Electrochemistry of Thin Films and Nanostructured Materials
Abstract
:1. Introduction
2. Electrochemical Methods Used for the Synthesis and Characterization of Thin Films and Nanostructured Materials
2.1. Cathodic Processes of Synthesis of Thin Films and Nanostructured Materials
2.2. Anodic Processes of Synthesis of Thin Films and Nanostructured Materials
2.3. Electrochemical Characterization of Thin Films and Nanostructured Materials
3. Conclusions
Conflicts of Interest
References
- Greene, J.E. Tracing the 5000-year recorded history of inorganic thin films from 3000 BC to the early 1900s AD. Appl. Phys. Rev. 2014, 1, 041302. [Google Scholar] [CrossRef]
- Greene, J.E. Tracing the recorded history of thin-film sputter deposition: From the 1800s to 2017. J. Vac. Sci. Technol. A 2017, 35, 05C204. [Google Scholar] [CrossRef]
- Lehner, M. The Complete Pyramids: Solving the Ancient Mysteries; Thames and Hudson, Ltd.: London, UK, 1997. [Google Scholar]
- Chen, C.; Zhang, W.; Hong, Y.; Le, Z.; Li, Q.; Li, W.; Hu, H. Synthesis of coordination polymer thin films with conductance-response to mechanical stimulation. Chem. Commun. 2019, 55, 2545–2548. [Google Scholar] [CrossRef] [PubMed]
- Shah, N.A.; Mahmood, W.; Abbas, M.; Nazar, N.; Khosa, A.H.; Zeb, A.; Malik, A. The synthesis of CdZnTe semiconductor thin films for tandem solar cells. RSC Adv. 2021, 11, 39940–39949. [Google Scholar] [CrossRef] [PubMed]
- Oh, M.S.; Jeon, M.; Jeong, K.; Ryu, J.; Im, S.G. Synthesis of a stretchable but superhydrophobic polymer thin film with conformal coverage and optical transparency. Chem. Mater. 2021, 33, 1314–1320. [Google Scholar] [CrossRef]
- Takakura, R.; Murakami, S.; Watanabe, K.; Takigawa, R. Room-temperature bonding of Al2O3 thin films deposited using atomic layer deposition. Sci. Rep. 2023, 13, 3581. [Google Scholar] [CrossRef]
- Busch, R.T.; Sun, L.; Austin, D.; Jiang, J.; Miesle, P.; Susner, M.A.; Conner, B.S.; Jawaid, A.; Becks, S.T.; Mahalingam, K.; et al. Exfoliation procedure-dependent optical properties of solution deposited MoS2 films. NPJ 2D Mater. Appl. 2023, 7, 12. [Google Scholar] [CrossRef]
- Dobryden, I.; Korolkov, V.V.; Lemaur, V.; Waldrip, M.; Un, H.-I.; Simatos, D.; Spalek, L.J.; Jurchescu, O.D.; Olivier, Y.; Claesson, P.M.; et al. Dynamic self-stabilization in the electronic and nanomechanical properties of an organic polymer semiconductor. Nat. Commun. 2022, 13, 3076. [Google Scholar] [CrossRef]
- Li, Z.H.; He, J.X.; Lv, X.H.; Chi, L.F.; Egbo, K.O.; Li, M.-D.; Tanaka, T.; Guo, Q.X.; Yu, K.M.; Liu, C.P. Optoelectronic properties and ultrafast carrier dynamics of copper iodide thin films. Nat. Commun. 2022, 13, 6346. [Google Scholar] [CrossRef]
- Inamasu, R.; Yamaguchi, H.; Arai, T.; Chang, J.; Kuramochi, M.; Mio, K.; Sasaki, Y.C. Observation of molecular motions in polymer thin films by laboratory grazing incidence diffracted X-ray blinking. Polym. J. 2023, 1–7. [Google Scholar] [CrossRef]
