Improved Principal Component Analysis (IPCA): A Novel Method for Quantitative Calibration Transfer between Different Near-Infrared Spectrometers
Abstract
:1. Introduction
2. Results and Discussion
2.1. Calibration Transfer for Dataset 1
2.2. Calibration Transfer for Dataset 2
2.3. Calibration Transfer for Dataset 3
3. Materials and Methods
3.1. Theory and Algorithm
3.1.1. IPCA
3.1.2. PDS
3.2. NIR Datasets
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Brouckaert, D.; Vandenbroucke, F.; Chauchard, F.; Dollinger, M.; Roggo, Y.; Pellegatti, L.; Krumme, M. Towards real-time release of pharmaceutical tablets: 100% in-line control via near-infrared spatially resolved spectroscopy and 3D microwave resonance technology. J. Pharm. Biomed. Anal. 2022, 209, 114491. [Google Scholar] [CrossRef] [PubMed]
- Biagi, D.; Nencioni, P.; Valleri, M.; Calamassi, N.; Mura, P. Development of a Near Infrared Spectroscopy method for the in-line quantitative bilastine drug determination during pharmaceutical powders blending. J. Pharm. Biomed. Anal. 2021, 204, 114277. [Google Scholar] [CrossRef]
- Forsberg, J.; Nielsen, P.; Engelsen, S.; Sorensen, K. On-Line Real-Time Monitoring of a Rapid Enzymatic Oil Degumming Process: A Feasibility Study Using Free-Run Near-Infrared Spectroscopy. Foods 2021, 10, 2368. [Google Scholar] [CrossRef]
- Gao, L.; Zhong, L.; Zhang, J.; Zhang, M.; Zang, H. Water as a probe to understand the traditional Chinese medicine extraction process with near infrared spectroscopy: A case of Danshen (Salvia miltiorrhiza Bge) extraction process. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2021, 244, 118854. [Google Scholar] [CrossRef] [PubMed]
- Silva, V.; Silva, J.; Pereira, C. Portable near-infrared instruments: Application for quality control of polymorphs in pharmaceutical raw materials and calibration transfer. J. Pharm. Biomed. Anal. 2017, 134, 287–294. [Google Scholar] [CrossRef]
- Garrido-Varo, A.; Sánchez-Bonilla, A.; Maroto-Molina, F.; Riccioli, C.; Pérez-Marín, D. Long-Length Fiber Optic Near-Infrared (NIR) Spectroscopy Probes for On-Line Quality Control of Processed Land Animal Proteins. Appl. Spectrosc. 2018, 72, 1170–1182. [Google Scholar] [CrossRef]
- Blank, T.; Sum, S.; Brown, S.; Monfre, S. Transfer of Near-Infrared Multivariate Calibrations without Standards. Anal. Chem. 1996, 68, 2987–2995. [Google Scholar] [CrossRef]
- Osborne, B.; Fearn, T. Collaborative evaluation of universal calibrations for the measurement of protein and moisture in flour by near infrared reflectance. J. Sci. Food Agric. 1983, 18, 1011–1017. [Google Scholar] [CrossRef]
- Wang, Y.; Veltkamp, D.; Kowalski, B. Multivariate instrument standardization. Anal. Chem. 1991, 63, 2750–2756. [Google Scholar] [CrossRef]
- Fan, W.; Liang, Y.; Yuan, D.; Wang, J. Calibration model transfer for near-infrared spectra based on canonical correlation analysis. Anal. Chim. Acta 2008, 623, 22–29. [Google Scholar] [CrossRef]
- Sun, L.; Ji, S.; Ye, J. Canonical Correlation Analysis for Multilabel Classification: A Least-Squares Formulation, Extensions, and Analysis. IEEE Trans. Pattern Anal. Mach. Intell. 2011, 33, 194–200. [Google Scholar] [PubMed]
- Du, W.; Chen, Z.; Zhong, L.; Wang, S.; Yu, R.; Nordon, A.; Littlejohn, D.; Holden, M. Maintaining the predictive abilities of multivariate calibration models by spectral space transformation. Anal. Chim. Acta 2011, 690, 64–70. [Google Scholar] [CrossRef] [PubMed]
- Timmerman, M.; Kiers, H. Four simultaneous component models for the analysis of multivariate time series from more than one subject to model intraindividual and interindividual differences. Psychometrika 2003, 68, 105–121. [Google Scholar] [CrossRef]
