Recent Advances in g-C3N4-Based Materials and Their Application in Energy and Environmental Sustainability
Abstract
:1. Introduction
2. Properties and Preparation of g-C3N4
2.1. The Origin and Properties of g-C3N4
2.2. Preparation of g-C3N4
3. Modification of g-C3N4
3.1. Morphology Control
3.1.1. 0D g-C3N4
3.1.2. 1D g-C3N4
3.1.3. 2D g-C3N4
3.1.4. 3D g-C3N4
3.2. Elemental Doping
3.2.1. Non-Metal Doping
3.2.2. Metal Doping
3.3. Heterojunction Construction
3.4. Modification with Carbon Nanocomposites
4. Photocatalytic Application in Energy and Environmental Sustainability
4.1. H2 Production
4.2. CO2 Photoreduction over g-C3N4
4.3. Degradation of Organic Pollutants
5. Conclusions and Future Perspective
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, W.; Sohail, M.; Anwar, U.; Taha, T.; Al-Sehemi, A.G.; Muhammad, S.; Al-Ghamdi, A.A.; Amin, M.A.; Palamanit, A.; Ullah, S. Recent progress in g–C3N4–based materials for remarkable photocatalytic sustainable energy. Int. J. Hydrogen Energy 2022, 47, 21067–21118. [Google Scholar] [CrossRef]
- Meng, A.; Zhang, L.; Cheng, B.; Yu, J. Dual cocatalysts in TiO2 photocatalysis. Adv. Mater. 2019, 31, 1807660. [Google Scholar] [CrossRef] [PubMed]
- Xinchen, W.; Maeda, K.; Thomas, A.; Takanabe, K.; Gang, X.; Carlsson, J.; Domen, K.; Antonietti, M. A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nat. Mater. 2009, 8, 76–80. [Google Scholar]
- Zhu, H.; Cai, S.; Liao, G.; Gao, Z.F.; Min, X.; Huang, Y.; Jin, S.; Xia, F. Recent advances in photocatalysis based on bioinspired superwettabilities. ACS Catal. 2021, 11, 14751–14771. [Google Scholar] [CrossRef]
- Xing, Y.; Wang, X.; Hao, S.; Zhang, X.; Wang, X.; Ma, W.; Zhao, G.; Xu, X. Recent advances in the improvement of g-C3N4 based photocatalytic materials. Chin. Chem. Lett. 2021, 32, 13–20. [Google Scholar] [CrossRef]
- Ismael, M. A review on graphitic carbon nitride (g-C3N4) based nanocomposites: Synthesis, categories, and their application in photocatalysis. J. Alloys Compd. 2020, 846, 156446. [Google Scholar] [CrossRef]
- Meng, A.; Wu, S.; Cheng, B.; Yu, J.; Xu, J. Hierarchical TiO2/Ni (OH)2 composite fibers with enhanced photocatalytic CO2 reduction performance. J. Mater. Chem. A 2018, 6, 4729–4736. [Google Scholar] [CrossRef]
- Li, Y.; Zhou, M.; Cheng, B.; Shao, Y. Recent advances in g-C3N4-based heterojunction photocatalysts. J. Mater. Sci. Technol. 2020, 56, 1–17. [Google Scholar] [CrossRef]
- Patnaik, S.; Sahoo, D.P.; Parida, K. Recent advances in anion doped g-C3N4 photocatalysts: A review. Carbon 2021, 172, 682–711. [Google Scholar] [CrossRef]
- Govindasamy, P.; Kandasamy, B.; Thangavelu, P.; Barathi, S.; Thandavarayan, M.; Shkir, M.; Lee, J. Biowaste derived hydroxyapatite embedded on two-dimensional g-C3N4 nanosheets for degradation of hazardous dye and pharmacological drug via Z-scheme charge transfer. Sci. Rep. 2022, 12, 11572. [Google Scholar] [CrossRef]
- Ye, L.; Liu, J.; Jiang, Z.; Peng, T.; Zan, L. Facets coupling of BiOBr-g-C3N4 composite photocatalyst for enhanced visible-light-driven photocatalytic activity. Appl. Catal. B Environ. 2013, 142, 1–7. [Google Scholar] [CrossRef]
- Kumar, O.P.; Shahzad, K.; Nazir, M.A.; Farooq, N.; Malik, M.; Shah, S.S.A.; Ur Rehman, A. Photo-Fenton activated C3N4x/AgOy@ Co1-xBi0. 1-yO7 dual s-scheme heterojunction towards degradation of organic pollutants. Opt. Mater. 2022, 126, 112199. [Google Scholar] [CrossRef]
- Kumar, O.P.; Ahmad, M.; Nazir, M.A.; Anum, A.; Jamshaid, M.; Shah, S.S.A.; Rehman, A. Strategic combination of metal–organic frameworks and C3N4 for expeditious photocatalytic degradation of dye pollutants. Environ. Sci. Pollut. Res. 2022, 29, 35300–35313. [Google Scholar] [CrossRef] [PubMed]
- Farooq, N.; Luque, R.; Hessien, M.M.; Qureshi, A.M.; Sahiba, F.; Nazir, M.A.; Ur Rehman, A. A comparative study of cerium-and ytterbium-based GO/g-C3N4/Fe2O3 composites for electrochemical and photocatalytic applications. Appl. Sci. 2021, 11, 9000. [Google Scholar] [CrossRef]
- Wang, X.; Chen, X.; Thomas, A.; Fu, X.; Antonietti, M. Metal-containing carbon nitride compounds: A new functional organic–metal hybrid material. Adv. Mater. 2009, 21, 1609–1612. [Google Scholar] [CrossRef]
- Ye, S.; Wang, R.; Wu, M.; Yuan, Y. A review on g-C3N4 for photocatalytic water splitting and CO2 reduction. Appl. Surf. Sci. 2015, 358, 15–27. [Google Scholar] [CrossRef]
- Wang, J.; Wang, S. A critical review on graphitic carbon nitride (g-C3N4)-based materials: Preparation, modification and environmental application. Coord. Chem. Rev. 2022, 453, 214338. [Google Scholar] [CrossRef]
- Liebig, J.v. About some nitrogen compounds. Ann. Pharm. 1834, 10, 10. [Google Scholar]
- Zhu, J.; Xiao, P.; Li, H.; Carabineiro, S.A. Graphitic carbon nitride: Synthesis, properties, and applications in catalysis. ACS Appl. Mater. Interfaces 2014, 6, 16449–16465. [Google Scholar] [CrossRef]
- Franklin, E.C. The ammono carbonic acids. J. Am. Chem. Soc. 1922, 44, 486–509. [Google Scholar] [CrossRef] [Green Version]
- Pauling, L.; Sturdivant, J. The structure of cyameluric acid, hydromelonic acid and related substances. Proc. Natl. Acad. Sci. USA 1937, 23, 615–620. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, A.Y.; Cohen, M.L. Prediction of new low compressibility solids. Science 1989, 245, 841–842. [Google Scholar] [CrossRef] [PubMed]
- David, M.T.; Russell, J.H. Low-compressibility carbon nitrides. Science 1996, 271, 53–55. [Google Scholar]
- Maya, L.; Cole, D.R.; Hagaman, E.W. Carbon–nitrogen pyrolyzates: Attempted preparation of carbon nitride. J. Am. Ceram. Soc. 1991, 74, 1686–1688. [Google Scholar] [CrossRef]
- Wang, S.; Zhang, J.; Li, B.; Sun, H.; Wang, S. Engineered graphitic carbon nitride-based photocatalysts for visible-light-driven water splitting: A review. Energy Fuels 2021, 35, 6504–6526. [Google Scholar] [CrossRef]
- Zhang, Q.; Xiang, X.; Ge, Y.; Yang, C.; Zhang, B.; Deng, K. Selectivity enhancement in the g-C3N4-catalyzed conversion of glucose to gluconic acid and glucaric acid by modification of cobalt thioporphyrazine. J. Catal. 2020, 388, 11–19. [Google Scholar] [CrossRef]
- Su, F.; Mathew, S.C.; Lipner, G.; Fu, X.; Antonietti, M.; Blechert, S.; Wang, X. mpg-C3N4-catalyzed selective oxidation of alcohols using O2 and visible light. J. Am. Chem. Soc. 2010, 132, 16299–16301. [Google Scholar] [CrossRef]
- Balakrishnan, A.; Chinthala, M. Comprehensive review on advanced reusability of g-C3N4 based photocatalysts for the removal of organic pollutants. Chemosphere 2022, 297, 134190. [Google Scholar] [CrossRef]
- Dong, G.; Zhang, Y.; Pan, Q.; Qiu, J. A fantastic graphitic carbon nitride (g-C3N4) material: Electronic structure, photocatalytic and photoelectronic properties. J. Photochem. Photobiol. C Photochem. Rev. 2014, 20, 33–50. [Google Scholar] [CrossRef]
- Yan, S.; Li, Z.; Zou, Z. Photodegradation performance of g-C3N4 fabricated by directly heating melamine. Langmuir 2009, 25, 10397–10401. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, T.; Wang, Z.; Dawson, G.; Chen, W. Simple pyrolysis of urea into graphitic carbon nitride with recyclable adsorption and photocatalytic activity. J. Mater. Chem. 2011, 21, 14398–14401. [Google Scholar] [CrossRef]
- Wu, X.; Chen, F.; Wang, X.; Yu, H. In situ one-step hydrothermal synthesis of oxygen-containing groups-modified g-C3N4 for the improved photocatalytic H2-evolution performance. Appl. Surf. Sci. 2018, 427, 645–653. [Google Scholar] [CrossRef]
- Ahmad, I.; Danish, M.; Khan, A.; Muneer, M. One-pot hydrothermal synthesis of a double Z-scheme g-C3N4/AgI/β-AgVO3 ternary nanocomposite for efficient degradation of organic pollutants and DPC–Cr (VI) complex under visible-light irradiation. Photochem. Photobiol. Sci. 2022, 21, 1371–1386. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Zhang, J.; Zhang, M.; Antonietti, M.; Fu, X.; Wang, X. Bioinspired hollow semiconductor nanospheres as photosynthetic nanoparticles. Nat. Commun. 2012, 3, 1139. [Google Scholar] [CrossRef] [Green Version]
- Zhao, S.; Zhang, Y.; Zhou, Y.; Wang, Y.; Qiu, K.; Zhang, C.; Fang, J.; Sheng, X. Facile one-step synthesis of hollow mesoporous g-C3N4 spheres with ultrathin nanosheets for photoredox water splitting. Carbon 2018, 126, 247–256. [Google Scholar] [CrossRef]
- Bai, G.; Song, Z.; Geng, H.; Gao, D.; Liu, K.; Wu, S.; Rao, W.; Guo, L.; Wang, J. Oxidized quasi-carbon nitride quantum dots inhibit ice growth. Adv. Mater. 2017, 29, 1606843. [Google Scholar] [CrossRef]
- Chen, X.; Liu, Q.; Wu, Q.; Du, P.; Zhu, J.; Dai, S.; Yang, S. Incorporating graphitic carbon nitride (g-C3N4) quantum dots into bulk-heterojunction polymer solar cells leads to efficiency enhancement. Adv. Funct. Mater. 2016, 26, 1719–1728. [Google Scholar] [CrossRef]
- Liu, Q.; Zhu, D.; Guo, M.; Yu, Y.; Cao, Y. Facile and efficient fabrication of g-C3N4 quantum dots for fluorescent analysis of trace copper (II) in environmental samples. Chin. Chem. Lett. 2019, 30, 1639–1642. [Google Scholar] [CrossRef]
- Yousefzadeh, S.; Morovati, N. Modification of the ultrasonication derived-g-C3N4 nanosheets/quantum dots by MoS2 nanostructures to improve electrocatalytic hydrogen evolution reaction. Int. J. Hydrogen Energy 2020, 45, 33512–33520. [Google Scholar] [CrossRef]
- Li, C.; Sun, T.; Zhang, D.; Zhang, X.; Zhang, Y.; Lin, X.; Liu, J.; Zhu, L.; Wang, X.; Shi, Z. Microwave assisted-polymerization synthesis of 0D/2D CNQDs/g-C3N4 with the excellent visible light photocatalytic performance. Mater. Lett. 2022, 308, 131232. [Google Scholar] [CrossRef]