- Petkov, A.; Mishra, A.; Cattelan, M.; Field, D.; Pomeroy, J.; Kuball, M. Electrical and thermal characterisation of liquid metal thin-film Ga2O3–SiO2 heterostructures. Sci. Rep. 2023, 13, 3437. [Google Scholar] [CrossRef] [PubMed]
- Sinojiya, R.J.; Paulachan, P.; Chamasemani, F.F.; Bodlos, R.; Hammer, R.; Zálešák, J.; Reisinger, M.; Scheiber, D.; Keckes, J.; Romaner, L.; et al. Probing the composition dependence of residual stress distribution in tungsten-titanium nanocrystalline thin films. Commun. Mater. 2023, 4, 11. [Google Scholar] [CrossRef]
- Yang, H.; Giri, A.; Moon, S.; Shin, S.; Myoung, J.-M.; Jeong, U. Highly scalable synthesis of MoS2 thin films with precise thickness control via polymer-assisted deposition. Chem. Mater. 2017, 29, 5772–5776. [Google Scholar] [CrossRef]
- Lee, T.D.; Ebong, A.U. A review of thin film solar cell technologies and challenges. Renew. Sustain. Energy Rev. 2017, 70, 1286–1297. [Google Scholar] [CrossRef]
- Şakalak, H.; Yilmaz, K.; Gürsoy, M.; Karaman, M. Roll-to-roll vapor deposition of hydrophobic and transparent nano-adhesive polymeric thin films on rigid and flexible substrates. Ind. Eng. Chem. Res. 2022, 61, 8839–8846. [Google Scholar] [CrossRef]
- Kawaguchi, D.; Higasayama, A.; Ogata, Y.; Kabe, T.; Matsushita, Y.; Tanaka, K. Crystalline structure, molecular motion and photocarrier formation in thin films of monodisperse poly(3-hexylthiophene) with various molecular weights. Polym. J. 2023, 55, 497–505. [Google Scholar] [CrossRef]
- Oh, S.J.; Ma, B.S.; Yang, C.; Kim, T.-S. Intrinsic mechanical properties of free-standing SiNx thin films depending on PECVD conditions for controlling residual stress. ACS Appl. Electron. Mater. 2022, 4, 3980–3987. [Google Scholar] [CrossRef]
- Unni, A.B.; Winkler, R.; Duarte, D.M.; Chat, K.; Adrjanowicz, K. Influence of surface roughness on the dynamics and crystallization of vapor-deposited thin films. J. Phys. Chem. B 2022, 126, 8072–8079. [Google Scholar] [CrossRef]
- Grüner, C.; Liedtke, S.; Bauer, J.; Mayr, S.G.; Rauschenbach, B. Morphology of thin films formed by oblique physical vapor deposition. ACS Appl. Nano Mater. 2018, 1, 1370–1376. [Google Scholar] [CrossRef]
- Vu, T.D.; Chen, Z.; Zeng, X.; Jiang, M.; Liu, S.; Gao, Y.; Long, Y. Physical vapour deposition of vanadium dioxide for thermochromic smart window applications. J. Mater. Chem. C 2019, 7, 2121–2145. [Google Scholar] [CrossRef]
- Wojciechowski, P.; Lewandowski, M. Iron nitride thin films: Growth, structure, and properties. Cryst. Growth Des. 2022, 22, 4618–4639. [Google Scholar] [CrossRef] [PubMed]
- Fazlioglu-Yalcin, B.; Suceava, A.C.; Kuznetsova, T.; Wang, K.; Gopalan, V.; Engel-Herbert, R. Stoichiometric control and optical properties of BaTiO3 thin films grown by hybrid MBE. Adv. Mater. Interfaces 2023, 10, 2300018. [Google Scholar] [CrossRef]
- Deshpande, A.; Hojo, K.; Tanaka, K.; Arias, P.; Zaid, H.; Liao, M.; Goorsky, M.; Kodambaka, S.K. hBN-layer-promoted heteroepitaxy in reactively sputter-deposited MoSx≈2(0001)/Al2O3(0001) thin films: Implications for nanoelectronics. ACS Appl. Nano Mater. 2023, 6, 2908–2916. [Google Scholar] [CrossRef]