- Zhang, J.; Guo, C.; Cui, X.; Cai, W.; Shao, X. A two-level strategy for standardization of near infrared spectra by multi-level simultaneous component analysis. Anal. Chim. Acta 2019, 1050, 25–31. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Li, B.; Hu, Y.; Zhou, L.; Wang, G.; Guo, G.; Zhang, Q.; Lei, S.; Zhang, A. A parameter-free framework for calibration enhancement of near-infrared spectroscopy based on correlation constraint. Anal. Chim. Acta 2021, 1142, 169–178. [Google Scholar] [CrossRef]
- Kalivas, J.; Siano, G.; Andries, E.; Goicoechea, H. Calibration Maintenance and Transfer Using Tikhonov Regularization Approaches. Appl. Spectrosc. 2009, 63, 800–809. [Google Scholar] [CrossRef]
- Kunz, M.; Kalivas, J.; Andries, E. Model updating for spectral calibration maintenance and transfer using 1-norm variants of Tikhonov regularization. Anal. Chem. 2010, 82, 3642–3649. [Google Scholar] [CrossRef]
- Nikzad-Langerodi, R.; Zellinger, W.; Lughofer, E.; Saminger-Platz, S. Domain-Invariant Partial-Least-Squares Regression. Anal. Chem. 2018, 90, 6693–6701. [Google Scholar] [CrossRef]
- Greensill, C.; Wolfs, P.; Spiegelman, K. Calibration Transfer between PDA-Based NIR Spectrometers in the NIR Assessment of Melon Soluble Solids Content. Appl. Spectrosc. 2001, 18, 5357–5365. [Google Scholar] [CrossRef]
- Isaksson, T.; Naes, T. The Effect of Multiplicative Scatter Correction (MSC) and Linearity Improvement in NIR Spectroscopy. Appl. Spectrosc. 1988, 42, 1273–1284. [Google Scholar] [CrossRef]
- Pereira, C.; Pimentel, M.; Galvao, R.; Honorato, F.; Stragevitch, L.; Martins, M. A comparative study of calibration transfer methods for determination of gasoline quality parameters in three different near infrared spectrometers. Anal. Chim. Acta 2008, 611, 41–47. [Google Scholar] [CrossRef] [PubMed]
- Barreiro, P.; Herrero, D.; Hernandez, N.; Gracia, A.; Leon, L. Calibration transfer between portable and laboratory NIR spectrophotometers. Acta Hortic. 2008, 802, 373–378. [Google Scholar] [CrossRef]
- Zamora-Rojas, E.; Perez-Marin, D.; Pedro-Sanz, D.; Guerrero-Ginel, J.; Garrido-Varo, A. Handheld NIRS analysis for routine meat quality control: Database transfer from at-line instruments. Chemometr. Intell Lab. Syst. 2012, 114, 30–35. [Google Scholar] [CrossRef]
- Pierna, J.; Vermeulen, P.; Lecler, B.; Baeten, V.; Dardenne, P. Calibration Transfer from Dispersive Instruments to Handheld Spectrometers. Appl. Spectrosc. 2010, 64, 644–648. [Google Scholar] [CrossRef] [PubMed]
- Krapf, L.; Nast, D.; Gronauer, A.; Schmidhalter, U.; Heuwinkel, H. Transfer of a near infrared spectroscopy laboratory application to an online process analyser for in situ monitoring of anaerobic digestion. Bioresour. Technol. 2013, 129, 39–50. [Google Scholar] [CrossRef]
- Hoffmann, U.; Pfeifer, F.; Hsuing, C.; Siesler, H. Spectra Transfer Between a Fourier Transform Near-Infrared Laboratory and a Miniaturized Handheld Near-Infrared Spectrometer. Appl. Spectrosc. 2016, 70, 852–860. [Google Scholar] [CrossRef] [PubMed]
- Sun, Z.; Wang, J.; Nie, L.; Li, L.; Cao, D.; Fan, J.; Wang, H.; Liu, R.; Zhang, Y.; Zang, H. Calibration transfer of near infrared spectrometers for the assessment of plasma ethanol precipitation process. Chemometr. Intell. Lab Syst. 2018, 181, 64–71. [Google Scholar] [CrossRef]
- Zhang, J.; Cui, X.; Cai, W.; Shao, X. Combination of heuristic optimal partner bands for variable selection in near-infrared spectral analysis. J. Chemometr. 2017, 32, e2971. [Google Scholar] [CrossRef]
Calibration Spectra | Validation Spectra | Parameters | RMSEP (mg) |
