The Photodynamic Anticancer and Antibacterial Activity Properties of a Series of meso-Tetraarylchlorin Dyes and Their Sn(IV) Complexes
Abstract
:1. Introduction
2. Results
2.1. Synthesis and Characterization
2.2. Photophyiscochemical Properties
2.3. PDT Activities
2.4. Lipophilicity
2.5. In Vitro PACT Cytotoxicity Studies against the Planktonic Cells of S. aureus and E. coli Bacteria
2.6. In Vitro PACT Cytotoxicity Studies against Biofilms of S. aureus and E. coli Bacteria
3. Discussion
4. Materials and Methods
4.1. Materials
4.2. Instrumentation
4.3. Synthesis of Free-Base Chlorins
4.4. Synthesis of Sn(IV) Chlorins
4.5. PDT Studies
4.6. Lipophilicity Studies
4.7. PACT Studies
4.7.1. Planktonic Bacteria
4.7.2. Biofilm Bacteria
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Moten, A.; Schafer, D.; Ferrari, M. Redefining global health priorities: Improving cancer care in developing settings. J. Glob. Health 2014, 4, 010304. [Google Scholar] [CrossRef] [PubMed]
- Benov, L. Photodynamic therapy: Current status and future directions. Med. Princ. Pract. 2015, 24, 14–28. [Google Scholar] [CrossRef] [PubMed]
- Allison, R.R.; Sibata, C.H. Oncologic photodynamic therapy photosensitizers: A clinical review. Photodiagnosis. Photodyn. Ther. 2010, 7, 61–75. [Google Scholar] [CrossRef] [PubMed]
- Nyokong, T. Desired properties of new phthalocyanines for photodynamic therapy. Pure Appl. Chem. 2011, 83, 1763–1779. [Google Scholar] [CrossRef]
- Hargus, J.A.; Fronczek, F.R.; Vicente, M.G.H.; Smith, K.M. Mono-(L)-aspartylchlorin-e6. Photochem. Photobiol. 2007, 83, 1006–1015. [Google Scholar] [CrossRef]
- Mang, T.S.; Allison, R.; Hewson, G.; Snider, W.; Moskowitz, R. A phase II/III clinical study of tin ethyl etiopurpurin (Purlytin)-induced photodynamic therapy for the treatment of recurrent cutaneous metastatic breast cancer. Cancer J. Sci. Am. 1998, 4, 378–384. [Google Scholar]
- Rostaporfin: PhotoPoint SnET2, Purlytin, Sn(IV) etiopurpurin, SnET2, tin ethyl etiopurpurin. Drugs R&D 2004, 5, 58–61. [CrossRef]
- Laville, I.; Figueiredo, T.; Loock, B.; Pigaglio, S.; Maillard, P.; Grierson, D.S.; Carrez, D.; Croisy, A.; Blais, J. Synthesis, cellular internalization and photodynamic activity of glucoconjugated derivatives of tri and tetra(meta-hydroxyphenyl)chlorins. Bioorg. Med. Chem. 2003, 11, 1643–1652. [Google Scholar] [CrossRef]
- Li, X.; Lee, S.; Yoon, J. Supramolecular photosensitizers rejuvenate photodynamic therapy. Chem. Soc. Rev. 2018, 47, 1174–1188. [Google Scholar] [CrossRef]
- Babu, B.; Mack, J.; Nyokong, T. Sn(iv)-porphyrinoids for photodynamic anticancer and antimicrobial chemotherapy. Dalton Trans. 2023, 52, 5000–5018. [Google Scholar] [CrossRef]
- Babu, B.; Mack, J.; Nyokong, T. Sn(IV) N-confused porphyrins as photosensitizer dyes for photodynamic therapy in the near IR region. Dalton Trans. 2020, 49, 15180–15183. [Google Scholar] [CrossRef] [PubMed]