- Wang, W.; Jimmy, C.Y.; Shen, Z.; Chan, D.K.; Gu, T. g-C3N4 quantum dots: Direct synthesis, upconversion properties and photocatalytic application. Chem. Commun. 2014, 50, 10148–10150. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dayal, S.; Burda, C. Surface effects on quantum dot-based energy transfer. J. Am. Chem. Soc. 2007, 129, 7977–7981. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.; Tong, R.; Chen, X.; Xue, Y.; Xie, Z.; Kuang, Q.; Zheng, L. Ultrafine ZnO quantum dot-modified TiO2 composite photocatalysts: The role of the quantum size effect in heterojunction-enhanced photocatalytic hydrogen evolution. Catal. Sci. Technol. 2018, 8, 1296–1303. [Google Scholar] [CrossRef]
- Yeo, I.; Malik, N.S.; Munsch, M.; Dupuy, E.; Bleuse, J.; Niquet, Y.-M.; Gérard, J.-M.; Claudon, J.; Wagner, É.; Seidelin, S. Surface effects in a semiconductor photonic nanowire and spectral stability of an embedded single quantum dot. Appl. Phys. Lett. 2011, 99, 233106. [Google Scholar] [CrossRef] [Green Version]
- Cui, Y.; Ding, Z.; Fu, X.; Wang, X. Construction of conjugated carbon nitride nanoarchitectures in solution at low temperatures for photoredox catalysis. Angew. Chem. Int. Ed. 2012, 51, 11814–11818. [Google Scholar] [CrossRef]
- Wang, Q.; Shi, Y.; Du, Z.; He, J.; Zhong, J.; Zhao, L.; She, H.; Liu, G.; Su, B. Synthesis of rod-like g-C3N4/ZnS composites with superior photocatalytic activity for the degradation of methyl orange. Eur. J. Inorg. Chem. 2015, 2015, 4108–4115. [Google Scholar] [CrossRef]
- Bai, X.; Wang, L.; Zong, R.; Zhu, Y. Photocatalytic activity enhanced via g-C3N4 nanoplates to nanorods. J. Phys. Chem. C 2013, 117, 9952–9961. [Google Scholar] [CrossRef]
- Mo, Z.; Xu, H.; Chen, Z.; She, X.; Song, Y.; Wu, J.; Yan, P.; Xu, L.; Lei, Y.; Yuan, S. Self-assembled synthesis of defect-engineered graphitic carbon nitride nanotubes for efficient conversion of solar energy. Appl. Catal. B Environ. 2018, 225, 154–161. [Google Scholar] [CrossRef]
- Jiang, Z.; Zhang, X.; Chen, H.S.; Hu, X.; Yang, P. Formation of g-C3N4 nanotubes towards superior photocatalysis performance. ChemCatChem 2019, 11, 4558–4567. [Google Scholar] [CrossRef]
- Chen, D.; Wang, K.; Xiang, D.; Zong, R.; Yao, W.; Zhu, Y. Significantly enhancement of photocatalytic performances via core–shell structure of ZnO@ mpg-C3N4. Appl. Catal. B Environ. 2014, 147, 554–561. [Google Scholar] [CrossRef]
- Zhou, Y.; Wang, Z.; Huang, L.; Zaman, S.; Lei, K.; Yue, T.; Li, Z.a.; You, B.; Xia, B.Y. Engineering 2D photocatalysts toward carbon dioxide reduction. Adv. Energy Mater. 2021, 11, 2003159. [Google Scholar] [CrossRef]
- Niu, P.; Zhang, L.; Liu, G.; Cheng, H.M. Graphene-like carbon nitride nanosheets for improved photocatalytic activities. Adv. Funct. Mater. 2012, 22, 4763–4770. [Google Scholar] [CrossRef]
- Liu, Q.; Wang, X.; Yang, Q.; Zhang, Z.; Fang, X. Mesoporous g-C3N4 nanosheets prepared by calcining a novel supramolecular precursor for high-efficiency photocatalytic hydrogen evolution. Appl. Surf. Sci. 2018, 450, 46–56. [Google Scholar] [CrossRef]
- Qian, X.; Meng, X.; Sun, J.; Jiang, L.; Wang, Y.; Zhang, J.; Hu, X.; Shalom, M.; Zhu, J. Salt-assisted synthesis of 3D porous g-C3N4 as a bifunctional photo-and electrocatalyst. ACS Appl. Mater. Interfaces 2019, 11, 27226–27232. [Google Scholar] [CrossRef] [PubMed]
- Toe, C.Y.; Tsounis, C.; Zhang, J.; Masood, H.; Gunawan, D.; Scott, J.; Amal, R. Advancing photoreforming of organics: Highlights on photocatalyst and system designs for selective oxidation reactions. Energy Environ. Sci. 2021, 14, 1140–1175. [Google Scholar] [CrossRef]
- Gao, Y.; Zhao, W.; Zhang, D. Preparation of prismatic g-C3N4 by CTAB hydrothermal method and its degradation performance under visible light. Diam. Relat. Mater. 2022, 121, 108787. [Google Scholar] [CrossRef]
- Lin, B.; Xia, M.; Xu, B.; Chong, B.; Chen, Z.; Yang, G. Bio-inspired nanostructured g-C3N4-based photocatalysts: A comprehensive review. Chin. J. Catal. 2022, 43, 2141–2172. [Google Scholar] [CrossRef]
- Zhao, Z.; Wang, X.; Wang, S.; Xiao, Z.; Zhai, S.; Ma, J.; Dong, X.; Sun, H.; An, Q. Three-dimensional hierarchical seaweed-derived carbonaceous network with designed g-C3N4 nanosheets: Preparation and mechanism insight for 4-nitrophenol photoreduction. Langmuir 2022, 38, 11054–11067. [Google Scholar] [CrossRef]
- Liu, Y.; Guo, X.; Chen, Z.; Zhang, W.; Wang, Y.; Zheng, Y.; Tang, X.; Zhang, M.; Peng, Z.; Li, R. Microwave-synthesis of g-C3N4 nanoribbons assembled seaweed-like architecture with enhanced photocatalytic property. Appl. Catal. B Environ. 2020, 266, 118624. [Google Scholar] [CrossRef]
- Jiang, H.; Li, Y.; Wang, D.; Hong, X.; Liang, B. Recent advances in heteroatom doped graphitic carbon nitride (g-C3N4) and g-C3N4/metal oxide composite photocatalysts. Curr. Org. Chem. 2020, 24, 673–693. [Google Scholar] [CrossRef]
- Liu, X.; Ma, R.; Zhuang, L.; Hu, B.; Chen, J.; Liu, X.; Wang, X. Recent developments of doped g-C3N4 photocatalysts for the degradation of organic pollutants. Crit. Rev. Environ. Sci. Technol. 2021, 51, 751–790. [Google Scholar] [CrossRef]
- He, F.; Wang, Z.; Li, Y.; Peng, S.; Liu, B. The nonmetal modulation of composition and morphology of g-C3N4-based photocatalysts. Appl. Catal. B Environ. 2020, 269, 118828. [Google Scholar] [CrossRef]
- Huang, Z.; Song, J.; Pan, L.; Wang, Z.; Zhang, X.; Zou, J.-J.; Mi, W.; Zhang, X.; Wang, L. Carbon nitride with simultaneous porous network and O-doping for efficient solar-energy-driven hydrogen evolution. Nano Energy 2015, 12, 646–656. [Google Scholar] [CrossRef]
- Zhang, J.-W.; Gong, S.; Mahmood, N.; Pan, L.; Zhang, X.; Zou, J.-J. Oxygen-doped nanoporous carbon nitride via water-based homogeneous supramolecular assembly for photocatalytic hydrogen evolution. Appl. Catal. B Environ. 2018, 221, 9–16. [Google Scholar] [CrossRef]
- She, X.; Liu, L.; Ji, H.; Mo, Z.; Li, Y.; Huang, L.; Du, D.; Xu, H.; Li, H. Template-free synthesis of 2D porous ultrathin nonmetal-doped g-C3N4 nanosheets with highly efficient photocatalytic H2 evolution from water under visible light. Appl. Catal. B Environ. 2016, 187, 144–153. [Google Scholar] [CrossRef]
- Ma, X.; Lv, Y.; Xu, J.; Liu, Y.; Zhang, R.; Zhu, Y. A strategy of enhancing the photoactivity of g-C3N4 via doping of nonmetal elements: A first-principles study. J. Phys. Chem. C 2012, 116, 23485–23493. [Google Scholar] [CrossRef]
- Wang, Y.; Zhao, S.; Zhang, Y.; Fang, J.; Zhou, Y.; Yuan, S.; Zhang, C.; Chen, W. One-pot synthesis of K-doped g-C3N4 nanosheets with enhanced photocatalytic hydrogen production under visible-light irradiation. Appl. Surf. Sci. 2018, 440, 258–265. [Google Scholar] [CrossRef]
- Gao, J.; Wang, Y.; Zhou, S.; Lin, W.; Kong, Y. A facile one-step synthesis of Fe-doped g-C3N4 nanosheets and their improved visible-light photocatalytic performance. ChemCatChem 2017, 9, 1708–1715. [Google Scholar] [CrossRef] [Green Version]
- Deng, P.; Shi, L.; Wang, H.; Qi, W. One-step preparation of novel K+ and cyano-group co-doped crystalline polymeric carbon nitride with highly efficient H2 evolution. Colloids Surf. A Physicochem. Eng. Asp. 2020, 601, 125023. [Google Scholar] [CrossRef]
- Xu, L.; Zeng, J.; Li, Q.; Xia, L.; Luo, X.; Ma, Z.; Peng, B.; Xiong, S.; Li, Z.; Wang, L.-L. Defect-engineered 2D/2D hBN/g-C3N4 Z-scheme heterojunctions with full visible-light absorption: Efficient metal-free photocatalysts for hydrogen evolution. Appl. Surf. Sci. 2021, 547, 149207. [Google Scholar] [CrossRef]
- Wang, M.; Jin, C.; Kang, J.; Liu, J.; Tang, Y.; Li, Z.; Li, S. CuO/g-C3N4 2D/2D heterojunction photocatalysts as efficient peroxymonosulfate activators under visible light for oxytetracycline degradation: Characterization, efficiency and mechanism. Chem. Eng. J. 2021, 416, 128118. [Google Scholar] [CrossRef]
- Zhao, W.; Li, Y.; Zhao, P.; Zhang, L.; Dai, B.; Huang, H.; Zhou, J.; Zhu, Y.; Ma, K.; Leung, D.Y. Insights into the photocatalysis mechanism of the novel 2D/3D Z-Scheme g-C3N4/SnS2 heterojunction photocatalysts with excellent photocatalytic performances. J. Hazard. Mater. 2021, 402, 123711. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Jiang, L.; Wu, X.; Zhang, G. Vacancy mediated Z-scheme charge transfer in a 2D/2D La2Ti2O7/g-C3N4 nanojunction as a bifunctional photocatalyst for solar-to-energy conversion. J. Mater. Chem. A 2020, 8, 13241–13247. [Google Scholar] [CrossRef]
- Chen, X.; Wang, J.; Chai, Y.; Zhang, Z.; Zhu, Y. Efficient photocatalytic overall water splitting induced by the giant internal electric field of ag-C3N4/rGO/PDIP Z-scheme heterojunction. Adv. Mater. 2021, 33, 2007479. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.; Wu, L.; Jin, L.; Wu, K. Combination mechanism and enhanced visible-light photocatalytic activity and stability of CdS/g-C3N4 heterojunctions. J. Mater. Sci. Technol. 2017, 33, 30–38. [Google Scholar] [CrossRef]
- Liu, Y.; Li, X.; He, H.; Yang, S.; Jia, G.; Liu, S. CoP imbedded g-C3N4 heterojunctions for highly efficient photo, electro and photoelectrochemical water splitting. J. Colloid Interface Sci. 2021, 599, 23–33. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.; Zhou, W.; Tan, X.; Yu, T. Potassium ions intercalated into g-C3N4-modified TiO2 nanobelts for the enhancement of photocatalytic hydrogen evolution activity under visible-light irradiation. Nanotechnology 2018, 29, 215706. [Google Scholar] [CrossRef]
- Monsef, R.; Ghiyasiyan-Arani, M.; Salavati-Niasari, M. Design of magnetically recyclable ternary Fe2O3/EuVO4/g-C3N4 nanocomposites for photocatalytic and electrochemical hydrogen storage. ACS Appl. Energy Mater. 2021, 4, 680–695. [Google Scholar] [CrossRef]
- Guo, F.; Huang, X.; Chen, Z.; Cao, L.; Cheng, X.; Chen, L.; Shi, W. Construction of Cu3P-ZnSnO3-g-C3N4 pnn heterojunction with multiple built-in electric fields for effectively boosting visible-light photocatalytic degradation of broad-spectrum antibiotics. Sep. Purif. Technol. 2021, 265, 118477. [Google Scholar] [CrossRef]
- Li, K.; Chen, J.; Ao, Y.; Wang, P. Preparation of a ternary g-C3N4-CdS/Bi4O5I2 composite photocatalysts with two charge transfer pathways for efficient degradation of acetaminophen under visible light irradiation. Sep. Purif. Technol. 2021, 259, 118177. [Google Scholar] [CrossRef]