- Ashfold, M.N.R.; Claeyssens, F.; Fuge, G.M.; Henley, S.J. Pulsed laser ablation and deposition of thin films. Chem. Soc. Rev. 2004, 33, 23–31. [Google Scholar] [CrossRef]
- Álvarez-Fernández, A.; Valdés-Bango, F.; Losada-Ambrinos, R.; Martín, J.I.; Vélez, M.; Alameda, J.M.; Alonso, F.J.G. Polymer porous thin films obtained by direct spin coating. Polym. Int. 2018, 67, 393–398. [Google Scholar] [CrossRef]
- Carey, T.; Jones, C.; Le Moal, F.; Deganello, D.; Torrisi, F. Spray-coating thin films on three-dimensional surfaces for a semitransparent capacitive-touch device. ACS Appl. Mater. Interfaces 2018, 10, 19948–19956. [Google Scholar] [CrossRef]
- Lo Nigro, R. MOCVD approach to the growth of calcium copper titanate (CaCu3Ti4O12) thin films: The role of the substrate nature on film structural and dielectrical properties. Adv. Mater. Interfaces 2017, 4, 1600975. [Google Scholar] [CrossRef]
- Wang, X.; Wen, Y.; Wu, M.; Cui, B.; Wu, Y.-S.; Li, Y.; Li, X.; Ye, S.; Ren, P.; Ji, Z.-G.; et al. Understanding the effect of top electrode on ferroelectricity in atomic layer deposited Hf0.5Zr0.5O2 thin films. ACS Appl. Mater. Interfaces 2023, 15, 15657–15667. [Google Scholar] [CrossRef]
- Hnida, K.E.; Marzec, M.; Wlaźlak, E.; Chlebda, D.; Szaciłowski, K.; Gilek, D.; Sulka, G.D.; Przybylski, M. Influence of pulse frequency on physicochemical properties of InSb films obtained via electrodeposition. Electrochim. Acta 2019, 304, 396–404. [Google Scholar] [CrossRef]
- Rajska, D.; Motyka, K.; Kozieł, M.; Chlebda, D.; Brzózka, A.; Sulka, G.D. Influence of synthesis parameters on composition and morphology of electrodeposited Zn-Sb thin films. J. Ind. Eng. Chem. 2020, 84, 202–216. [Google Scholar] [CrossRef]
- Rajska, D.; Brzózka, A.; Hnida-Gut, K.E.; Sulka, G.D. Investigation of electrodeposition kinetics of In, Sb, and Zn for advanced designing of InSb and ZnSb thin films. J. Electroanal. Chem. 2021, 882, 114967. [Google Scholar] [CrossRef]
- Rajska, D.; Brzózka, A.; Marciszko-Wiąckowska, M.; Marzec, M.M.; Chlebda, D.; Hnida-Gut, K.E.; Sulka, G.D. Optimization of synthesis conditions of thin Te-doped InSb films and first principles studies of their physicochemical properties. Appl. Surf. Sci. 2021, 537, 147715. [Google Scholar] [CrossRef]
- Buckingham, M.A.; Xiao, W.; Ward-O’Brien, B.; Yearsley, K.; Zulfiqar, U.; Spencer, B.F.; Matthews, A.; Lewis, D.J. Environment effects upon electrodeposition of thin film copper oxide nanomaterials. J. Mater. Chem. C 2023, 11, 4876–4891. [Google Scholar] [CrossRef]
- Sharma, R.K.; Tang, Z.; Chan, P.C.H.; Sin, J.K.O.; Hsing, I.-M. Compatibility of CO gas sensitive SnO2/Pt thin film with silicon integrated circuit processing. Sens. Actuators B Chem. 2000, 64, 49–53. [Google Scholar] [CrossRef]
- Granqvist, C.G. Electrochromics for smart windows: Oxide-based thin films and devices. Thin Solid Films 2014, 564, 1–38. [Google Scholar] [CrossRef]