- Babu, B.; Mack, J.; Nyokong, T. A heavy-atom-free π-extended N-confused porphyrin as a photosensitizer for photodynamic therapy. New J. Chem. 2021, 45, 5654–5658. [Google Scholar] [CrossRef]
- Babu, B.; Prinsloo, E.; Mack, J.; Nyokong, T. Synthesis, characterization and photodynamic activity of Sn(IV) triarylcorroles with red-shifted Q bands. New J. Chem. 2019, 43, 18805–18812. [Google Scholar] [CrossRef]
- Dingiswayo, S.; Babu, B.; Prinsloo, E.; Mack, J.; Nyokong, T. A comparative study of the photophysicochemical and photodynamic activity properties of meso-4-methylthiophenyl functionalized Sn(IV) tetraarylporphyrins and triarylcorroles. J. Porphyr. Phthalocyanines 2020, 24, 1138–1145. [Google Scholar] [CrossRef]
- Babu, B.; Sindelo, A.; Mack, J.; Nyokong, T. Thien-2-yl substituted chlorins as photosensitizers for photodynamic therapy and photodynamic antimicrobial chemotherapy. Dye. Pigment. 2021, 185A, 108886. [Google Scholar] [CrossRef]
- Babu, B.; Mack, J.; Nyokong, T. Photodynamic activity of Sn(IV) tetrathien-2-ylchlorin against MCF-7 breast cancer cells. Dalton Trans. 2021, 50, 2177–2182. [Google Scholar] [CrossRef]
- Dingiswayo, S.; Burgess, K.; Babu, B.; Mack, J.; Nyokong, T. Photodynamic Antitumor and Antimicrobial Activities of Free-Base Tetra(4-methylthiolphenyl)chlorin and Its Tin(IV) Complex. ChemPlusChem 2022, 87, e202200115. [Google Scholar] [CrossRef]
- Wainwright, M. Photodynamic antimicrobial chemotherapy (PACT). J. Antimicrob. Chemother. 1998, 42, 13–28. [Google Scholar] [CrossRef]
- Li, X.; Bai, H.; Yang, Y.; Yoon, J.; Wang, S.; Zhang, X. Supramolecular Antibacterial Materials for Combatting Antibiotic Resistance. Adv. Mater. 2019, 31, 1805092. [Google Scholar] [CrossRef]
- Baptista, M.S.; Wainwright, M. Photodynamic antimicrobial chemotherapy (PACT) for the treatment of malaria, leishmaniasis and trypanosomiasis. Braz. J. Med. Biol. Res. 2011, 44, 1–10. [Google Scholar] [CrossRef]
- Wikene, K.O.; Bruzell, E.; Tønnesen, H.H. Improved antibacterial phototoxicity of a neutral porphyrin in natural deep eutectic solvents. J. Photochem. Photobiol. B 2015, 148, 188–196. [Google Scholar] [CrossRef]
- Malik, Z.; Hanania, J.; Nitzan, Y. Bactericidal effects of photoactivated porphyrins—An alternative approach to antimicrobial drugs. J. Photochem. Photobiol. B 1990, 5, 281–293. [Google Scholar] [CrossRef] [PubMed]
- Banfi, S.; Caruso, E.; Caprioli, S.; Mazzagatti, L.; Canti, G.; Ravizza, R.; Gariboldi, M.; Monti, E. Photodynamic effects of porphyrin and chlorin photosensitizers in human colon adenocarcinoma cells. Bioorganic Med. Chem. 2004, 12, 4853–4860. [Google Scholar] [CrossRef] [PubMed]
- Bonnett, R.; White, R.D.; Winfield, U.J.; Berenbaum, M.C. Hydroporphyrins of the meso-tetra(hydroxyphenyl)porphyrin series as tumour photosensitizers. Biochem. J. 1989, 261, 277–280. [Google Scholar] [CrossRef] [PubMed]