- Xiang, W.; Ji, Q.; Xu, C.; Guo, Y.; Liu, Y.; Sun, D.; Zhou, W.; Xu, Z.; Qi, C.; Yang, S. Accelerated photocatalytic degradation of iohexol over Co3O4/g-C3N4/Bi2O2CO3 of pn/nn dual heterojunction under simulated sunlight by persulfate. Appl. Catal. B Environ. 2021, 285, 119847. [Google Scholar] [CrossRef]
- Liu, S.; Li, F.; Li, Y.; Hao, Y.; Wang, X.; Li, B.; Liu, R. Fabrication of ternary g-C3N4/Al2O3/ZnO heterojunctions based on cascade electron transfer toward molecular oxygen activation. Appl. Catal. B Environ. 2017, 212, 115–128. [Google Scholar] [CrossRef]
- Liu, Y.; Tian, J.; Wei, L.; Wang, Q.; Wang, C.; Xing, Z.; Li, X.; Yang, W.; Yang, C. Modified g-C3N4/TiO2/CdS ternary heterojunction nanocomposite as highly visible light active photocatalyst originated from CdS as the electron source of TiO2 to accelerate Z-type heterojunction. Sep. Purif. Technol. 2021, 257, 117976. [Google Scholar] [CrossRef]
- Li, Z.; Huang, F.; Xu, Y.; Yan, A.; Dong, H.; Luo, S.; Hu, M. 2D/2D Nb3O7F/g-C3N4 heterojunction photocatalysts with enhanced hydrogen evolution activity. ACS Appl. Energy Mater. 2021, 4, 839–845. [Google Scholar] [CrossRef]
- Shi, J.; Mao, L.; Cai, C.; Li, G.; Cheng, C.; Zheng, B.; Hu, Y.; Huang, Z.; Hu, X.; Żyła, G. One-pot fabrication of 2D/2D HCa2Nb3O10/g-C3N4 type II heterojunctions towards enhanced photocatalytic H2 evolution under visible-light irradiation. Catal. Sci. Technol. 2020, 10, 5896–5902. [Google Scholar] [CrossRef]
- Bai, L.; Huang, H.; Zhang, S.; Hao, L.; Zhang, Z.; Li, H.; Sun, L.; Guo, L.; Huang, H.; Zhang, Y. Photocatalysis-assisted Co3O4/g-C3N4 p–n junction all-solid-state supercapacitors: A bridge between energy storage and photocatalysis. Adv. Sci. 2020, 7, 2001939. [Google Scholar] [CrossRef]
- Vesali-Kermani, E.; Habibi-Yangjeh, A.; Diarmand-Khalilabad, H.; Ghosh, S. Nitrogen photofixation ability of g-C3N4 nanosheets/Bi2MoO6 heterojunction photocatalyst under visible-light illumination. J. Colloid Interface Sci. 2020, 563, 81–91. [Google Scholar] [CrossRef]
- Kumaresan, N.; Sinthiya, M.M.A.; Sarathbavan, M.; Ramamurthi, K.; Sethuraman, K.; Babu, R.R. Synergetic effect of g-C3N4/ZnO binary nanocomposites heterojunction on improving charge carrier separation through 2D/1D nanostructures for effective photocatalytic activity under the sunlight irradiation. Sep. Purif. Technol. 2020, 244, 116356. [Google Scholar] [CrossRef]
- Yan, T.; Liu, H.; Jin, Z. g-C3N4/α-Fe2O3 supported zero-dimensional Co3S4 nanoparticles form S-scheme heterojunction photocatalyst for efficient hydrogen production. Energy Fuels 2020, 35, 856–867. [Google Scholar] [CrossRef]
- Fu, Y.; Zhang, Y.; Xie, X.; Wang, H.; Wei, L.; Ma, M.; Yan, Q. Functionalized carbon nanotube bridge interface drove Bi2O2CO3/g-C3N4 S-scheme heterojunction with enhanced visible-light photocatalytic activity. Sep. Purif. Technol. 2021, 274, 119032. [Google Scholar] [CrossRef]
- Guo, H.; Niu, C.-G.; Yang, Y.-Y.; Liang, C.; Niu, H.-Y.; Liu, H.-Y.; Li, L.; Tang, N. Interfacial Co-N bond bridged CoB/g-C3N4 Schottky junction with modulated charge transfer dynamics for highly efficient photocatalytic Staphylococcus aureus inactivation. Chem. Eng. J. 2021, 422, 130029. [Google Scholar] [CrossRef]
- Lin, S.; Zhang, N.; Wang, F.; Lei, J.; Zhou, L.; Liu, Y.; Zhang, J. Carbon vacancy mediated incorporation of Ti3C2 quantum dots in a 3D inverse opal g-C3N4 Schottky junction catalyst for photocatalytic H2O2 production. ACS Sustain. Chem. Eng. 2020, 9, 481–488. [Google Scholar] [CrossRef]
- Yi, X.; Yuan, J.; Tang, H.; Du, Y.; Hassan, B.; Yin, K.; Chen, Y.; Liu, X. Embedding few-layer Ti3C2Tx into alkalized g-C3N4 nanosheets for efficient photocatalytic degradation. J. Colloid Interface Sci. 2020, 571, 297–306. [Google Scholar] [CrossRef] [PubMed]
- Ye, J.; Liu, J.; An, Y. Electric field and strain effects on the electronic and optical properties of g-C3N4/WSe2 van der Waals heterostructure. Appl. Surf. Sci. 2020, 501, 144262. [Google Scholar] [CrossRef]
- Xu, Q.; Zhang, L.; Cheng, B.; Fan, J.; Yu, J. S-scheme heterojunction photocatalyst. Chem 2020, 6, 1543–1559. [Google Scholar] [CrossRef]
- Fu, J.; Xu, Q.; Low, J.; Jiang, C.; Yu, J. Ultrathin 2D/2D WO3/g-C3N4 step-scheme H2-production photocatalyst. Appl. Catal. B Environ. 2019, 243, 556–565. [Google Scholar] [CrossRef]
- Ren, Y.; Li, Y.; Wu, X.; Wang, J.; Zhang, G. S-scheme Sb2WO6/g-C3N4 photocatalysts with enhanced visible-light-induced photocatalytic NO oxidation performance. Chin. J. Catal. 2021, 42, 69–77. [Google Scholar] [CrossRef]
- Wang, J.; Wang, G.; Cheng, B.; Yu, J.; Fan, J. Sulfur-doped g-C3N4/TiO2 S-scheme heterojunction photocatalyst for Congo Red photodegradation. Chin. J. Catal. 2021, 42, 56–68. [Google Scholar] [CrossRef]
- Dai, Z.; Zhen, Y.; Sun, Y.; Li, L.; Ding, D. ZnFe2O4/g-C3N4 S-scheme photocatalyst with enhanced adsorption and photocatalytic activity for uranium (VI) removal. Chem. Eng. J. 2021, 415, 129002. [Google Scholar]
- Mei, F.; Li, Z.; Dai, K.; Zhang, J.; Liang, C. Step-scheme porous g-C3N4/Zn0.2Cd0.8S-DETA composites for efficient and stable photocatalytic H2 production. Chin. J. Catal. 2020, 41, 41–49. [Google Scholar] [CrossRef]
- Xie, Q.; He, W.; Liu, S.; Li, C.; Zhang, J.; Wong, P.K. Bifunctional S-scheme g-C3N4/Bi/BiVO4 hybrid photocatalysts toward artificial carbon cycling. Chin. J. Catal. 2020, 41, 140–153. [Google Scholar] [CrossRef]
- Du, X.; Song, S.; Wang, Y.; Jin, W.; Ding, T.; Tian, Y.; Li, X. Facile one-pot synthesis of defect-engineered step-scheme WO3/g-C3N4 heterojunctions for efficient photocatalytic hydrogen production. Catal. Sci. Technol. 2021, 11, 2734–2744. [Google Scholar] [CrossRef]
- Wang, X.-J.; Tian, X.; Sun, Y.-J.; Zhu, J.-Y.; Li, F.-T.; Mu, H.-Y.; Zhao, J. Enhanced Schottky effect of a 2D–2D CoP/g-C3N4 interface for boosting photocatalytic H2 evolution. Nanoscale 2018, 10, 12315–12321. [Google Scholar] [CrossRef]
- She, X.; Xu, H.; Li, L.; Mo, Z.; Zhu, X.; Yu, Y.; Song, Y.; Wu, J.; Qian, J.; Yuan, S. Steering charge transfer for boosting photocatalytic H2 evolution: Integration of two-dimensional semiconductor superiorities and noble-metal-free Schottky junction effect. Appl. Catal. B Environ. 2019, 245, 477–485. [Google Scholar] [CrossRef]
- Yang, Y.; Zeng, Z.; Zeng, G.; Huang, D.; Xiao, R.; Zhang, C.; Zhou, C.; Xiong, W.; Wang, W.; Cheng, M. Ti3C2 Mxene/porous g-C3N4 interfacial Schottky junction for boosting spatial charge separation in photocatalytic H2O2 production. Appl. Catal. B Environ. 2019, 258, 117956. [Google Scholar] [CrossRef]
- Shaheer, A.M.; Karthik, P.; Karthik, G.; Shankar, M.; Neppolian, B. Dual role of a g-C3N4/carbon intra-Schottky junction in charge carrier generation and separation for efficient solar H2 production. Catal. Sci. Technol. 2019, 9, 3493–3503. [Google Scholar] [CrossRef]
- Li, H.J.W.; Zhou, H.; Chen, K.; Liu, K.; Li, S.; Jiang, K.; Zhang, W.; Xie, Y.; Cao, Z.; Li, H. Metallic MoO2-modified graphitic carbon nitride boosting photocatalytic CO2 reduction via Schottky junction. Solar Rrl 2020, 4, 1900416. [Google Scholar] [CrossRef]
- Sun, Z.; Fang, W.; Zhao, L.; Wang, H. 3D porous Cu-NPs/g-C3N4 foam with excellent CO2 adsorption and Schottky junction effect for photocatalytic CO2 reduction. Appl. Surf. Sci. 2020, 504, 144347. [Google Scholar] [CrossRef]
- Li, J.; Zhang, Z.; Cui, W.; Wang, H.; Cen, W.; Johnson, G.; Jiang, G.; Zhang, S.; Dong, F. The spatially oriented charge flow and photocatalysis mechanism on internal van der Waals heterostructures enhanced g-C3N4. ACS Catal. 2018, 8, 8376–8385. [Google Scholar] [CrossRef]
- Ran, J.; Guo, W.; Wang, H.; Zhu, B.; Yu, J.; Qiao, S.Z. Metal-free 2D/2D phosphorene/g-C3N4 Van der Waals heterojunction for highly enhanced visible-light photocatalytic H2 production. Adv. Mater. 2018, 30, 1800128. [Google Scholar]
- Sun, D.; Chi, D.; Yang, Z.; Xing, Z.; Yin, J.; Li, Z.; Zhu, Q.; Zhou, W. Mesoporous g-C3N4/Zn–Ti LDH laminated van der Waals heterojunction nanosheets as remarkable visible-light-driven photocatalysts. Int. J. Hydrogen Energy 2019, 44, 16348–16358. [Google Scholar] [CrossRef]
- Dong, H.; Hong, S.; Zhang, P.; Yu, S.; Wang, Y.; Yuan, S.; Li, H.; Sun, J.; Chen, G.; Li, C. Metal-free Z-scheme 2D/2D VdW heterojunction for high-efficiency and durable photocatalytic H2 production. Chem. Eng. J. 2020, 395, 125150. [Google Scholar] [CrossRef]
- Song, X.; Wu, Y.; Zhang, X.; Li, X.; Zhu, Z.; Ma, C.; Yan, Y.; Huo, P.; Yang, G. Boosting charge carriers separation and migration efficiency via fabricating all organic van der Waals heterojunction for efficient photoreduction of CO2. Chem. Eng. J. 2021, 408, 127292. [Google Scholar] [CrossRef]
- Han, Z.; Fu, Y.; Zhang, Y.; Zhang, X.; Meng, X.; Zhou, Z.; Su, Z. Metal–organic framework (MOF) composite materials for photocatalytic CO2 reduction under visible light. Dalton Trans. 2021, 50, 3186–3192. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Yu, X.; Li, J.; Xu, L.; Li, B. Construction of MOFs/g-C3N4 composite for accelerating visible-light-driven hydrogen evolution. Int. J. Hydrogen Energy 2022, 47, 18007–18017. [Google Scholar] [CrossRef]
- Lv, P.; Duan, F.; Sheng, J.; Lu, S.; Zhu, H.; Du, M.; Chen, M. The 2D/2D p–n heterojunction of ZnCoMOF/g-C3N4 with enhanced photocatalytic hydrogen evolution under visible light irradiation. Appl. Organomet. Chem. 2021, 35, e6124. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhou, J.; Feng, Q.; Chen, X.; Hu, Z. Visible light photocatalytic degradation of MB using UiO-66/g-C3N4 heterojunction nanocatalyst. Chemosphere 2018, 212, 523–532. [Google Scholar] [CrossRef]