---|---|---|---|
Source | Source | nLV = 3 | 3.15 |
Target | nLV = 3 | 5.49 | |
Transferred target (PDS) | W a = 17, nLV = 5 | 3.48 | |
Transferred target (IPCA) | nLV = 8, nPC b = 10 | 3.39 | |
Target | Target | nLV = 4 | 3.41 |
Source | nLV = 3 | 14.38 | |
Transferred source (PDS) | W a = 17, nLV = 4 | 3.63 | |
Transferred source (IPCA) | nLV = 4, nPC b = 10 | 4.22 |
Calibration Spectra | Validation Spectra | Parameters | RMSEP |
---|---|---|---|
Source | Source | nLV = 4 | 0.09 |
Target 1 | nLV = 4 | 0.24 | |
Target 2 | nLV = 4 | 0.32 | |
Transferred target 1 (PDS) | W a = 17, nLV = 4 | 0.10 | |
Transferred target 1 (IPCA) | nLV = 5, nPC b = 4 | 0.17 | |
Transferred target 2 (PDS) | W a = 17, nLV = 4 | 0.13 | |
Transferred target 2 (IPCA) | nLV = 5, nPC b = 4 | 0.16 | |
Target 1 | Target 1 | nLV = 4 | 0.09 |
Source | nLV = 5 | 0.28 | |
Target 2 | nLV = 5 | 0.14 | |
Transferred source (PDS) | W a = 17, nLV = 4 | 0.11 | |
Transferred source (IPCA) | nLV = 4, nPC b = 4 | 0.15 | |
Transferred target 2 (PDS) | W a = 17, nLV = 4 | 0.16 | |
Transferred target 2 (IPCA) | nLV = 4, nPC b = 4 | 0.16 | |
Target 2 | Target 2 | nLV = 4 | 0.12 |
Source | nLV = 4 | 0.27 | |
Target 1 | nLV = 5 | 0.23 | |
Transferred source (PDS) | W a = 17, nLV = 1 | 0.18 | |
Transferred source (IPCA) | nLV = 1, nPC b = 4 | 0.17 | |
Transferred target 1 (PDS) | W a = 17, nLV = 4 | 0.15 | |
Transferred target 1 (IPCA) | nLV = 4, nPC b = 4 | 0.16 |
Spectrometer | MicroNIR | FT-NIR |
---|---|---|
Spectral region | 908–1676 nm | 4000–10,000 cm−1 (1000–2500 nm) |
Resolution | 6.2 nm | 4 cm−1 |
Wavelength filter | Linear variable filter | Interferometer |
Light source | Two integrated vacuum tungsten lamps | Tungsten–halogen lamp |
Sampling mode | Transmission | Transmission |
Calibration Spectra | Validation Spectra | Parameters | RMSEP (mg/mL) | Paired t-Test (CI = 95%) |
---|---|---|---|---|
Source (1000–2500 nm) | Source | nLV = 3 | 1.89 | |
Transferred target (PDS) | W a = 17, nLV = 3 | 2.78 | 0.0303 | |
Transferred target (IPCA) | nLV = 3, nPC b = 4 | 2.08 | 0.9625 | |
Target (908–1676 nm) | Target | nLV = 3 | 3.15 | |
Transferred source (PDS) | W a = 17, nLV = 3 | 3.13 | 0.3241 | |
Transferred source (IPCA) | nLV = 3, nPC b = 5 | 1.90 | 0.3226 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, H.; Tan, H.; Lin, B.; Yang, X.; Sun, Z.; Zhong, L.; Gao, L.; Li, L.; Dong, Q.; Nie, L.; et al. Improved Principal Component Analysis (IPCA): A Novel Method for Quantitative Calibration Transfer between Different Near-Infrared Spectrometers. Molecules 2023, 28, 406. https://doi.org/10.3390/molecules28010406
Zhang H, Tan H, Lin B, Yang X, Sun Z, Zhong L, Gao L, Li L, Dong Q, Nie L, et al. Improved Principal Component Analysis (IPCA): A Novel Method for Quantitative Calibration Transfer between Different Near-Infrared Spectrometers. Molecules. 2023; 28(1):406. https://doi.org/10.3390/molecules28010406
Chicago/Turabian StyleZhang, Hui, Haining Tan, Boran Lin, Xiangchun Yang, Zhongyu Sun, Liang Zhong, Lele Gao, Lian Li, Qin Dong, Lei Nie, and et al. 2023. "Improved Principal Component Analysis (IPCA): A Novel Method for Quantitative Calibration Transfer between Different Near-Infrared Spectrometers" Molecules 28, no. 1: 406. https://doi.org/10.3390/molecules28010406
APA StyleZhang, H., Tan, H., Lin, B., Yang, X., Sun, Z., Zhong, L., Gao, L., Li, L., Dong, Q., Nie, L., & Zang, H. (2023). Improved Principal Component Analysis (IPCA): A Novel Method for Quantitative Calibration Transfer between Different Near-Infrared Spectrometers. Molecules, 28(1), 406. https://doi.org/10.3390/molecules28010406