- Whitlock, H.W., Jr.; Hanauer, R.; Oester, M.Y.; Bower, B.K. Diimide reduction of porphyrins. J. Am. Chem. Soc. 1969, 91, 7485–7489. [Google Scholar] [CrossRef]
- Nascimento, B.F.; Gonsalves, A.M.; Pineiro, M. MnO2 instead of quinones as selective oxidant of tetrapyrrolic macrocycles. Inorg. Chem. Commun. 2010, 13, 395–398. [Google Scholar] [CrossRef]
- Cai, S.; Shokhireva, T.K.; Lichtenberger, D.L.; Walker, F.A. NMR and EPR studies of chloroiron(iii) tetraphenyl-chlorin and its complexes with imidazoles and pyridines of widely differing basicities. Inorg. Chem. 2006, 45, 3519–3531. [Google Scholar] [CrossRef]
- Borbas, K.E. BODIPYs and Chlorins: Powerful Related Porphyrin Fluorophores. In Handbook of Porphyrin Science: With Applications to Chemistry, Physics, Materials Science, Engineering, Biology and Medicine; Kadish, K.M., Smith, K.M., Guilard, R., Eds.; World Scientific: Singapore, 2016; Volume 36, pp. 1–149. [Google Scholar]
- Ormond, A.B.; Freeman, H.S. Effects of substituents on the photophysical properties of symmetrical porphyrins. Dyes Pigment. 2013, 96, 440–448. [Google Scholar] [CrossRef]
- Pineiro, M.; Pereira, M.M.; Gonsalves, A.D.; Arnaut, L.G.; Formosinho, S.J. Singlet oxygen quantum yields from halogenated chlorins: Potential new photodynamic therapy agents. J. Photochem. Photobiol. A 2001, 138, 147–157. [Google Scholar] [CrossRef]
- Gierlich, P.; Mucha, S.G.; Robbins, E.; Gomes-da-Silva, L.C.; Matczyszyn, K.; Senge, M.O. One-Photon and Two-Photon Photophysical Properties of Tetrafunctionalized 5,10,15,20-tetrakis(m-hydroxyphenyl)chlorin (Temoporfin) Derivatives as Potential Two-Photon-Induced Photodynamic Therapy Agents. ChemPhotoChem 2022, 6, e202100249. [Google Scholar] [CrossRef]
- Silva, E.F.F.; Schaberle, F.A.; Monteiro, C.J.P.; Dąbrowski, J.M.; Arnaut, L.G. The challenging combination of intense fluorescence and high singlet oxygen quantum yield in photostable chlorins-a contribution to theranostics. Photochem. Photobiol. Sci. 2013, 12, 1187–1192. [Google Scholar] [CrossRef] [PubMed]
- Gwynne, P.J.; Gallagher, M.P. Light as a broad-spectrum antimicrobial. Front. Microbiol. 2018, 9, 119. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Kuzma, M.L.; Tan, X.; He, T.C.; Dong, C.; Liu, Z.; Yang, J. Phototherapy and optical waveguides for the treatment of infection. Adv. Drug. Deliv. Rev. 2021, 179, 114036. [Google Scholar] [CrossRef] [PubMed]
- Naz, H.; Tarique, M.; Khan, P.; Luqman, S.; Ahamad, S.; Islam, A.; Ahmad, F.; Hassan, M. Evidence of vanillin binding to CAMKIV explains the anti-cancer mechanism in human hepatic carcinoma and neuroblastoma cells. Mol. Cell. Biochem. 2018, 438, 35–45. [Google Scholar] [CrossRef] [PubMed]
- Arya, S.S.; Rookes, J.E.; Cahill, D.M.; Lenka, S.K. Vanillin: A review on the therapeutic prospects of a popular flavouring molecule. Adv. Trad. Med. 2021, 21, 1–17. [Google Scholar] [CrossRef]