- Ma, X.; Li, X.; Li, M.; Ma, X.; Yu, L.; Dai, Y. Effect of the structure distortion on the high photocatalytic performance of C60/g-C3N4 composite. Appl. Surf. Sci. 2017, 414, 124–130. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, G.; Jin, Z. An orderly assembled g-C3N4, rGO and Ni2P photocatalyst for efficient hydrogen evolution. Int. J. Hydrogen Energy 2019, 44, 10316–10327. [Google Scholar] [CrossRef]
- Liu, J.; Song, Y.; Xu, H.; Zhu, X.; Lian, J.; Xu, Y.; Zhao, Y.; Huang, L.; Ji, H.; Li, H. Non-metal photocatalyst nitrogen-doped carbon nanotubes modified mpg-C3N4: Facile synthesis and the enhanced visible-light photocatalytic activity. J. Colloid Interface Sci. 2017, 494, 38–46. [Google Scholar] [CrossRef]
- Cheng, L.; Zhang, H.; Li, X.; Fan, J.; Xiang, Q. Carbon–graphitic carbon nitride hybrids for heterogeneous photocatalysis. Small 2021, 17, 2005231. [Google Scholar] [CrossRef] [PubMed]
- Yuan, B.; Wei, J.; Hu, T.; Yao, H.; Jiang, Z.; Fang, Z.; Chu, Z. Simple synthesis of g-C3N4/rGO hybrid catalyst for the photocatalytic degradation of rhodamine B. Chin. J. Catal. 2015, 36, 1009–1016. [Google Scholar] [CrossRef]
- Ge, L.; Han, C. Synthesis of MWNTs/g-C3N4 composite photocatalysts with efficient visible light photocatalytic hydrogen evolution activity. Appl. Catal. B Environ. 2012, 117, 268–274. [Google Scholar] [CrossRef]
- Wang, Q.; Feng, Z.; He, H.; Hu, X.; Mao, J.; Chen, X.; Liu, L.; Wei, X.; Liu, D.; Bi, S. Nonblinking carbon dots for imaging and tracking receptors on a live cell membrane. Chem. Commun. 2021, 57, 5554–5557. [Google Scholar]
- Zhang, F.; Wen, Q.; Hong, M.; Zhuang, Z.; Yu, Y. Efficient and sustainable metal-free GR/C3N4/CDots ternary heterostructrues for versatile visible-light-driven photoredox applications: Toward synergistic interaction of carbon materials. Chem. Eng. J. 2017, 307, 593–603. [Google Scholar]
- He, H.; Liu, L.; Chen, X.; Wang, Q.; Wang, X.; Nau, W.M.; Huang, F. Carbon dot blinking enables accurate molecular counting at nanoscale resolution. Anal. Chem. 2021, 93, 3968–3975. [Google Scholar] [CrossRef]
- Liu, J.; Liu, Y.; Liu, N.; Han, Y.; Zhang, X.; Huang, H.; Lifshitz, Y.; Lee, S.-T.; Zhong, J.; Kang, Z. Metal-free efficient photocatalyst for stable visible water splitting via a two-electron pathway. Science 2015, 347, 970–974. [Google Scholar] [CrossRef]
- Asadzadeh-Khaneghah, S.; Habibi-Yangjeh, A. g-C3N4/carbon dot-based nanocomposites serve as efficacious photocatalysts for environmental purification and energy generation: A review. J. Clean. Prod. 2020, 276, 124319. [Google Scholar] [CrossRef]
- Fang, S.; Xia, Y.; Lv, K.; Li, Q.; Sun, J.; Li, M. Effect of carbon-dots modification on the structure and photocatalytic activity of g-C3N4. Appl. Catal. B Environ. 2016, 185, 225–232. [Google Scholar] [CrossRef]
- Ai, L.; Shi, R.; Yang, J.; Zhang, K.; Zhang, T.; Lu, S. Efficient combination of g-C3N4 and CDs for enhanced photocatalytic performance: A review of synthesis, strategies, and applications. Small 2021, 17, 2007523. [Google Scholar] [CrossRef]
- Yan, L.; Zhong, S.; Igou, T.; Gao, H.; Li, J.; Chen, Y. Development of machine learning models to enhance element-doped g-C3N4 photocatalyst for hydrogen production through splitting water. Int. J. Hydrogen Energy 2022, 47, 34075–34089. [Google Scholar] [CrossRef]
- Sharma, R.; Almáši, M.; Nehra, S.P.; Rao, V.S.; Panchal, P.; Paul, D.R.; Jain, I.P.; Sharma, A. Photocatalytic hydrogen production using graphitic carbon nitride (GCN): A precise review. Renew. Sustain. Energy Rev. 2022, 168, 112776. [Google Scholar] [CrossRef]
- Kar, S.; Bishwal, L.; Kommula, B.; Bhattacharyya, S. Critical optimization of phosphorus functionalized carbon nanomaterials for metal-free solar hydrogen production and simultaneous organic transformation. Adv. Opt. Mater. 2022, 10, 2102641. [Google Scholar] [CrossRef]
- Gao, Y.; Hou, F.; Hu, S.; Wu, B.; Wang, Y.; Zhang, H.; Jiang, B.; Fu, H. Graphene quantum-dot-modified hexagonal tubular carbon nitride for visible-light photocatalytic hydrogen evolution. ChemCatChem 2018, 10, 1330–1335. [Google Scholar] [CrossRef]
- Ling, G.Z.S.; Ng, S.F.; Ong, W.J. Tailor-engineered 2D cocatalysts: Harnessing electron–hole redox center of 2D g-C3N4 photocatalysts toward solar-to-chemical conversion and environmental purification. Adv. Funct. Mater. 2022, 32, 2111875. [Google Scholar] [CrossRef]
- Shi, W.; Wang, J.; Yang, S.; Lin, X.; Guo, F.; Shi, J. Fabrication of a ternary carbon dots/CoO/g-C3N4 nanocomposite photocatalyst with enhanced visible-light-driven photocatalytic hydrogen production. J. Chem. Technol. Biotechnol. 2020, 95, 2129–2138. [Google Scholar] [CrossRef]
- Zhang, S.; Gao, M.; Zhai, Y.; Wen, J.; Yu, J.; He, T.; Kang, Z.; Lu, S. Which kind of nitrogen chemical states doped carbon dots loaded by g-C3N4 is the best for photocatalytic hydrogen production. J. Colloid Interface Sci. 2022, 622, 662–674. [Google Scholar] [CrossRef]
- Hussien, M.K.; Sabbah, A.; Qorbani, M.; Elsayed, M.H.; Raghunath, P.; Lin, T.-Y.; Quadir, S.; Wang, H.-Y.; Wu, H.-L.; Tzou, D.-L.M. Metal-free four-in-one modification of g-C3N4 for superior photocatalytic CO2 reduction and H2 evolution. Chem. Eng. J. 2022, 430, 132853. [Google Scholar] [CrossRef]
- Li, L.; Wang, X.; Gu, H.; Zhang, H.; Zhang, J.; Zhang, Q.; Dai, W.-L. Which Is more efficient in promoting the photocatalytic H2 evolution performance of g-C3N4: Monometallic nanocrystal, heterostructural nanocrystal, or bimetallic nanocrystal? Inorg. Chem. 2022, 61, 4760–4768. [Google Scholar] [CrossRef]
- Sun, Y.; Kumar, V.; Kim, K.-H. The assessment of graphitic carbon nitride (g-C3N4) materials for hydrogen evolution reaction: Effect of metallic and non-metallic modifications. Sep. Purif. Technol. 2022, 305, 122413. [Google Scholar] [CrossRef]
- Devarayapalli, K.; Vattikuti, S.P.; Sreekanth, T.; Yoo, K.S.; Nagajyothi, P.; Shim, J. Hydrogen production and photocatalytic activity of g-C3N4/Co-MOF (ZIF-67) nanocomposite under visible light irradiation. Appl. Organomet. Chem. 2020, 34, e5376. [Google Scholar] [CrossRef]
- Yu, H.; Ma, H.; Wu, X.; Wang, X.; Fan, J.; Yu, J. One-step realization of crystallization and cyano-group generation for g-C3N4 photocatalysts with improved H2 production. Solar Rrl 2021, 5, 2000372. [Google Scholar] [CrossRef]
- Wang, K.; Li, Y.; Li, J.; Zhang, G. Boosting interfacial charge separation of Ba5Nb4O15/g-C3N4 photocatalysts by 2D/2D nanojunction towards efficient visible-light driven H2 generation. Appl. Catal. B Environ. 2020, 263, 117730. [Google Scholar] [CrossRef]
- Katsumata, H.; Tateishi, I.; Furukawa, M.; Kaneco, S. Highly photocatalytic hydrogen generation over P-doped g-C3N4 with aromatic ring structure. Mater. Lett. 2021, 299, 130068. [Google Scholar] [CrossRef]
- Xi, C.; Deng, P.; Miao, D.; Zhang, L.; Liu, W.; Hou, Y. Improved charge transfer by binary Ni3S2-NiS2 for boosting the photocatalytic hydrogen generation over g-C3N4. Mater. Lett. 2022, 307, 131012. [Google Scholar] [CrossRef]
- Liang, G.; Waqas, M.; Yang, B.; Xiao, K.; Li, J.; Zhu, C.; Zhang, J.; Duan, H. Enhanced photocatalytic hydrogen evolution under visible light irradiation by p-type MoS2/n-type Ni2P doped g-C3N4. Appl. Surf. Sci. 2020, 504, 144448. [Google Scholar] [CrossRef]
- Nasir, M.S.; Yang, G.; Ayub, I.; Wang, X.; Wang, S.; Yan, W. Hybridization of g-C3N4 quantum dots with 1D branched TiO2 fiber for efficient visible light-driven photocatalytic hydrogen generation. Int. J. Hydrogen Energy 2020, 45, 13994–14005. [Google Scholar] [CrossRef]
- Samsudin, M.F.R.; Ullah, H.; Bashiri, R.; Mohamed, N.M.; Sufian, S.; Ng, Y.H. Experimental and DFT insights on microflower g-C3N4/BiVO4 photocatalyst for enhanced photoelectrochemical hydrogen generation from lake water. ACS Sustain. Chem. Eng. 2020, 8, 9393–9403. [Google Scholar] [CrossRef]
- Qi, K.; Lv, W.; Khan, I.; Liu, S.-y. Photocatalytic H2 generation via CoP quantum-dot-modified g-C3N4 synthesized by electroless plating. Chin. J. Catal. 2020, 41, 114–121. [Google Scholar] [CrossRef]
- Ma, B.; Zhao, J.; Ge, Z.; Chen, Y.; Yuan, Z. 5 nm NiCoP nanoparticles coupled with g-C3N4 as high-performance photocatalyst for hydrogen evolution. Sci. China Mater. 2020, 63, 258–266. [Google Scholar] [CrossRef] [Green Version]
- Jia, J.; Sun, W.; Zhang, Q.; Zhang, X.; Hu, X.; Liu, E.; Fan, J. Inter-plane heterojunctions within 2D/2D FeSe2/g-C3N4 nanosheet semiconductors for photocatalytic hydrogen generation. Appl. Catal. B Environ. 2020, 261, 118249. [Google Scholar] [CrossRef]
- Fan, Y.; Chen, H.; Cui, D.; Fan, Z.; Xue, C. NiCo2O4/g-C3N4 Heterojunction Photocatalyst for Efficient H2 Generation. Energy Technol. 2021, 9, 2000973. [Google Scholar] [CrossRef]
- Bi, Z.-x.; Guo, R.-t.; Ji, X.-y.; Hu, X.; Wang, J.; Chen, X.; Pan, W.-g. Direct Z-scheme CoS/g-C3N4 heterojunction with NiS co-catalyst for efficient photocatalytic hydrogen generation. Int. J. Hydrogen Energy 2022, 47, 34430–34443. [Google Scholar] [CrossRef]
- Zada, A.; Khan, M.; Hussain, Z.; Shah, M.I.A.; Ateeq, M.; Ullah, M.; Ali, N.; Shaheen, S.; Yasmeen, H.; Shah, S.N.A. Extended visible light driven photocatalytic hydrogen generation by electron induction from g-C3N4 nanosheets to ZnO through the proper heterojunction. Z. Phys. Chem. 2022, 236, 53–66. [Google Scholar] [CrossRef]
- Mehtab, A.; Banerjee, S.; Mao, Y.; Ahmad, T. Type-II CuFe2O4/graphitic carbon nitride heterojunctions for high-efficiency photocatalytic and electrocatalytic hydrogen generation. ACS Appl. Mater. Interfaces 2022, 14, 44317–44329. [Google Scholar] [CrossRef]
- Mishra, B.P.; Babu, P.; Parida, K. Phosphorous, boron and sulfur doped g-C3N4 nanosheet: Synthesis, characterization, and comparative study towards photocatalytic hydrogen generation. Mater. Today Proc. 2021, 35, 258–262. [Google Scholar] [CrossRef]
- Alhaddad, M.; Navarro, R.; Hussein, M.; Mohamed, R. Bi2O3/g-C3N4 nanocomposites as proficient photocatalysts for hydrogen generation from aqueous glycerol solutions beneath visible light. Ceram. Int. 2020, 46, 24873–24881. [Google Scholar] [CrossRef]