- Yang, B.; He, G.; Wang, W.; Zhang, Y.; Zhang, C.; Xia, Y.; Xu, X. Diffusion-activated high performance ZnSnO/Yb2O3 thin film transistors and application in low-voltage-operated logic circuits. J. Mater. Sci. Technol. 2021, 70, 49–58. [Google Scholar] [CrossRef]
- Bala, N.; Khan, B.; Singh, K.; Singh, P.; Singh, A.P.; Thakur, A. Recent advances in doped Ge2Sb2Te5 thin film based phase change memories. Mater. Adv. 2023, 4, 747–768. [Google Scholar] [CrossRef]
- Zhou, Y.; Li, L.; Han, Z.; Li, Q.; He, J.; Wang, Q. Self-healing polymers for electronics and energy devices. Chem. Rev. 2023, 123, 558–612. [Google Scholar] [CrossRef]
- Kaempgen, M.; Chan, C.K.; Ma, J.; Cui, Y.; Gruner, G. Printable thin film supercapacitors using single-walled carbon nanotubes. Nano Lett. 2009, 9, 1872–1876. [Google Scholar] [CrossRef]
- Vishniakov, P.; Nazarov, D.; Koshtyal, Y.; Rumyantsev, A.; Shengjie, P.; Nemov, S.; Popovich, A.; Maximov, M. Improvement of thin-film Ni-rich ALD cathode for microbatteries. Appl. Surf. Sci. 2023, 609, 155265. [Google Scholar] [CrossRef]
- Bozheyev, F.; Ellmer, K. Thin film transition metal dichalcogenide photoelectrodes for solar hydrogen evolution: A review. J. Mater. Chem. A 2022, 10, 9327–9347. [Google Scholar] [CrossRef]
- Wree, J.-L.; Rogalla, D.; Ostendorf, A.; Schierbaum, K.D.; Devi, A. Plasma-enhanced atomic layer deposition of molybdenum oxide thin films at low temperatures for hydrogen gas sensing. ACS Appl. Mater. Interfaces 2023, 15, 14502–14512. [Google Scholar] [CrossRef]
- Yeo, R.J.; Dwivedi, N.; Zhang, L.; Zhang, Z.; Lim, C.Y.H.; Tripathy, S.; Bhatia, C.S. Superior wear resistance and low friction in hybrid ultrathin silicon nitride/carbon films: Synergy of the interfacial chemistry and carbon microstructure. Nanoscale 2017, 9, 14937–14951. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Li, Y.; Li, Z.; Ren, L. Large-scale plasma-polymerized hexamethyldisiloxane thin films: Role of interelectrode distance and excellent corrosion resistance. ACS Appl. Mater. Interfaces 2022, 14, 56169–56175. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Zhong, Y.; Zhang, D.; Niu, J.; Nisar, M.; Wei, M.; Liang, G.; Fan, P.; Zheng, Z. Enhanced thermoelectric properties of Cu2Se flexible thin films by optimizing growth temperature and elemental composition. ACS Appl. Energy Mater. 2022, 5, 13964–13970. [Google Scholar] [CrossRef]
- Wang, G.; Meng, J.; Chen, J.; Cheng, Y.; Huang, J.; Zhang, S.; Yin, Z.; Jiang, J.; Wu, J.; Zhang, X. Epitaxy of hexagonal boron nitride thin films on sapphire for optoelectronics. Cryst. Growth Des. 2022, 22, 7207–7721. [Google Scholar] [CrossRef]
- Freestone, I.; Meeks, N.; Sax, M.; Higgitt, C. The Lycurgus cup—A Roman nanotechnology. Gold Bull. 2007, 40, 270–277. [Google Scholar] [CrossRef]
- Gleiter, H. Materials with Ultra-Fine Grain Sizes. In Proceedings of the Second Risø International Symposium on Metallurgy and Materials Science, Roskilde, Denmark, 14–18 September 1981; Hansen, N., Leffers, T., Lilholt, H., Eds.; Risø National Laboratory: Roskilde, Denmark, 1981; pp. 15–22. [Google Scholar]