- Gomes, C.A.; Girão da Cruz, T.; Andrade, J.L.; Milhazes, N.; Borges, F.; Marques, M.P. Anticancer activity of phenolic acids of natural or synthetic origin: A structure-activity study. J. Med. Chem. 2003, 46, 5395–5401. [Google Scholar] [CrossRef]
- Lipinski, C.A.; Lombardo, F.; Dominy, B.W.; Feeney, P.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev. 2012, 64, 4–17. [Google Scholar] [CrossRef]
- Soy, R.C.; Babu, B.; Mack, J.; Nyokong, T. The photodynamic activities of the gold nanoparticle conjugates of phosphorus(V) and gallium(III) A3 meso-triarylcorroles. Dyes Pigment. 2021, 194, 109631. [Google Scholar] [CrossRef]
- Niu, Y.; Wang, L.; Guo, Y.; Zhu, W.; Soy, R.C.; Babu, B.; Mack, J.; Nyokong, T.; Xu, H.; Liang, X. GaIIItriarylcorroles with Push-Pull Substitutions: Synthesis, Electronic Structure and Biomedical Applications. Dalton. Trans. 2022, 51, 10543–10551. [Google Scholar] [CrossRef]
- Ghorbani, J.; Rahban, D.; Aghamiri, S.; Teymouri, A.; Bahador, A. Photosensitizers in antibacterial photodynamic therapy: An overview. Laser. Ther. 2018, 27, 293–302. [Google Scholar] [CrossRef]
- Zgurskaya, H.I.; López, C.A.; Gnanakaran, S. Permeability Barrier of Gram-Negative Cell Envelopes and Approaches to Bypass It. ACS Infect. Dis. 2016, 1, 512–522. [Google Scholar] [CrossRef] [PubMed]
- Jenkins, S.G.; Schuetz, A.N. Current concepts in laboratory testing to guide antimicrobial therapy. Mayo Clin. Proc. 2012, 87, 290–308. [Google Scholar] [CrossRef] [PubMed]
- Balouiri, M.; Sadiki, M.; Ibnsouda, S.K. Methods for in vitro evaluating antimicrobial activity: A review. J. Pharm. Anal. 2016, 6, 71–79. [Google Scholar] [CrossRef] [PubMed]
- Bouarab-Chibane, L.; Forquet, V.; Lantéri, P.; Clément, Y.; Léonard-Akkari, L.; Oulahal, N.; Degraeve, P.; Bordes, C. Antibacterial properties of polyphenols: Characterization and QSAR (Quantitative structure-activity relationship) models. Front. Microbiol. 2019, 10, 829. [Google Scholar] [CrossRef]
- Saxena, P.; Joshi, Y.; Rawat, K.; Bisht, R. Biofilms: Architecture, Resistance, Quorum Sensing and Control Mechanisms. Indian J. Microbiol. 2019, 59, 3–12. [Google Scholar] [CrossRef]
- Jamal, M.; Ahmad, W.; Andleeb, S.; Jalil, F.; Imran, M.; Nawaz, M.A.; Hussain, T.; Ali, M.; Rafiq, M.; Kamil, M.A. Bacterial biofilm and associated infections. J. Chin. Med. Assoc. 2018, 81, 7–11. [Google Scholar] [CrossRef]
- Singh, S.; Singh, S.K.; Chowdhury, I.; Singh, R. Understanding the Mechanism of Bacterial Biofilms Resistance to Antimicrobial Agents. Open Microbiol. J. 2017, 11, 53–62. [Google Scholar] [CrossRef]
- Tran Thi, T.H.; Desforge, C.; Thiec, C.; Gaspard, S. Singlet-singlet and triplet-triplet intramolecular transfer processes in a covalently linked porphyrin-phthalocyanine heterodimer. J. Phys. Chem. 1989, 93, 1226–1233. [Google Scholar] [CrossRef]