- Ding, J.; Sun, X.; Wang, Q.; Li, D.-s.; Li, X.; Li, X.; Chen, L.; Zhang, X.; Tian, X.; Ostrikov, K.K. Plasma synthesis of Pt/g-C3N4 photocatalysts with enhanced photocatalytic hydrogen generation. J. Alloys Compd. 2021, 873, 159871. [Google Scholar] [CrossRef]
- Jin, Z.; Li, Y.; Hao, X. Ni, Co-based selenide anchored g-C3N4 for boosting photocatalytic hydrogen evolution. Acta Phys.-Chim. Sin. 2021, 37, 1912033. [Google Scholar]
- Nagaraja, C.; Kaur, M.; Dhingra, S. Enhanced visible-light-assisted photocatalytic hydrogen generation by MoS2/g-C3N4 nanocomposites. Int. J. Hydrogen Energy 2020, 45, 8497–8506. [Google Scholar] [CrossRef]
- Li, J.; Ma, W.; Chen, J.; An, N.; Zhao, Y.; Wang, D.; Mao, Z. Carbon vacancies improved photocatalytic hydrogen generation of g-C3N4 photocatalyst via magnesium vapor etching. Int. J. Hydrogen Energy 2020, 45, 13939–13946. [Google Scholar] [CrossRef]
- Ma, X.; Luo, B.; Zeng, Z.; Hu, S.; Jing, D. Significantly Enhanced Photocatalytic Hydrogen Generation over a 2D/2D Z-Scheme La2NiO4/g-C3N4 Hybrid Free of Noble Metal Cocatalyst. ACS Appl. Energy Mater. 2021, 4, 10721–10730. [Google Scholar] [CrossRef]
- Che, Y.; Liu, Q.; Lu, B.; Zhai, J.; Wang, K.; Liu, Z. Plasmonic ternary hybrid photocatalyst based on polymeric g-C3N4 towards visible light hydrogen generation. Sci. Rep. 2020, 10, 721. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hou, X.; Cui, L.; Du, H.; Gu, L.; Li, Z.; Yuan, Y. Lowering the schottky barrier of g-C3N4/Carbon graphite heterostructure by N-doping for increased photocatalytic hydrogen generation. Appl. Catal. B Environ. 2020, 278, 119253. [Google Scholar] [CrossRef]
- Rawool, S.A.; Samanta, A.; Ajithkumar, T.; Kar, Y.; Polshettiwar, V. Photocatalytic hydrogen generation and CO2 conversion using g-C3N4 decorated dendritic fibrous nanosilica: Role of interfaces between silica and g-C3N4. ACS Appl. Energy Mater. 2020, 3, 8150–8158. [Google Scholar] [CrossRef]
- Wan, C.; Zhou, L.; Sun, L.; Xu, L.; Cheng, D.-g.; Chen, F.; Zhan, X.; Yang, Y. Boosting visible-light-driven hydrogen evolution from formic acid over AgPd/2D g-C3N4 nanosheets Mott-Schottky photocatalyst. Chem. Eng. J. 2020, 396, 125229. [Google Scholar] [CrossRef]
- Song, T.; Xie, C.; Matras-Postolek, K.; Yang, P. 2D layered g-C3N4/WO3/WS2 S-scheme heterojunctions with enhanced photochemical performance. J. Phys. Chem. C 2021, 125, 19382–19393. [Google Scholar] [CrossRef]
- Zhao, W.; She, T.; Zhang, J.; Wang, G.; Zhang, S.; Wei, W.; Yang, G.; Zhang, L.; Xia, D.; Cheng, Z. A novel Z-scheme CeO2/g-C3N4 heterojunction photocatalyst for degradation of Bisphenol A and hydrogen evolution and insight of the photocatalysis mechanism. J. Mater. Sci. Technol. 2021, 85, 18–29. [Google Scholar] [CrossRef]
- Liao, Y.; Wang, G.; Wang, J.; Wang, K.; Yan, S.; Su, Y. Nitrogen vacancy induced in situ g-C3N4 pn homojunction for boosting visible light-driven hydrogen evolution. J. Colloid Interface Sci. 2021, 587, 110–120. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, X.R.; Yang, P.; Chen, H.-S. Black magnetic Cu-g-C3N4 nanosheets towards efficient photocatalytic H2 generation and CO2/benzene conversion. Chem. Eng. J. 2022, 450, 138030. [Google Scholar] [CrossRef]
- Zhao, B.; Xu, J.; Liu, Y.; Fan, J.; Yu, H. Amino group-rich porous g-C3N4 nanosheet photocatalyst: Facile oxalic acid-induced synthesis and improved H2-evolution activity. Ceram. Int. 2021, 47, 18295–18303. [Google Scholar] [CrossRef]
- Yuan, H.; Fang, F.; Dong, J.; Xia, W.; Zeng, X.; Shangguan, W. Enhanced photocatalytic hydrogen production based on laminated MoS2/g-C3N4 photocatalysts. Colloids Surf. A Physicochem. Eng. Asp. 2022, 641, 128575. [Google Scholar] [CrossRef]
- Kamat, P.V. Meeting the clean energy demand: Nanostructure architectures for solar energy conversion. J. Phys. Chem. C 2007, 111, 2834–2860. [Google Scholar] [CrossRef]
- Wang, Q.; Fang, Z.; Zhang, W.; Zhang, D. High-efficiency g-C3N4 based photocatalysts for CO2 reduction: Modification methods. Adv. Fiber Mater. 2022, 4, 342–360. [Google Scholar] [CrossRef]
- Fu, J.; Yu, J.; Jiang, C.; Cheng, B. g-C3N4-based heterostructured photocatalysts. Adv. Energy Mater. 2018, 8, 1701503. [Google Scholar] [CrossRef]
- Kumar, S.; Karthikeyan, S.; Lee, A.F. g-C3N4-based nanomaterials for visible light-driven photocatalysis. Catalysts 2018, 8, 74. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Kong, T.; Shen, S. Artificial photosynthesis with polymeric carbon nitride: When meeting metal nanoparticles, single atoms, and molecular complexes. Small 2019, 15, 1900772. [Google Scholar] [CrossRef]
- Zhang, L.; Long, R.; Zhang, Y.; Duan, D.; Xiong, Y.; Zhang, Y.; Bi, Y. Direct observation of dynamic bond evolution in single-atom Pt/C3N4 catalysts. Angew. Chem. 2020, 132, 6283–6288. [Google Scholar] [CrossRef]
- Liu, W.; Cao, L.; Cheng, W.; Cao, Y.; Liu, X.; Zhang, W.; Mou, X.; Jin, L.; Zheng, X.; Che, W. Single-site active cobalt-based photocatalyst with a Long carrier lifetime for spontaneous overall water splitting. Angew. Chem. 2017, 129, 9440–9445. [Google Scholar] [CrossRef]
- Pan, Z.; Zheng, Y.; Guo, F.; Niu, P.; Wang, X. Decorating CoP and Pt nanoparticles on graphitic carbon nitride nanosheets to promote overall water splitting by conjugated polymers. ChemSusChem 2017, 10, 87–90. [Google Scholar] [CrossRef]
- Reddy, K.R.; Reddy, C.V.; Nadagouda, M.N.; Shetti, N.P.; Jaesool, S.; Aminabhavi, T.M. Polymeric graphitic carbon nitride (g-C3N4)-based semiconducting nanostructured materials: Synthesis methods, properties and photocatalytic applications. J. Environ. Manag. 2019, 238, 25–40. [Google Scholar] [CrossRef] [PubMed]
- Wen, J.; Xie, J.; Chen, X.; Li, X. A review on g-C3N4-based photocatalysts. Appl. Surf. Sci. 2017, 391, 72–123. [Google Scholar] [CrossRef]
- Wang, K.; Li, Q.; Liu, B.; Cheng, B.; Ho, W.; Yu, J. Sulfur-doped g-C3N4 with enhanced photocatalytic CO2-reduction performance. Appl. Catal. B Environ. 2015, 176, 44–52. [Google Scholar] [CrossRef]
- Sun, Z.; Wang, H.; Wu, Z.; Wang, L. g-C3N4 based composite photocatalysts for photocatalytic CO2 reduction. Catal. Today 2018, 300, 160–172. [Google Scholar] [CrossRef]
- Ghosh, U.; Majumdar, A.; Pal, A. Photocatalytic CO2 reduction over g-C3N4 based heterostructures: Recent progress and prospects. J. Environ. Chem. Eng. 2021, 9, 104631. [Google Scholar] [CrossRef]
- Li, X.; Xiong, J.; Gao, X.; Huang, J.; Feng, Z.; Chen, Z.; Zhu, Y. Recent advances in 3D g-C3N4 composite photocatalysts for photocatalytic water splitting, degradation of pollutants and CO2 reduction. J. Alloys Compd. 2019, 802, 196–209. [Google Scholar] [CrossRef]
- Zhang, X. Layered g-C3N4/TiO2 nanocomposites for efficient photocatalytic water splitting and CO2 reduction: A review. Mater. Today Energy 2022, 23, 100904. [Google Scholar] [CrossRef]
- Chen, P.; Dong, X.a.; Huang, M.; Li, K.; Xiao, L.; Sheng, J.; Chen, S.; Zhou, Y.; Dong, F. Rapid self-decomposition of g-C3N4 during gas–solid photocatalytic CO2 reduction and its effects on performance assessment. ACS Catal. 2022, 12, 4560–4570. [Google Scholar] [CrossRef]
- Li, H.; Wang, D.; Miao, C.; Wang, Y.; Wang, Y.; Liu, C.; Che, G. g-C3N4/BiOI S-scheme heterojunction: A 2D/2D model platform for visible-light-driven photocatalytic CO2 reduction and pollutant degradation. J. Environ. Chem. Eng. 2022, 10, 108201. [Google Scholar] [CrossRef]
- Fu, J.; Zhu, B.; Jiang, C.; Cheng, B.; You, W.; Yu, J. Hierarchical porous O-doped g-C3N4 with enhanced photocatalytic CO2 reduction activity. Small 2017, 13, 1603938. [Google Scholar] [CrossRef]
- Huo, Y.; Zhang, J.; Dai, K.; Liang, C. Amine-modified S-scheme porous g-C3N4/CdSe–diethylenetriamine composite with enhanced photocatalytic CO2 reduction activity. ACS Appl. Energy Mater. 2021, 4, 956–968. [Google Scholar] [CrossRef]
- Tang, R.; Wang, H.; Zhang, S.; Zhang, L.; Dong, F. A ball milling method for highly dispersed Ni atoms on g-C3N4 to boost CO2 photoreduction. J. Colloid Interface Sci. 2023, 630, 290–300. [Google Scholar] [CrossRef] [PubMed]
- Lu, Z.; Wang, Z. S-scheme CuWO4@ g-C3N4 core-shell microsphere for CO2 photoreduction. Mater. Sci. Semicond. Process. 2023, 153, 107177. [Google Scholar] [CrossRef]
- Li, J.; He, C.; Xu, N.; Wu, K.; Huang, Z.; Zhao, X.; Nan, J.; Xiao, X. Interfacial bonding of hydroxyl-modified g-C3N4 and Bi2O2CO3 toward boosted CO2 photoreduction: Insights into the key role of OH groups. Chem. Eng. J. 2023, 452, 139191. [Google Scholar] [CrossRef]
- Gao, Y.; Sun, L.; Bian, J.; Zhang, Z.; Li, Z.; Jing, L. Accelerated charge transfer of g-C3N4/BiVO4 Z-scheme 2D heterojunctions by controllably introducing phosphate bridges and Ag nanocluster co-catalysts for selective CO2 photoreduction to CO. Appl. Surf. Sci. 2023, 610, 155360. [Google Scholar] [CrossRef]
- Wang, K.; Feng, X.; Shangguan, Y.; Wu, X.; Chen, H. Selective CO2 photoreduction to CH4 mediated by dimension-matched 2D/2D Bi3NbO7/g-C3N4 S-scheme heterojunction. Chin. J. Catal. 2022, 43, 246–254. [Google Scholar] [CrossRef]
- Wang, J.; Yu, Y.; Cui, J.; Li, X.; Zhang, Y.; Wang, C.; Yu, X.; Ye, J. Defective g-C3N4/covalent organic framework van der Waals heterojunction toward highly efficient S-scheme CO2 photoreduction. Appl. Catal. B Environ. 2022, 301, 120814. [Google Scholar] [CrossRef]
- Tao, K.-Y.; Yuan, K.; Yang, W.; Zhong, D.-C.; Lu, T.-B. A template co-pyrolysis strategy towards the increase of amino/imino content within g-C3N4 for efficient CO2 photoreduction. Chem. Eng. J. 2022, 140630. [Google Scholar] [CrossRef]
- Tang, Z.; Wang, C.; He, W.; Wei, Y.; Zhao, Z.; Liu, J. The Z-scheme g-C3N4/3DOM-WO3 photocatalysts with enhanced activity for CO2 photoreduction into CO. Chin. Chem. Lett. 2022, 33, 939–942. [Google Scholar] [CrossRef]