- Gleiter, H. Nanostructured materials. Adv. Mater. 1992, 4, 474–481. [Google Scholar] [CrossRef]
- Gleiter, H. Nanostructured materials: State of art and perspectives. Nanostruct. Mater. 1995, 6, 3–14. [Google Scholar] [CrossRef]
- Gleiter, H. Nanostructured materials: Basic concepts and microstructure. Acta Mater. 2000, 48, 1–29. [Google Scholar] [CrossRef]
- Siegel, R.W. Nanostructured materials–Mind over matter. Nanostruct. Mater. 1994, 4, 121–138. [Google Scholar] [CrossRef]
- Moriarty, P. Nanostructured materials. Rep. Prog. Phys. 2001, 64, 297–381. [Google Scholar] [CrossRef]
- Jeevanandam, J.; Barhoum, A.; Chan, Y.S.; Dufresne, A.; Danquah, M.K. Review on nanoparticles and nanostructured materials: History, sources, toxicity and regulations. Beilstein J. Nanotechnol. 2018, 9, 1050–1074. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Yang, B. Patterning colloidal crystals and nanostructure arrays by soft lithography. Adv. Funct. Mater. 2010, 20, 3411–3424. [Google Scholar] [CrossRef]
- Cong, H.; Yu, B.; Tang, J.; Li, Z.; Liu, X. Current status and future developments in preparation and application of colloidal crystals. Chem. Soc. Rev. 2013, 42, 7774–7800. [Google Scholar] [CrossRef]
- Kroto, H.M.; Heath, J.R.; O’Brien, S.C.; Curl, R.F.; Smalley, R.E. C60: Buckminsterfullerene. Nature 1985, 318, 162–163. [Google Scholar] [CrossRef]
- Bhambri, H.; Khullar, S.; Sakshi; Mandal, S.K. Nitrogen-rich covalent organic frameworks: A promising class of sensory materials. Mater. Adv. 2022, 3, 19–124. [Google Scholar] [CrossRef]
- Guo, L.; Chen, W.; Li, Y.; Wei, Z.; Li, F.; Li, C. Imine-linked covalent organic frameworks with controllable morphology. Mater. Chem. Phys. 2023, 301, 127645. [Google Scholar] [CrossRef]
- Iijima, S. Helical microtubules of graphitic carbon. Nature 1991, 354, 56–58. [Google Scholar] [CrossRef]
- Iijima, S. Carbon nanotubes: Past, present, and future. Phys. B Condens. Matter 2002, 323, 1–5. [Google Scholar] [CrossRef]
- Zaraska, L.; Sulka, G.D.; Jaskuła, M. Fabrication of free-standing copper foils covered with highly-ordered copper nanowire arrays. Appl. Surf. Sci. 2012, 258, 7781–7786. [Google Scholar] [CrossRef]
- Hnida, K.; Mech, J.; Sulka, G.D. Template-assisted electrodeposition of indium-antimony nanowires-Comparison of electrochemical methods. Appl. Surf. Sci. 2013, 287, 252–256. [Google Scholar] [CrossRef]
- Hnida, K.E.; Socha, R.P.; Sulka, G.D. Polypyrrole-silver composite nanowire arrays by cathodic co-deposition and their electrochemical properties. J. Phys. Chem. C 2013, 117, 19382–19392. [Google Scholar] [CrossRef]
- Masuda, H.; Fukuda, F. Ordered metal nanohole arrays made by a two-step replication of honeycomb structures of anodic alumina. Science 1995, 268, 1466–1468. [Google Scholar] [CrossRef]
- Sulka, G.D.; Stroobants, S.; Moshchalkov, V.; Borghs, G.; Celis, J.-P. Synthesis of well-ordered nanopores by anodising aluminium foils in sulphuric acid. J. Electrochem. Soc. 2002, 149, D97–D103. [Google Scholar] [CrossRef]