- Gandra, N.; Frank, A.T.; Le Gendre, O.; Sawwan, N.; Aebisher, D.; Liebman, J.F.; Houk, K.N.; Greer, A.; Gao, R. Possible singlet oxygen generation from the photolysis of indigo dyes in methanol, DMSO, water, and ionic liquid, 1-butyl-3-methylimidazolium tetrafluoroborate. Tetrahedron 2006, 62, 10771–10776. [Google Scholar] [CrossRef]
- Oluwole, D.O.; Prinsloo, E.; Nyokong, T. Photophysical behavior and photodynamic therapy activity of conjugates of zinc monocarboxyphenoxy phthalocyanine with human serum albumin and chitosan. Spectrochim. Acta A 2017, 173, 292–300. [Google Scholar] [CrossRef]
- Sun, B.; Bte Rahmat, J.N.; Zhang, Y. Advanced techniques for performing photodynamic therapy in deep-seated tissues. Biomaterials 2022, 291, 121875. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.M.; Darafsheh, A. Light Sources and Dosimetry Techniques for Photodynamic Therapy. Photochem. Photobiol. 2020, 96, 280–294. [Google Scholar] [CrossRef] [PubMed]
- Hansch, C.; Maloney, P.P.; Fujita, T.; Muir, R.M. Correlation of biological activity of phenoxyacetic acids with Hammett substituent constants and partition coefficients. Nature 1962, 194, 178–180. [Google Scholar] [CrossRef]
- Sindelo, A.; Kobayashi, N.; Kimura, M.; Nyokong, T. Physicochemical and photodynamic antimicrobial chemotherapy activity of morpholine-substituted phthalocyanines: Effect of point of substitution and central metal. J. Photochem. Photobiol. A 2019, 374, 58–67. [Google Scholar] [CrossRef]
- Dube, E.; Soy, R.; Shumba, M.; Nyokong, T. Photophysicochemical behaviour of phenoxy propanoic acid functionalised zinc phthalocyanines when grafted onto iron oxide and silica nanoparticles: Effects in photodynamic antimicrobial chemotherapy. J. Lumin. 2021, 234, 117939. [Google Scholar] [CrossRef]
- Sen, P.; Soy, R.; Mgidlana, S.; Mack, J.; Nyokong, T. Light-driven antimicrobial therapy of palladium porphyrins and their chitosan immobilization derivatives and their photophysical-chemical properties. Dyes Pigment. 2022, 203, 110313. [Google Scholar] [CrossRef]
- Openda, Y.I.; Ngoy, B.P.; Muya, J.T.; Nyokong, T. Synthesis, theoretical calculations and laser flash photolysis studies of selected amphiphilic porphyrin derivatives used as biofilm photodegradative materials. New J. Chem. 2021, 45, 17320–17331. [Google Scholar] [CrossRef]
- Coffey, B.M.; Anderson, G.G. Biofilm Formation in the 96-Well Microtiter Plate. Methods Mol. Biol. 2014, 1149, 631–641. [Google Scholar]
- Santos, I.; Gamelas, S.R.; Vieira, C.; Faustino, M.A.; Tome, J.P.; Almeida, A.; Gomes, A.T.; Lourenco, L.M. Pyrazole-pyridinium porphyrins and chlorins as powerful photosensitizers for photoinactivation of planktonic and biofilm forms of E. coli. Dyes Pigment. 2021, 193, 109557. [Google Scholar] [CrossRef]
- Lade, H.; Park, J.H.; Chung, S.H.; Kim, I.H.; Kim, J.M.; Joo, H.S.; Kim, J.S. Biofilm formation by Staphylococcus aureus clinical isolates is differentially affected by glucose and sodium chloride supplemented culture media. J. Clin. Med. 2019, 8, 1853. [Google Scholar] [CrossRef]