- Sahoo, R.C.; Lu, H.; Garg, D.; Yin, Z.; Matte, H.R. Bandgap engineered g-C3N4 and its graphene composites for stable photoreduction of CO2 to methanol. Carbon 2022, 192, 101–108. [Google Scholar] [CrossRef]
- Madi, M.; Tahir, M. Highly stable LaCoO3 perovskite supported g-C3N4 nanotextures with proficient charges migration for visible light CO2 photoreduction to CO and CH4. Mater. Sci. Semicond. Process. 2022, 142, 106517. [Google Scholar] [CrossRef]
- Liu, T.; Hao, L.; Bai, L.; Liu, J.; Zhang, Y.; Tian, N.; Huang, H. Z-scheme junction Bi2O2 (NO3)(OH)/g-C3N4 for promoting CO2 photoreduction. Chem. Eng. J. 2022, 429, 132268. [Google Scholar] [CrossRef]
- Li, Y.; Yin, Q.; Zeng, Y.; Liu, Z. Hollow spherical biomass derived-carbon dotted with SnS2/g-C3N4 Z-scheme heterojunction for efficient CO2 photoreduction into CO. Chem. Eng. J. 2022, 438, 135652. [Google Scholar] [CrossRef]
- Li, X.; Li, S.; Xu, J.; Wang, L.; Liang, K.; Zhang, H.; Yu, X.; Liu, Z. Synergy of nitrogen vacancies and nanodiamond decoration in g-C3N4 for boosting CO2 photoreduction. Appl. Surf. Sci. 2022, 600, 154199. [Google Scholar] [CrossRef]
- Li, L.; Ma, D.; Xu, Q.; Huang, S. Constructing hierarchical ZnIn2S4/g-C3N4 S-scheme heterojunction for boosted CO2 photoreduction performance. Chem. Eng. J. 2022, 437, 135153. [Google Scholar] [CrossRef]
- He, J.; Wang, X.; Jin, S.; Liu, Z.-Q.; Zhu, M. 2D metal-free heterostructure of covalent triazine framework/g-C3N4 for enhanced photocatalytic CO2 reduction with high selectivity. Chin. J. Catal. 2022, 43, 1306–1315. [Google Scholar] [CrossRef]
- Zhu, X.; Deng, H.; Cheng, G. Facile construction of g-C3N4-W18O49 heterojunction with improved charge transfer for solar-driven CO2 photoreduction. Inorg. Chem. Commun. 2021, 132, 108814. [Google Scholar] [CrossRef]
- Yin, S.; Sun, L.; Zhou, Y.; Li, X.; Li, J.; Song, X.; Huo, P.; Wang, H.; Yan, Y. Enhanced electron–hole separation in SnS2/Au/g-C3N4 embedded structure for efficient CO2 photoreduction. Chem. Eng. J. 2021, 406, 126776. [Google Scholar] [CrossRef]
- Xu, Y.; Jin, X.; Ge, T.; Xie, H.; Sun, R.; Su, F.; Li, X.; Ye, L. Realizing efficient CO2 photoreduction in Bi3O4Cl: Constructing van der Waals heterostructure with g-C3N4. Chem. Eng. J. 2021, 409, 128178. [Google Scholar] [CrossRef]
- She, S.; Zhang, X.; Wu, X.; Li, J.; Zhang, G. The fabrication of two-dimensional g-C3N4/NaBiO3· 2H2O heterojunction for improved photocatalytic CO2 reduction: DFT study and mechanism unveiling. J. Colloid Interface Sci. 2021, 604, 122–130. [Google Scholar] [CrossRef]
- Qin, Y.; Dong, G.; Zhang, L.; Li, G.; An, T. Highly efficient and selective photoreduction of CO2 to CO with nanosheet g-C3N4 as compared with its bulk counterpart. Environ. Res. 2021, 195, 110880. [Google Scholar] [CrossRef] [PubMed]
- Mkhalid, I.A.; Mohamed, R.M.; Ismail, A.A.; Alhaddad, M. Z-scheme g-C3N4 nanosheet photocatalyst decorated with mesoporous CdS for the photoreduction of carbon dioxide. Ceram. Int. 2021, 47, 17210–17219. [Google Scholar] [CrossRef]
- Li, X.; Jiang, H.; Ma, C.; Zhu, Z.; Song, X.; Wang, H.; Huo, P.; Li, X. Local surface plasma resonance effect enhanced Z-scheme ZnO/Au/g-C3N4 film photocatalyst for reduction of CO2 to CO. Appl. Catal. B Environ. 2021, 283, 119638. [Google Scholar] [CrossRef]
- Li, X.; Guan, J.; Jiang, H.; Song, X.; Huo, P.; Wang, H. rGO modified R-CeO2/g-C3N4 multi-interface contact S-scheme photocatalyst for efficient CO2 photoreduction. Appl. Surf. Sci. 2021, 563, 150042. [Google Scholar] [CrossRef]
- Chen, C.; Jin, J.; Chen, S.; Wang, T.; Xiao, J.; Peng, T. In-situ growth of ultrafine ZnO on g-C3N4 layer for highly active and selective CO2 photoreduction to CH4 under visible light. Mater. Res. Bull. 2021, 137, 111177. [Google Scholar] [CrossRef]
- Wang, S.; Zhan, J.; Chen, K.; Ali, A.; Zeng, L.; Zhao, H.; Hu, W.; Zhu, L.; Xu, X. Potassium-doped g-C3N4 achieving efficient visible-light-driven CO2 reduction. ACS Sustain. Chem. Eng. 2020, 8, 8214–8222. [Google Scholar] [CrossRef]
- Vu, N.-N.; Kaliaguine, S.; Do, T.-O. Synthesis of the g-C3N4/CdS nanocomposite with a chemically bonded interface for enhanced sunlight-driven CO2 photoreduction. ACS Appl. Energy Mater. 2020, 3, 6422–6433. [Google Scholar] [CrossRef]
- Ma, W.; Wang, N.; Guo, Y.; Yang, L.; Lv, M.; Tang, X.; Li, S. Enhanced photoreduction CO2 activity on g-C3N4: By synergistic effect of nitrogen defective-enriched and porous structure, and mechanism insights. Chem. Eng. J. 2020, 388, 124288. [Google Scholar] [CrossRef]
- Guo, L.; You, Y.; Huang, H.; Tian, N.; Ma, T.; Zhang, Y. Z-scheme g-C3N4/Bi2O2 [BO2 (OH)] heterojunction for enhanced photocatalytic CO2 reduction. J. Colloid Interface Sci. 2020, 568, 139–147. [Google Scholar] [CrossRef]
- Guo, H.; Ding, J.; Wan, S.; Wang, Y.; Zhong, Q. Highly efficient CH3OH production over Zn0. 2Cd0. 8S decorated g-C3N4 heterostructures for the photoreduction of CO2. Appl. Surf. Sci. 2020, 528, 146943. [Google Scholar] [CrossRef]
- Khan, I.; Yuan, A.; Khan, S.; Khan, A.; Khan, S.; Shah, S.A.; Luo, M.; Yaseen, W.; Shen, X.; Yaseen, M. Graphitic carbon nitride composites with gold and ZIF-67 nanoparticles as visible-light-promoted catalysts for CO2 conversion and bisphenol A degradation. ACS Appl. Nano Mater. 2022, 5, 13404–13416. [Google Scholar] [CrossRef]
- Dao, X.-Y.; Xie, X.-F.; Guo, J.-H.; Zhang, X.-Y.; Kang, Y.-S.; Sun, W.-Y. Boosting photocatalytic CO2 reduction efficiency by heterostructures of NH2-MIL-101 (Fe)/g-C3N4. ACS Appl. Energy Mater. 2020, 3, 3946–3954. [Google Scholar] [CrossRef]
- Nemiwal, M.; Zhang, T.C.; Kumar, D. Recent progress in g-C3N4, TiO2 and ZnO based photocatalysts for dye degradation: Strategies to improve photocatalytic activity. Sci. Total Environ. 2021, 767, 144896. [Google Scholar] [CrossRef] [PubMed]
- Duan, Y.; Deng, L.; Shi, Z.; Liu, X.; Zeng, H.; Zhang, H.; Crittenden, J. Efficient sulfadiazine degradation via in-situ epitaxial grow of graphitic carbon nitride (g-C3N4) on carbon dots heterostructures under visible light irradiation: Synthesis, mechanisms and toxicity evaluation. J. Colloid Interface Sci. 2020, 561, 696–707. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Shi, H.; Yang, D.; Fan, J.; Hu, X.; Liu, E. Fabrication of a Sb2MoO6/g-C3N4 photocatalyst for enhanced RhB degradation and H2 generation. J. Phys. Chem. C 2020, 124, 13771–13778. [Google Scholar] [CrossRef]
- Hayat, A.; Sohail, M.; Ali Shah Syed, J.; Al-Sehemi, A.G.; Mohammed, M.H.; Al-Ghamdi, A.A.; Taha, T.; Salem AlSalem, H.; Alenad, A.M.; Amin, M.A. Recent advancement of the current aspects of g-C3N4 for its photocatalytic applications in sustainable energy system. Chem. Rec. 2022, 22, e202100310. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Qi, Y.; Mei, Y.; Ma, S.; Li, Q.; Xin, B.; Yao, T.; Wu, J. Construction of phosphorus-doped carbon nitride/phosphorus and sulfur co-doped carbon nitride isotype heterojunction and their enhanced photoactivity. J. Colloid Interface Sci. 2020, 566, 495–504. [Google Scholar] [CrossRef]
- Zhang, B.; Li, X.; Zhao, Y.; Song, H.; Wang, H. Facile synthesis of oxygen doped mesoporous graphitic carbon nitride with high photocatalytic degradation efficiency under simulated solar irradiation. Colloids Surf. A Physicochem. Eng. Asp. 2019, 580, 123736. [Google Scholar] [CrossRef]
- Jiang, L.; Yuan, X.; Zeng, G.; Liang, J.; Wu, Z.; Wang, H.; Zhang, J.; Xiong, T.; Li, H. A facile band alignment of polymeric carbon nitride isotype heterojunctions for enhanced photocatalytic tetracycline degradation. Environ. Sci. Nano 2018, 5, 2604–2617. [Google Scholar] [CrossRef]
- Chen, M.; Jia, Y.; Li, H.; Wu, Z.; Huang, T.; Zhang, H. Enhanced pyrocatalysis of the pyroelectric BiFeO3/g-C3N4 heterostructure for dye decomposition driven by cold-hot temperature alternation. J. Adv. Ceram. 2021, 10, 338–346. [Google Scholar] [CrossRef]
- Zhang, H.; Guo, L.-H.; Zhao, L.; Wan, B.; Yang, Y. Switching oxygen reduction pathway by exfoliating graphitic carbon nitride for enhanced photocatalytic phenol degradation. J. Phys. Chem. Lett. 2015, 6, 958–963. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Yu, J.; Jaroniec, M. Hierarchical photocatalysts. Chem. Soc. Rev. 2016, 45, 2603–2636. [Google Scholar] [CrossRef] [PubMed]
- Du, X.; Bai, X.; Xu, L.; Yang, L.; Jin, P. Visible-light activation of persulfate by TiO2/g-C3N4 photocatalyst toward efficient degradation of micropollutants. Chem. Eng. J. 2020, 384, 123245. [Google Scholar] [CrossRef]
- Zhou, W.-J.; Ma, L.-X.; Li, L.-Y.; Zha, M.; Li, B.-L.; Wu, B.; Hu, C.-J. Synthesis of a 3D Cu (II) MOF and its heterostructual g-C3N4 composite showing improved visible-light-driven photodegradation of organic dyes. J. Solid State Chem. 2022, 315, 123520. [Google Scholar] [CrossRef]
- Shekardasht, M.B.; Givianrad, M.H.; Gharbani, P.; Mirjafary, Z.; Mehrizad, A. Preparation of a novel Z-scheme g-C3N4/RGO/Bi2Fe4O9 nanophotocatalyst for degradation of Congo Red dye under visible light. Diam. Relat. Mater. 2020, 109, 108008. [Google Scholar] [CrossRef]
- Liu, Y.; Shen, Z.; Song, J.; Qi, H.; Yin, C.; Zou, X.; Xia, Q.; Cui, L.; Li, X.; Wang, Y. Honeycomb-like g-C3N4/CeO2-x nanosheets obtained via one step hydrothermal-roasting for efficient and stable Cr (VI) photo-reduction. Chin. Chem. Lett. 2020, 31, 2747–2751. [Google Scholar] [CrossRef]
- Prabavathi, S.L.; Saravanakumar, K.; Park, C.M.; Muthuraj, V. Photocatalytic degradation of levofloxacin by a novel Sm6WO12/g-C3N4 heterojunction: Performance, mechanism and degradation pathways. Sep. Purif. Technol. 2021, 257, 117985. [Google Scholar] [CrossRef]
- Deng, Y.; Liu, J.; Huang, Y.; Ma, M.; Liu, K.; Dou, X.; Wang, Z.; Qu, S.; Wang, Z. Engineering the photocatalytic behaviors of g/C3N4-based metal-free materials for degradation of a representative antibiotic. Adv. Funct. Mater. 2020, 30, 2002353. [Google Scholar] [CrossRef]