- Sulka, G.G.; Stroobants, S.; Moshchalkov, V.; Borghs, G.; Celis, J.-P. Effect of tensile stress on growth of self-organised nanostructures on anodised aluminium. J. Electrochem. Soc. 2004, 151, B260–B264. [Google Scholar] [CrossRef]
- Macak, J.M.; Tsuchiya, H.; Ghicov, A.; Yasuda, K.; Hahn, R.; Bauer, S.; Schmuki, P. TiO2 nanotubes: Self-organized electrochemical formation, properties and applications. Curr. Opin. Solid State Mater. Sci. 2007, 11, 3–18. [Google Scholar] [CrossRef]
- Sulka, G.D.; Kapusta-Kołodziej, J.; Brzózka, A.; Jaskuła, M. Fabrication of nanoporous TiO2 by electrochemical anodization. Electrochim. Acta 2010, 55, 4359–4367. [Google Scholar] [CrossRef]
- Kapusta-Kołodziej, J.; Syrek, K.; Sulka, G.D. Synthesis and photoelectrochemical properties of anodic oxide films on titanium formed by pulse anodization. J. Electrochem. Soc. 2018, 165, H838–H844. [Google Scholar] [CrossRef]
- Wierzbicka, E.; Sulka, G.D. Fabrication of highly ordered nanoporous thin Au films and their application for electrochemical determination of epinephrine. Sens. Actuators B Chem. 2016, 222, 270–279. [Google Scholar] [CrossRef]
- Fu, J.; Welborn, S.S.; Detsi, E. Dealloyed air- and water-sensitive nanoporous metals and metalloids for emerging energy applications. ACS Appl. Energy Mater. 2022, 5, 6516–6544. [Google Scholar] [CrossRef]
- Mu, Y.; Wang, N.; Sun, Z.; Wang, J.; Li, J.; Yu, J. Carbogenic nanodots derived from organo-templated zeolites with modulated full-color luminescence. Chem. Sci. 2016, 7, 3564–3568. [Google Scholar] [CrossRef] [PubMed]
- Nasrollahzadeh, M.; Issaabadi, Z.; Sajjadi, M.; Sajadi, S.M.; Atarod, M. Types of nanostructures. In Interface Science and Technology; Elsevier: Amsterdam, The Netherlands, 2019; Volume 28, pp. 29–80. [Google Scholar]
- Charra, F.; Gota-Goldmann, S.; Warlimont, H. Nanostructured materials. In Springer Handbook of Materials Data; Warlimont, H., Martienssen, W., Eds.; Springer: Cham, Switzerland, 2018; pp. 1037–1076. [Google Scholar]
- Martin-Martinez, F.J.; Jin, K.; Lόpez Barreiro, D.; Buehler, M.J. The rise of hierarchical nanostructured materials from renewable sources: Learning from nature. ACS Nano 2018, 12, 7425–7433. [Google Scholar] [CrossRef]
- Kreyling, W.G.; Semmler-Behnke, M.; Chaudhry, Q. A complementary definition of nanomaterial. Nano Today 2010, 5, 165–168. [Google Scholar] [CrossRef]
- Tan, G.-L.; Zhang, L.; Yu, X.-F. Preparation and optical properties of CdS nanocrystals prepared by a mechanical alloying process. J. Phys. Chem. C 2010, 114, 290–293. [Google Scholar] [CrossRef]
- Saraswathi, P.; Madeswaran, S. Formation of nanostructured Fe88Co12 alloy using high energy ball milling. J. Magn. Magn. Mater. 2022, 560, 169652. [Google Scholar] [CrossRef]
- Melzer, D.; Smirnov, I.; Lukáš, O.; Dlouhý, J.; Evstifeev, A.; Džugan, J.; Valiev, R. Fracture locus characteristics of Al alloy 5083 processed by equal channel angular pressing using miniaturized specimens. J. Alloys Compd. 2021, 889, 161675. [Google Scholar] [CrossRef]