Sample | λAbs (nm) | λEm (nm) | |
---|---|---|---|
B Band | Q Bands | ||
1-Chl | 420 | 515, 549, 596, 651 | 655, 717 |
2-Chl | 426 | 524, 556, 599, 650 | 656, 721 |
3-Chl | 428 | 520, 560, 601, 663 | 658, 724 |
1-SnChl | 430 | 564, 602, 627 | 630, 679 |
2-SnChl | 438 | 576, 613, 629 | 639, 698 |
3-SnChl | 439 | 575, 615, 630 | 641, 704 |
Sample | ΦF | τF (ns) | τT (μs) | ΦΔ | Photostability a |
---|---|---|---|---|---|
±0.020 | ±0.01 | ±1 | ±0.01 | (%) | |
1-Chl | 0.084 | 6.56 | 188 | 0.59 | 67 |
2-Chl | 0.098 | 5.76 | 189 | 0.58 | 64 |
3-Chl | 0.074 | 5.60 | 111 | 0.62 | 63 |
1-SnChl | 0.018 | 0.67 | 87 | 0.71 | 94 |
2-SnChl | 0.015 | 0.75 | 85 | 0.70 | 96 |
3-SnChl | 0.014 | 0.35 | 96 | 0.69 | 90 |
IC50 (μM) | PI c | Cell Viability (%) at 25 µM | ||||||
---|---|---|---|---|---|---|---|---|
Dark a | Light b | Dark | Light b | |||||
625 nm LED | 660 nm LED | 625 nm LED | 660 nm LED | 625 nm LED | 660 nm LED | |||
1-Chl | >25 | 22.4 (±1.3) | 13.9 (±1.2) | 1.5 | 2.0 | 85.9 (±4.8) | 49.8 (±5.3) | 41.9 (±3.6) |
2-Chl | >25 | 15.5 (±1.2) | 9.4 (±1.1) | 2.1 | 2.7 | 80.7 (±9.1) | 46.4 (±4.4) | 35.8 (±4.1) |
3-Chl | >25 | 10.8 (±0.9) | 6.1 (±0.8) | 2.3 | 4.1 | 75.8 (±5.2) | 38.7 (±5.7) | 28.1 (±5.1) |
1-SnChl | >25 | 9.4 (±1.1) | 4.1 (±0.9) | 3.4 | 16.7 | 82.4 (±2.2) | 26.9 (±6.6) | 11.1 (±4.8) |
2-SnChl | >25 | 6.3 (±1.0) | 2.2 (±0.8) | 5.8 | 22.7 | 69.7 (±2.6) | 8.7 (±1.6) | 7.9 (±1.2) |
3-SnChl | >25 | 3.8 (±0.6) | 1.1 (±0.3) | 6.6 | 24.8 | 81.5 (±3.4) | 7.6 (±2.2) | 3.9 (±1.2) |
Sample | Log Po/w |
---|---|
1-SnChl | 1.39 |
2-SnChl | 0.96 |
3-SnChl | 1.09 |
S. aureus | E. coli | |||||
---|---|---|---|---|---|---|
625 nm LED | 660 nm LED | 625 nm LED | 660 nm LED | |||
Log Reduction a | Log Reduction a | Cell Survival (%) | Log Reduction a | Cell Survival (%) | ||
1-Chl | 7.67 @45 min | 7.67 @45 min | 1.96 | 1.10 | 2.20 | 0.62 |
2-Chl | 7.67 @45 min | 7.67 @45 min | 2.10 | 0.87 | 2.47 | 0.32 |
3-Chl | 7.67 @45 min | 7.67 @45 min | 2.30 | 0.50 | 2.65 | 0.22 |
1-SnChl | 7.67 @15 min | 7.67 @15 min | 3.50 | 0.03 | 3.90 | 0.01 |
2-SnChl | 7.67 @15 min | 7.67 @10 min | 3.72 | 0.02 | 4.24 | 0.01 |
3-SnChl | 7.67 @15 min | 7.67 @10 min | 3.87 | 0.01 | 4.36 | <0.01 |
S. aureus Biofilm Cells | E. coli Biofilm Cells | |||||||
---|---|---|---|---|---|---|---|---|
625 nm | 660 nm | 625 nm | 660 nm | |||||
Log Reduction | Cell Survival (%) | Log Reduction | Cell Survival (%) | Log Reduction | Cell Survival (%) | Log Reduction | Cell Survival (%) | |
1-Chl | 1.20 | 6.7 | 1.30 | 4.5 | 1.13 | 7.5 | 1.26 | 5.5 |
2-Chl | 1.25 | 5.7 | 1.42 | 3.8 | 1.18 | 6.6 | 1.37 | 4.3 |
3-Chl | 1.30 | 4.8 | 1.46 | 3.4 | 1.23 | 5.8 | 1.38 | 4.1 |
1-SnChl | 1.76 | 1.7 | 2.20 | 0.6 | 1.77 | 1.7 | 2.10 | 0.9 |
2-SnChl | 1.86 | 1.4 | 2.34 | 0.5 | 1.92 | 1.1 | 2.37 | 0.6 |
