray ionization tandem mass spectrometry. Rapid Commun. Mass Spectrom. 2005, 19, 3103–3110. [Google Scholar] [CrossRef] [PubMed]
- Castle, J.E.; Chapman-Kpodo, H.; Proctor, A.; Salvi, A.M. Curve-fitting in XPS using extrinsic and intrinsic background structure. J. Electron Spectrosc. Relat. Phenom. 2000, 106, 65–80. [Google Scholar] [CrossRef]
- Castle, J.E.; Salvi, A.M. Chemical state information from the near-peak region of the X-ray photoelectron background. J. Electron Spectrosc. Relat. Phenom 2001, 114–116, 1103–1113. [Google Scholar] [CrossRef]
- NIST: National Institute of Standards and Technology. X-ray Photoelectron Spectroscopy Database, Version 4.1; NIST: Gaithersburg, MD, USA, 2012. [Google Scholar] [CrossRef]
- Sterflinger, K.; Little, B.; Pinar, G.; Pinzari, F.; de los Rios, A.; Gu, J.-D. Future directions and challenges in biodeterioration research on historic materials and cultural properties. Int. Biodeterior. Biodegrad. 2018, 129, 10–12. [Google Scholar] [CrossRef]
Sample Pre-Treatment | ||||
---|---|---|---|---|
Region | Peak | B.E. Corrected | Assignments | Normalized Area |
C1s | 1 | 283.0 | C-C (polycyclics, graphite, carbides) | 312.5 |
2 | 283.8 | C-C (polycyclics, graphite, carbides) | 3157.3 | |
3 | 285.2 | C-C, C-N | 6596.0 | |
4 | 286.7 | C-OH, φ-OH, C=N | 6429.4 | |
5 | 288.8 | C2O42− | 1877.3 | |
6 | 290.0 | CO32− | 5311.7 |
Sample Post-Treatment | |||
---|---|---|---|
Peak | B.E. Corrected | Assignments | Normalized Area |
1 | 283.4 | C-C (graphite, carbides, polycyclics) | 883.0 |
2 | 285.0 | C-C | 4293.0 |
3 | 286.1 | C-N, C-O, C-O-C | 4267.4 |
4 | 287.6 | C=O, O-C-O | 2351.7 |
5 | 290.0 | CO32− | 7345.0 |
Pre-Treatment | Post-Treatment | |||||
---|---|---|---|---|---|---|
Region | Peak | B.E. Corrected | Normalized Area | B.E. Corrected | Normalized Area | Assignments |
Ca2p | 1 | 345.4 | 386.9 | 345.8 | 614.8 | Ca |
2 | 347.3 | 3891.9 | 347.5 | 7106.2 | CaCO3/Ca-alginate | |
5 | 355.4 | 80.2 | 355.6 | 143.3 | Shakeup | |
6 | 359.2 | 80.2 | 359.3 | 143.3 | Shakeup |
Region | B.E. Corrected (pre-) | B.E. Corrected (post-) | Normalized Area (pre-) | Normalized Area (post-) | Assignments |
---|---|---|---|---|---|
Si(2p) | 102.7 | 102.8 | 608.0 | 839.5 | SiC,SiO2 |
P(2p) | 132.7 | 133.2 | 58.5 | 345.1 | CaPO4 |
Na(1s) | 1072.2 | 1072.4 | 387.6 | 613.7 | NaH2PO4, Na2HPO4 |
Bacteria | Fungi |
---|---|
Staphylococcus warneri | Botryotrichum atrogriseum |
Brevibacillus spp. | Penicillium chrysogenum |
Bacillus cereus | Talaromyces pinophilus |
Bacillus mycoides | Cladosporium herbarum |
Bacillus firmus |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cardellicchio, F.; Bufo, S.A.; Mang, S.M.; Camele, I.; Salvi, A.M.; Scrano, L. The Bio-Patina on a Hypogeum Wall of the Matera-Sassi Rupestrian Church “San Pietro Barisano” before and after Treatment with Glycoalkaloids. Molecules 2023, 28, 330. https://doi.org/10.3390/molecules28010330
Cardellicchio F, Bufo SA, Mang SM, Camele I, Salvi AM, Scrano L. The Bio-Patina on a Hypogeum Wall of the Matera-Sassi Rupestrian Church “San Pietro Barisano” before and after Treatment with Glycoalkaloids. Molecules. 2023; 28(1):330. https://doi.org/10.3390/molecules28010330
Chicago/Turabian StyleCardellicchio, Francesco, Sabino Aurelio Bufo, Stefania Mirela Mang, Ippolito Camele, Anna Maria Salvi, and Laura Scrano. 2023. "The Bio-Patina on a Hypogeum Wall of the Matera-Sassi Rupestrian Church “San Pietro Barisano” before and after Treatment with Glycoalkaloids" Molecules 28, no. 1: 330. https://doi.org/10.3390/molecules28010330
APA StyleCardellicchio, F., Bufo, S. A., Mang, S. M., Camele, I., Salvi, A. M., & Scrano, L. (2023). The Bio-Patina on a Hypogeum Wall of the Matera-Sassi Rupestrian Church “San Pietro Barisano” before and after Treatment with Glycoalkaloids. Molecules, 28(1), 330. https://doi.org/10.3390/molecules28010330