- Paul, D.R.; Gautam, S.; Panchal, P.; Nehra, S.P.; Choudhary, P.; Sharma, A. ZnO-modified g-C3N4: A potential photocatalyst for environmental application. ACS Omega 2020, 5, 3828–3838. [Google Scholar] [CrossRef] [Green Version]
- Wu, L.; Chen, Y.; Li, Y.; Meng, Q.; Duan, T. Functionally integrated g-C3N4@ wood-derived carbon with an orderly interconnected porous structure. Appl. Surf. Sci. 2021, 540, 148440. [Google Scholar] [CrossRef]
- Yassin, J.M.; Taddesse, A.M.; Sánchez-Sánchez, M. Sustainable synthesis of semicrystalline Zr-BDC MOF and heterostructural Ag3PO4/Zr-BDC/g-C3N4 composite for photocatalytic dye degradation. Catal. Today 2022, 390, 162–175. [Google Scholar] [CrossRef]
- Hasija, V.; Raizada, P.; Sudhaik, A.; Singh, P.; Thakur, V.K.; Khan, A.A.P. Fabrication of Ag/AgI/WO3 heterojunction anchored P and S co-doped graphitic carbon nitride as a dual Z scheme photocatalyst for efficient dye degradation. Solid State Sci. 2020, 100, 106095. [Google Scholar] [CrossRef]
- Feng, Z.; Zeng, L.; Zhang, Q.; Ge, S.; Zhao, X.; Lin, H.; He, Y. In situ preparation of g-C3N4/Bi4O5I2 complex and its elevated photoactivity in Methyl Orange degradation under visible light. J. Environ. Sci. 2020, 87, 149–162. [Google Scholar] [CrossRef] [PubMed]
- Zheng, C.-W.; Niu, H.-Y.; Liang, C.; Niu, C.-G.; Zhao, X.-F.; Zhang, L.; Li, J.-S.; Guo, H.; Liu, H.-Y.; Liang, S. A study on advanced oxidation mechanism of MnCo2O4/g-C3N4 degradation of nitrobenzene: Sacrificial oxidation and radical oxidation. Chem. Eng. J. 2021, 403, 126400. [Google Scholar] [CrossRef]
- Yu, X.; Zhang, X.; Zhao, J.; Xu, L.; Yan, J. Flower-like shaped Bi12TiO20/g-C3N4 heterojunction for effective elimination of organic pollutants: Preparation, characterization, and mechanism study. Appl. Organomet. Chem. 2020, 34, e5702. [Google Scholar] [CrossRef]
- Feng, S.; Chen, T.; Liu, Z.; Shi, J.; Yue, X.; Li, Y. Z-scheme CdS/CQDs/g-C3N4 composites with visible-near-infrared light response for efficient photocatalytic organic pollutant degradation. Sci. Total Environ. 2020, 704, 135404. [Google Scholar] [CrossRef]
- Liang, Q.; Liu, X.; Shao, B.; Tang, L.; Liu, Z.; Zhang, W.; Gong, S.; Liu, Y.; He, Q.; Wu, T. Construction of fish-scale tubular carbon nitride-based heterojunction with boosting charge separation in photocatalytic tetracycline degradation and H2O2 production. Chem. Eng. J. 2021, 426, 130831. [Google Scholar] [CrossRef]
- Huang, Y.; Li, B.; Wu, F.; Yang, B. Fabrication of novel flower-like Co3O4/g-C3N4 heterojunction for tetracycline degradation under visible light irradiation. Mater. Lett. 2022, 311, 131538. [Google Scholar] [CrossRef]
- Chen, W.; Huang, J.; He, Z.-C.; Ji, X.; Zhang, Y.-F.; Sun, H.-L.; Wang, K.; Su, Z.-W. Accelerated photocatalytic degradation of tetracycline hydrochloride over CuAl2O4/g-C3N4 pn heterojunctions under visible light irradiation. Sep. Purif. Technol. 2021, 277, 119461. [Google Scholar] [CrossRef]
- Shi, Y.; Li, J.; Wan, D.; Huang, J.; Liu, Y. Peroxymonosulfate-enhanced photocatalysis by carbonyl-modified g-C3N4 for effective degradation of the tetracycline hydrochloride. Sci. Total Environ. 2020, 749, 142313. [Google Scholar] [CrossRef]
- Luo, J.; Dai, Y.; Xu, X.; Liu, Y.; Yang, S.; He, H.; Sun, C.; Xian, Q. Green and efficient synthesis of Co-MOF-based/g-C3N4 composite catalysts to activate peroxymonosulfate for degradation of the antidepressant venlafaxine. J. Colloid Interface Sci. 2022, 610, 280–294. [Google Scholar] [CrossRef] [PubMed]
Entry | Photocatalyst | Experimental Details | H2 Evolution Rate | Reference Material /μmol·g−1·h−1 | Enhancement Relative to Conventional g-C3N4 | Apparent Quantum Efficiency/% | Ref. |
---|---|---|---|---|---|---|---|
1 | Cyano-group-modified crystalline g-C3N4 (CCN0.1) | 50 mg CCN, 80 mL lactic acid (10 vol%), 1 wt% Pt/CCN | 758.8 μmol·h−1 | Bulk g-C3N4 379.4 μmol·h−1 | 2 | 1.17% | [142] |
2 | Ba5Nb4O15/g-C3N4 (1:20) | 420 nm LEDs (3 W single), Pt co-catalyst, 0.05 g, 100 mL oxalic acid | 2.67 μmol·h−1 | g-C3N4 1.14 μmol·h−1 | 2.35 | 6.1 | [143] |
3 | P-doped g-C3N4 with aromatic ring (AS/P-CN) | 300 W Xe, 10 vol% TEOA, 2 wt% Pt, 40 mg | 550 μmol·h−1·g−1 | Pristine CN 120 μmol·h−1·g−1 | 4.58 | 0.33 | [144] |
4 | Ni3S2-NiS2/CN-3 | 300 W Xe, 20 mg Ni3S2-NiS2/CN-X, 90 mL water, 10 mL TEOA | 1206.6 μmol·h−1·g−1 | Pure g-C3N4 4.01 μmol·h−1·g−1 | 300.7 | [145] | |
5 | 2% MoS2-g-C3N4/Ni2P | 300 W Xe (>420 nm), 5 °C, 50 mg, 90 mL water, 10 mL of TEOA | 298.1 μmol·h−1·g−1 | Pure g-C3N4 4.32 μmol·h−1·g−1 | 69 | 2.51% (λ = 420 nm) | [146] |
6 | HBTiO2/g-C3N4 QDs | 300 W Xe, 0.025 g, 50 mL 0.25 M Na2S, and 0.35M Na2SO3 | 10.57 mmol h−1·g−1 | g-C3N4 0.32 mmol. h−1·g−1 | 33 | 18.6% 420 nm | [147] |
7 | 0.8 wt.% g-C3N4/BiVO4 | 200 mL lake water, 500 W halogen, 0.5 M Na2SO4 | 21.4 mmol h−1 | 4.27% at 420 nm | [148] | ||
8 | g-C3N4/CoP-4% | 350 W Xe, 10 mg, 70 mL water, 10 mL TEOA | 936 μmol g−1 h−1 | g-C3N4—4 wt% Pt 665 μmol g−1 h−1 | 1.41 | [149] | |
9 | NiCoP-3/C3N4 | 300 W Xe (300–780 nm), 100 mg, 10 mL methanol, 90 mL water | 159 μmol g−1 h−1 | CoP-3/C3N4: 63.6 μmol g−1 h−1 Ni2P-3/C3N4: 4.54 μmol g−1 h−1 | CoP-3/C3N4: 2.5 Ni2P-3/C3N4: 35 | 4.2% | [150] |
10 | 15% FeSe2/CNNS 2D/2D composite | 0.15/0.35 mol/L Na2S/Na2SO3, 30 mg, 300 W Xe | 1655.6 μmol g−1 h−1 | C3N4: 624.8 μmol g−1 h−1 FeSe2: 957 μmol g−1 h−1 | Pristine g-C3N4: 2.65 FeSe2: 1.73 | [151] | |
11 | 5%-NiCo2O4/g-C3N4 | 300 W Xe, 50 mg, 100 mL solution (10 vol% of TEOA, 3% of H2PtCl6) | 1041.9 μmol g−1 h−1 | g-C3N4 521.4 μmol g−1 h−1 | 2 | [152] | |
12 | CoS/g-C3N4/NiS ternary photocatalyst | 300 W Xe, 100 mg, 85 mL water, 15 mL TEOA | 1.93 mmol h−1·g−1 | Bare g-C3N4 0.15 mmol h−1·g−1 | 12.8 | 16.4% at 420 nm | [153] |
13 | 5ZnO/ g-C3N4 | 0.2 g, 80 mL deionized water, 20 mL methanol | 70 µmol h−1 | g-C3N4 8 µmol h−1 | 8.75 | [154] | |
14 | 20 wt% CuFe2O4/g-C3N4 | 200 W Hg−Xe, 20 mg, Na2S/Na2SO3, TEOA | 700.34 μmol g−1 h−1 | g-C3N4 nanosheets 280.1 μmol g−1 h−1 | 2.5 | 25.09% | [155] |
15 | Boron-doped g-C3N4 | 150 W Xe, 20 mg, 10 vol% TEOA, Pt (1 wt%) | 18.2 µmol h−1 | g-C3N4 6.1 µmol h−1 | 3 | [156] | |
16 | 3.0% β-Bi2O3/g-C3N4 | 500 W Xe, 50 mg, 200 mL glycerol (10% vol.) | 8600 µmol g−1 | Bare β-Bi2O3 and g-C3N4 counterparts | >20 | [157] | |
17 | Pt/CN-A150 composite | 300 W Xe, 10 mg, 100 mL DI water containing 20 vol% TEA | 1150.8 µmol h−1 | Pt/CN-PR 18.2 µmol h−1 g-C3N4 | 63.2 4.6 | [158] | |
18 | g-C3N4@Ni3Se4 gC3N4@CoSe2 | 5 W LED, 10 mg, 30 mL 15% v/v TEOA | 16.4 µmol∙h−1 25.6 µmol∙h−1 | Pristine g-C3N4 1.9 µmol∙h−1 | 8 13 | [159] | |
19 | MoS2/g-C3N4 | 300 W Xe, 5 mg, 40 mL DI water, 10% v/v of TEOA | 1787 mmol h−1 g−1 | MoS2 g-C3N4 | 6 40 | [160] | |
20 | Carbon vacancies containing g-C3N4 | 300 W Xe, 100 mg, 90 mL deionized water, 10 mL TEOA, 3 wt% Pt | 450 µmol h−1 g−1 | Pristine g-C3N4 225 µmol h−1 g−1 | 2 | [161] | |
21 | 3 wt% La2NiO4/g-C3N4 | 300 W Xe, 10 mg, 80 mL 20 vol% methanol | 312.8 µmol h−1 g−1 | La2NiO4 5.8 µmol h−1 g−1 g-C3N4 7.1 µmol h−1 g−1 | 53.8 43.9 | 3.7% 420 nm | [162] |
22 | 18% Ag/AgBr/g-C3N4 | 300 W Xe, 50 mg, 90 mL deionized water, 10 mL TEOA | 1587.6 µmol h−1 g−1 | g-C3N4 59.1 µmol h−1 g−1 | 26.9 | [163] | |
23 | g-C3N4/N-doped carbon | 300 W Xe, 10 mg, 20 mL 10 vol% TEOA, 0.5 wt% Pt | 23.0 µmol h−1 | g-C3N4/C 5.9 µmol h−1 | 4 | [164] | |
24 | Dendritic fibrous nanosilica/g-C3N4-0.5 | 300 W Xe, 10 mg, 0.019 M, 80 µL K2PtCl4, 5 mL TEOA | 4662 µmol h−1 g−1 | Pristine g-C3N4 | 7 | [165] | |
25 | Ag0.1Pd0.9/2D CNNs | 300 W Xe, 100 mg, 3:1 FA/SF (1.0 M, 4 mL) | 231.6 mmol h−1 | Ag0.1Pd0.9/2D CNNs under no light | 1.87 | 27.8% 400 nm | [166] |
26 | g-C3N4/WO3/WS2 | 300 W Xe, 20 mg, 100 mL (20 vol%) TEOA | 29 µmol h−1 g−1 | g-C3N4 nanosheets | 7.8 | 8.9% 420 nm | [167] |
27 | CeO2/g-C3N4 -6 | 500 W Xe (400 nm), 0.1g, 100 mL 0.35 M Na2SO3 and 0.25 M Na2S | 1240.9 µmol h−1 g−1 | Pure CeO2 | 5.2 | [168] | |
28 | Nitrogen vacancies-g-C3N4 | 3 W 420 nm LED, 0.02 g, 90 mL H2O, 10 mL TEOA, 1% H2PtCl6 2H2O (10 mg/mL) | 3259.1 µmol h−1 g−1 | Pristine g-C3N4 | 8.7 | [169] | |
29 | Black Cu-g-C3N4 nanosheets composite | 300 W Xe, 10 mg 100 mL (1:9 TEOA: Water) | 526 µmol h−1 g−1 | g-C3N4: 280 | [170] | ||
30 | Amino-group-rich porous g-C3N4 nanosheets (AP-CN 1.0) | 420-nm LED, 0.05 g, 80 mL 10 vol% TEOA, 1 wt% Pt | 130.7 µmol h−1 | Bulk g-C3N4 | 4.9 | 5.58 | [171] |
31 | 0.3-MoS2/g-C3N4 | 300 W Xe, 100 mg, 50 mL, deionized water and 5 mL TEOA | 12 mmol h−1 g−1 | Pristine g-C3N4 g-C3N4 (Pt) | 218 3 | 0.5% 420 nm | [172] |
32 | g-C3N4/ZIF-67 | MaX 303 solar simulator, 20 mg, 0.5 M Na2SO4 | 2084 μmol g−1 | Bare g-C3N4 541 μmol g−1 | 3.84 | [141] | |
33 | 2D/2D ZnCoMOF/g-C3N4 | 300 W Xe, 10 mg, 0.1 mL DMF | 1040.1 | Bulk g-C3N4: 33.2 2D g-C3N4: 3.5 | [116] | ||
34 | PCN-222(M)/g-C3N4 | 300 W Xe, 10 mg, 25 mL TEOA | 1725.5 µmol h−1 g−1 | PNi: 19.3 CN: 3.7 | [115] |
Entry | Photocatalyst | Experimental Details | Productivity /μmol·g−1·h−1 | Reference Material /μmol·g−1·h−1 | Enhancement Relative to Conventional g-C3N4 | Apparent Quantum Efficiency/% | Ref. |
---|---|---|---|---|---|---|---|
1 | Ni/g-C3N4-0.5 catalyst | 300 W Xe, 94–95 kPa, 10.0 mg, deionized water | CO: 19.9 | g-C3N4: 4.8 | 4.1 | [192] | |
2 | S-scheme CuWO4 @ g-C3N4 core-shell microspheres | 300 W Xe (≥420 nm), 0.1 g NaHCO3, 0.5 mL 4M HCl | CO: 4.15 CH4: 0.12 | g-C3N4 CO: 1.56 CH4: 0.02 | 2.7 | [193] | |
3 | Hydroxyl-modified g-C3N4/flower-like Bi2O2CO3 composites | blue LED (4 × 3 W) 450 ± 20 nm, 40 mg, deionized water | CO: 26.69 | Pristine g-C3N4 CO: 1.47 | 18.2 | [194] | |
4 | Z-scheme g-C3N4/BiVO4 (CN/BVO) heterojunction | 300 W Xenon lamp, 0.05 g, 5 mL water | CO: 48 | Pristine BVO CO: 2 | 24 | [195] | |
5 | Ultrathin dimension-matched S-scheme Bi3NbO7/g-C3N4 hetero-structure | Solar simulator, 50 mg, deionized water, 1.3 g Na2CO3, 2.0 mL H2SO4 | CH4: 37.59 | Ultrathin g-C3N4 nanosheets CH4: 2.5 | 15 | [196] | |