3-SnChl | 1.88 | 1.3 | 2.40 | 0.4 | 1.94 | 1.2 | 2.25 | 0.4 |
Dark a | Light b | PI c | Thorlabs LED b | Time (Min) b | Dose b (J·cm−2) | Ref. | |
---|---|---|---|---|---|---|---|
Tetraphenylchlorin | >25 | 15.8 | >1.6 | M660L4 | 15 | 252 | [15] |
Tetrathien-2-ylchlorin | >25 | 3.5 | >7.1 | M660L4 | 15 | 252 | [15] |
Tetra-5-bromothien-2-ylchlorin | >25 | 2.7 | >9.3 | M660L4 | 15 | 252 | [15] |
Tetramethylthiophenylchlorin | >50 | 7.8 | >6.4 | M660L4 | 30 | 504 | [17] |
1-Chl | >25 | 12.3 | >2.0 | M660L4 | 20 | 336 | -- |
2-Chl | >25 | 9.4 | >2.7 | M660L4 | 20 | 336 | -- |
3-Chl | >25 | 6.1 | >4.1 | M660L4 | 20 | 336 | -- |
Sn(IV) tetrathien-2-ylchlorin | >25 | 0.9 | >27.8 | M660L4 | 30 | 504 | [16] |
Sn(IV) tetramethylthiophenylchlorin | >50 | 3.9 | >12.8 | M660L4 | 30 | 504 | [17] |
1-SnChl | >25 | 1.5 | >16.7 | M660L4 | 20 | 336 | -- |
2-SnChl | >25 | 1.1 | >22.7 | M660L4 | 20 | 336 | -- |
3-SnChl | >25 | 1.0 | >24.8 | M660L4 | 20 | 336 | -- |
Dye | Log10 Red. a | Dye | Log10 Red. a | LED | ||
---|---|---|---|---|---|---|
Conc. (µM) | S. aureus | Conc. (µM) | E. coli | Time (Min) b | Ref. | |
Tetraphenylchlorin | 2.5 | 1.18 | 15 | 0.02 | 60 | [15] |
Tetrathien-2-ylchlorin | 2.5 | 7.22 @45 min | 15 | 4.98 | 60 | [15] |
Tetra-5-bromothien-2-ylchlorin | 2.5 | 7.42 @30 min | 15 | 8.34 @45 min | 60 | [15] |
Tetramethylthiophenylchlorin | 2.5 | 10.6 @30 min | 10 | 0.35 | 75 | [17] |
1-Chl | 1 | 7.67 @45 min | 5 | 2.20 | 75 | -- |
2-Chl | 1 | 7.67 @45 min | 5 | 2.47 | 75 | -- |
3-Chl | 1 | 7.67 @45 min | 5 | 2.65 | 75 | -- |
Sn(IV) tetramethylthiophenylchlorin | 2.5 | 10.5 @30 min | 10 | 8.74 @60 min | 75 | [17] |
1-SnChl | 1 | 7.67 @15 min | 5 | 3.90 | 75 | -- |
2-SnChl | 1 | 7.67 @10 min | 5 | 4.24 | 75 | -- |
3-SnChl | 1 | 7.67 @10 min | 5 | 4.36 | 75 | -- |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Soy, R.; Babu, B.; Mack, J.; Nyokong, T. The Photodynamic Anticancer and Antibacterial Activity Properties of a Series of meso-Tetraarylchlorin Dyes and Their Sn(IV) Complexes. Molecules 2023, 28, 4030. https://doi.org/10.3390/molecules28104030
Soy R, Babu B, Mack J, Nyokong T. The Photodynamic Anticancer and Antibacterial Activity Properties of a Series of meso-Tetraarylchlorin Dyes and Their Sn(IV) Complexes. Molecules. 2023; 28(10):4030. https://doi.org/10.3390/molecules28104030
Chicago/Turabian StyleSoy, Rodah, Balaji Babu, John Mack, and Tebello Nyokong. 2023. "The Photodynamic Anticancer and Antibacterial Activity Properties of a Series of meso-Tetraarylchlorin Dyes and Their Sn(IV) Complexes" Molecules 28, no. 10: 4030. https://doi.org/10.3390/molecules28104030
APA StyleSoy, R., Babu, B., Mack, J., & Nyokong, T. (2023). The Photodynamic Anticancer and Antibacterial Activity Properties of a Series of meso-Tetraarylchlorin Dyes and Their Sn(IV) Complexes. Molecules, 28(10), 4030. https://doi.org/10.3390/molecules28104030