6 | Van der Waals (vdW) heterojunction composite combining g-C3N4 with nitrogen vacancies and Tp-Tta COF | 300 W Xe, 20 mg, 15 mg bpy, 1 μmol CoCl2, acetonitrile, water, TEOA | CO: 11.25 | Pristine g-C3N4 CO: 0.25, g-C3N4 (NH) CO: 3.5 | Pristine g-C3N4: 45 g-C3N4 (NH): 3.2 | [197] | |
7 | C-NHx-rich 24 g-C3N4 | 300 W Xe (420 nm), 10 mg g-C3N4, 10 mL deionized water, pH at 30 ℃ | CO: 185.7 | g-C3N4 CO: 2.5 | g-C3N4: 74 | [198] | |
8 | g-C3N4/3DOM-WO3 | 300 W Xe (≥420), water, 0.1 g catalyst, 2 mL deionized water | CO: 48.7 CH4: 7.5 O2: 44.5 | Pure g-C3N4 nanosheets CO: 25.2 CH4: undetected | Pure g-C3N4 nanosheets CO: 1.9 | [199] | |
9 | g-C3N4/rGO composites | 300 W Xe, 3 mg mL−1 catalysts, 5 mL 0.2 M NaHCO3, illuminated 12 h | CH3OH: 114 | CdIn2S4/g-C3N4 CH3OH: 42.7 | CdIn2S4/g-C3N4: 2.67 | 0.63 | [200] |
10 | 15% LaCoO3 loaded g-C3N4 | 35 W Xe (420 nm), 50 mg photocatalyst, pressure 0.30 bar | CO: 135.2 CH4: 48.5 | Pristine La-CoO3 CO: 110 CH4: 28.5 g-C3N4 CO: 114 CH4: 30.4 | Pristine LaCoO3 CO: 1.2 CH4: 1.7 g-C3N4 CO: 1.18 CH4: 1.59 | [201] | |
11 | Bi2O2(NO3)(OH)/g-C3N4 | 300 W Xe, 20 mg samples, 3 mL DI water | CO: 14.84 | BON CO: 0.94 g-C3N4 CO: 3.29 | pure BON:15 g-C3N4: 3.5 | [202] | |
12 | Z-scheme SnS2/gC3N4/C | 300 W Xe, 0.05 g catalyst 100 mL deionized water, 25 °C, 5 h | CO: 40.86 | Pristine g-C3N4 CO: 7.42 | Pristine g-C3N4 5.5 | [203] | |
13 | ND/g-C3N4 | 300 W Xe (>420 nm), 30 mg catalyst, 18 mL acetonitrile, 6 mL water, 1 μmoL CoCl2⋅6H2O | CO: 10.98 | CO: 0.59 | bulk g-C3N4 18.6 | [204] | |
14 | ZnIn2S4 nanosheets modified hexagonal g-C3N4 tubes | 300 W Xe (420 nm), 4 mg, 2 mL water, 1 mL of triethanolamine, 3 mL acetonitrile, 15 mg 2′2-bipyridine (bpy) and 2 µmol of CoCl2 | CO: 883 | HCNT: 66 ZIS: 367.9 | HCNT: 13 ZIS: 2.4 | 8.9% | [205] |
15 | g-C3N4/covalent triazine framework (CN/CTF 2.5%) | 300 W Xe, 5 mg catalyst in 4 mL acetonitrile, 1 mL Co(bpy)3Cl2 triethanolamine | CO: 151.1 | CTF: 5.93 CN: 60.44 | CTF: 25.5 CN: 2.5 | [206] | |
16 | g-C3N4-W18O49 nanocomposite | 300 W Xe, 50 mg catalyst in 1 mL deionized water | CH4: 1.38 | g-C3N4: 0.17 W18O49: 0.12 | g-C3N4: 8.12 W18O49: 11.5 | [207] | |
17 | SnS2/Au/g-C3N4 embedded structure | 300 W Xe, 20 mg, 100 mL water and TEOA, 140 kPa | CO 93.81 CH4 74.98 | [208] | |||
18 | Bi3O4Cl/20%g-C3N4 | 300 W Xe, 0.05 g catalyst, 5 mL H2O | CO: 6.6 CH4: 1.9 | Pure g-C3N4 CO: 2.2, CH4: 0.6 Bi3O4Cl CO: 2.9 CH4: 0.7 | g-C3N4 CO: 3 CH4: 3.17 Bi3O4Cl CO: 2.28 CH4: 2.71 | Bi3O4Cl/20% g-C3N4 is 0.14% under 365 | [209] |
19 | 2D/2D g-C3N4/NaBiO32H2O (10 CN/NBO) | 300 W Xe, 25 mg, deionized water, 1.2 g NaHCO3, 2 mL H2SO4 (1:1 vol) | CO: 110.2 CH4: 43.8 | Pure CN CO: 65.68 CH4: 0.42 NBO CO: 26.45 CH4: 4.81 | Pure CN CO: 1.68 CH4: 104.3 NBO CO: 4.16 CH4: 9.1 | [210] | |
20 | Ultrathin nanosheet g-C3N4 (NS-g-C3N4) | 300 W Xe (420 nm), 0.1 g photocatalyst, 50 mL 50 g/L KHCO3 | CO: 38 μmol/L with 6 h | Bulk g-C3N4 CO: 6.56 μmol/L | CO: 5.8 | [211] | |
21 | 3% CdS-g-C3N4 heterostructures | 300 W Xe (420 nm), 1 g/L catalyst 100 mL H2O, 80 ℃, 125 mg Na2CO3, 0.25 mL HCl (4 M) | CH3OH: 192.7 | CdS CH3OH: 47.1 pristine g-C3N4 CH3OH: 32.6 | CdS: 4.1 pristine g-C3N4: 5.9 | [212] | |
22 | Z-scheme ZnO/Au/g-C3N4 micro-needles film (3-ZAC) | 300 W UV–vis lamp, fiberglass sheets, 0.4 M Pa | 86.2 μmol m−2 h−1 | Pure ZnO 19.16 μmol m−2 h−1 | Pure ZnO film: 4.5 | [213] | |
23 | rGO/R-CeO2/g-C3N4 | 300 W Xe, 100 mg catalysts, 100 mL 1 M NaOH, 1 mmol TEOA, 0.4 MPa | CO:15.8 CH4: 8.15 | CO: 3.95 CH4: 1.36 | Pure g-C3N4 CO: 4 CH4: 6 | [214] | |
24 | g-C3N4/ZnO composites | 300 W Xe (λ ≥ 420 nm), 60 mg catalysts, 1.60 g NaHCO3, H2SO4 (40%, 5.0 mL) | CH4: 19.8 CO: 0.37 | g-C3N4 CH4: 0.9 CO: 4.8 | g-C3N4 CH4: 22 CO: 0.078 | [215] | |
25 | K-CN-7 | 300 W Xe, 50 mg catalyst, 200 μL deionized water, 1 cm × 3 cm ITO glass; 0.5 M Na2SO4 | CO: 8.7 | Ordinary g-C3N4 CO: 0.348 | Ordinary g-C3N4: 25 | [216] | |
26 | g-C3N4/CdS heterostructure nanocomposite | 150 W Xe, 20 mg catalyst, 7 mL acetone nitrile, 0.5 mL H2O, 0.5 g TEOA, 4 µmol [Co(bpy)3]Cl | CO: 234.6 | CN-12: 58.65 CdS: 9.2 | CN-12: 4.0 CdS: 25.5 | [217] | |
27 | Porous structure g-C3N4 with nitrogen defect photocatalysts (DCN-P) | 300 W Xe, 0.05 g catalyst, 100 mL deionized water | CO, 19.7 CH4: 37.1 | Bulk g-C3N4 CO: 4.1 CH4: 9.6 | Bulk gC3N4 CO: 4.8 CH4: 3.86 | [218] | |
28 | g-C3N4/Bi2O2[BO2(OH)] (CNBB-3) | 300 W Xe, 20 mg sample, 2 mL deionized water, 1.7 g Na2CO3, 15 mL H2SO4 | CO: 6.09 | Pristine g-C3N4 CO: 2.19 | Pristine g-C3N4 2.78 | [219] | |
29 | Type-Ⅱ heterojunction of Zn0.2Cd0.8S/g-C3N4 | 300 W Xe, 80 °C, 0.6 MPa, 10 mg catalyst, 20 mL H2O | CH3OH: 11.5 ± 0.3 | Zn0.2Cd0.8S: CH3OH: 4.4 ± 0.2 g-C3N4: CH3OH: 4.2 ± 0.1 | Zn0.2 Cd0.8S: 2.6 g-C3N4: 2.7 | [220] | |
30 | 3ZIF/1.5Au-PCN | 300 W Xe, 0.1 g, 50 mL H2O | CO: >10 CH4: >4 | Pristine g-C3N4 8 | [221] | ||
31 | TPVT-MOFs@g-C3N4-10 | LED light, 1 mg, 1 mL dichloromethane | CO: 56.4 | Pure g-C3N4: 17.5 | Pure g-C3N4 3.2 | [114] | |
32 | NH2-MIL-101(Fe)/g-C3N4-30 wt% | 300 W Xe, 2 mg | CO: 132.8 | g-C3N4: 19.2 | g-C3N4 6.9 | [222] |
Entry | Photocatalyst | Pollutant Concentration | Light Source | Degradation Efficiency/% | Ref. |
---|---|---|---|---|---|
1 | 5% g-C3N4-TiO2 | Acetaminophen: 0.033 mM | 300 W Xe (>400 nm) | 99.3 in 30 min | [233] |
2 | 3ZIF/1.5Au-PCN | Bisphenol A | 350 W Xe (>420 nm) | >85% | [221] |
3 | Cu(tmpa)/20%CN | Congo red: 100 mg·L−1 | 150 W Xe | 98.2% in 3 min | [234] |
4 | BiO-Ag(0)/C3N4@ ZIF-67 | Congo red: 12 mg·L−1 | Natural sunlight | 90% in 150 min | [13] |
5 | C3N4/RGO/Bi2Fe4O9 | Congo red: 10 mg·L−1 | LED 30 W | 87.65% in 60 min | [235] |
6 | g-C3N4/Co-MOF | Crystal violet: 4 ppm | MaX 303 solar simulator (50 mW/cm) | 95% in 80 min | [141] |
7 | Honeycomb-like g-C3N4/CeO2-x | Cr (VI): 20 mg·L−1 | 300 W Xe (>420 nm) | 98% in 150 min | [236] |
8 | Sm6WO12/g-C3N4 | Levofloxacin: 10 mg·L−1 | 150 Mw cm−2 tungsten lamp | 98% in 70 min | [237] |
9 | O-g/C3N4 | Lincomycin: 100 mg·L−1 | PCX50C system (>420 nm) | 99% within 3 h | [238] |
10 | ZnO-modified g-C3N4 | Methylene blue: 10 ppm | 200 W tungsten lamp (>420 nm) | 97% in 80 min | [239] |
11 | Wood-like g-C3N4@WDC | Methylene blue: 20 mg·L−1 | 300 W Xe (>400 nm) | 98% in 60 min | [240] |
12 | BiO-Ag(0)/C3N4@ ZIF-67 | Methylene blue: 12 mg·L−1 | Natural sunlight | 96.5% in 120 min | [13] |
13 | Cerium-based GO/g-C3N4/Fe2O3 | Methylene blue: 10 mg·L−1 | Light bulb | 70.61% in 45 min | [14] |
14 | Ytterbium oxide-based GO/g-C3N4/Fe2O3 | Methylene blue: 10 mg·L−1 | Light bulb | 83.5% in 45 min | [14] |
15 | Cu(tmpa)/20%CN | Methylene blue: 10 mg·L−1 | 150W Xe | 92.0% within 20 min | [234] |
16 | C3N4x/AgOy@Co1-xBi1-yO7 | Methylene blue: 25 mL 10 mM | 100 W tungsten bulb | 96.4% in 120 min | [12] |
17 | Ternary composites of Zr-MOF combined with g-C3N4 and Ag3PO4 | Methylene blue: 10 mg·L−1 | 85-watt tungsten lamp outdoor/solar light in an open air | 95% within 240 93% within 105 min | [241] |
18 | PSCN/Ag@AgI/WO3 | Malachite green: 1 × 10 −4 mol dm−3 | 35 W LED | 90% in 60 min | [242] |
19 | Cu(tmpa)/20%CN | Malachite green: 30 mg·L−1 | 150W Xe | 92.9% in 35 min | [234] |
20 | 20% g-C3N4/Bi4O5I2 | Methyl orange: 20 mg·L−1 | 350 W Xe | 0.164 min−1 | [243] |
21 | Cu(tmpa)/20%CN | Methyl violet: 10 mg·L−1 | 150W Xe | 92.0% in 60 min | [234] |
22 | MnCo2O4/g-C3N4 | Nitrobenzene: 40 mg L−1 | CMCN2/PMS system | 96.7% in 240 min | [244] |
23 | C3N4x/AgOy@Co1-xBi1-yO7 | Oxytetracycline: 25 mL 25 mM | 100 W tungsten bulb | 93% in 160 min | [12] |
24 | g-C3N4/WO3/WS2 | Rhodamine B: 25 mg L−1 | 300 W Xe (>420 nm) | 96.2% in 20 min | [167] |
25 | Flower-like Bi12TiO20/g-C3N4 | Rhodamine B: 20 mg·L−1 | 150 mW·cm−2 Xe (>420 nm) | 100% in 30 min | [245] |
26 | CdS/CQDs/g-C3N4 | Rhodamine B: 10 mg·L−1 | 300 W Xe (>420 nm) | 100% in 20 min | [246] |
27 | Ytterbium oxide-based GO/g-C3N4/Fe2O3 | Rhodamine B: 10 mg·L−1 | Light bulb | 67.11% in 45 min | [14] |
28 | Cerium-based GO/g-C3N4/Fe2O3 | Rhodamine B: 10 mg·L−1 | Light bulb | 63.08% in 45 min | [14] |
29 | Fish-scale g-C3N4/ZnIn2S4 | Tetracycline: 10 mg·L−1 | 300 W Xe (>420 nm) | 74% in 30 min | [247] |
31 | Flower-like Co3O4/g-C3N4 | Tetracycline: 15 mg·L−1 | 350 W Xe (>420 nm) | 85.32% in 120 min | [248] |
31 | 10 wt% CuAl2O4/g-C3N4 | Tetracycline hydrochloride: 100 mg·L−1 | 300 W Xe (>400 nm) | 89.6% in 60 min | [249] |
32 | CO-C3N4 | Tetracycline hydrochloride: 10 mg·L−1 | 300 W Xe (>420 nm) | 97.77% (PMS) in 40 min | [250] |
33 | ZIF-67/g-C3N4 | Venlafaxine: 10 mg·L−1 | - | 27.75% within 120 min | [251] |
34 | ZIF-67/MIL-100(Fe)/g-C3N4 | Venlafaxine: 10 mg·L−1 | - | 100% within 120 min | [251] |
35 | ZIF-67/MOF-74(Ni)/g-C3N4 | Venlafaxine: 10 mg·L−1 | - | 91.8% within 120 min | [251] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Q.; Li, Y.; Huang, F.; Song, S.; Ai, G.; Xin, X.; Zhao, B.; Zheng, Y.; Zhang, Z. Recent Advances in g-C3N4-Based Materials and Their Application in Energy and Environmental Sustainability. Molecules 2023, 28, 432. https://doi.org/10.3390/molecules28010432
Wang Q, Li Y, Huang F, Song S, Ai G, Xin X, Zhao B, Zheng Y, Zhang Z. Recent Advances in g-C3N4-Based Materials and Their Application in Energy and Environmental Sustainability. Molecules. 2023; 28(1):432. https://doi.org/10.3390/molecules28010432
Chicago/Turabian StyleWang, Qian, Yongfei Li, Fenglin Huang, Shaofu Song, Ganggang Ai, Xin Xin, Bin Zhao, Yajun Zheng, and Zhiping Zhang. 2023. "Recent Advances in g-C3N4-Based Materials and Their Application in Energy and Environmental Sustainability" Molecules 28, no. 1: 432. https://doi.org/10.3390/molecules28010432
APA StyleWang, Q., Li, Y., Huang, F., Song, S., Ai, G., Xin, X., Zhao, B., Zheng, Y., & Zhang, Z. (2023). Recent Advances in g-C3N4-Based Materials and Their Application in Energy and Environmental Sustainability. Molecules, 28(1), 432. https://doi.org/10.3390/molecules28010432