- Leiva, D.R.; Moreira Jorge, A.; Ishikawa, T.T.; Huot, J.; Fruchart, D.; Miraglia, S.; Kiminami, C.S.; Botta, W.J. Nanoscale grain refinement and H-sorption properties of MgH2 processed by high-pressure torsion and other mechanical routes. Adv. Eng. Mater. 2010, 12, 786–792. [Google Scholar] [CrossRef]
- Bazarnik, P.; Bartkowska, A.; Huang, Y.; Szlązak, K.; Adamczyk-Cieślak, B.; Sort, J.; Lewandowska, M.; Langdon, T.G. Fabrication of hybrid nanocrystalline Al–Ti alloys by mechanical bonding through high-pressure torsion. Mater. Sci. Eng. A 2022, 833, 142549. [Google Scholar] [CrossRef]
- Heligman, B.T.; Scanlan, K.P.; Manthiram, A. Nanostructured composite foils produced via accumulative roll bonding as lithium-ion battery anodes. ACS Appl. Mater. Interfaces 2022, 14, 11408–11414. [Google Scholar] [CrossRef]
- Mishra, M.; Gundimeda, A.; Krishna, S.; Aggarwal, N.; Gahtori, B.; Dilawar, N.; Aggarwal, V.V.; Singh, M.; Rakshit, R.; Gupta, G. Wet chemical etching induced stress relaxed nanostructures on polar & non-polar epitaxial GaN films. Phys. Chem. Chem. Phys. 2017, 19, 8787–8801. [Google Scholar]
- Sharif, A.; Farid, N.; Wang, M.; Choy, K.-L.; O’Connor, G.M. The role of fluence in determining the response of thin molybdenum films to ultrashort laser irradiation; from laser-induced crystallization to ablation via photomechanical ablation and nanostructure formation. Appl. Surf. Sci. 2022, 592, 153315. [Google Scholar] [CrossRef]
- Xia, D.; Ku, Z.; Lee, S.C.; Brueck, S.R.J. Nanostructures and functional materials fabricated by interferometric lithography. Adv. Mater. 2011, 23, 147–179. [Google Scholar] [CrossRef] [PubMed]
- Papageorgiou, G.P.; Karydas, A.G.; Papageorgiou, G.; Kantarelou, V.; Makarona, E. Controlled synthesis of periodic arrays of ZnO nanostructures combining e-beam lithography and solution-based processes leveraged by micro X-ray fluorescence spectroscopy. Micro Nano Eng. 2020, 8, 100063. [Google Scholar] [CrossRef]
- Vinzons, L.U.; Lin, S.-P. Hierarchical micro-/nanotopographies patterned by tandem nanosphere lens lithography and UV–LED photolithography for modulating PC12 neuronal differentiation. ACS Appl. Nano Mater. 2022, 5, 6935–6953. [Google Scholar] [CrossRef]
- Ahmadi, Z.; Lu, H.; Mukherjee, P.; Koten, M.; Gruverman, A.; Shield, J.E. Resistive switching in individual Co/ZnO core/shell nanoparticles formed via inert gas condensation and selective oxidation. Adv. Electron. Mater. 2020, 6, 2000065. [Google Scholar] [CrossRef]
- Zhou, J.; Deng, S.; Gong, L.; Ding, Y.; Chen, J.; Huang, J.; Chen, J.; Xu, N.; Wang, Z.L. Growth of large-area aligned molybdenum nanowires by high temperature chemical vapor deposition: Synthesis, growth mechanism, and device application. J. Phys. Chem. B 2006, 110, 10296–10302. [Google Scholar] [CrossRef]
- Li, H.; Han, X.; Zhao, W.; Azhar, A.; Jeong, S.; Jeong, D.; Na, J.; Wang, S.; Yu, J.; Yamauchi, Y. Electrochemical preparation of nano/micron structure transition metal-based catalysts for the oxygen evolution reaction. Mater. Horiz. 2022, 9, 1788–1824. [Google Scholar] [CrossRef]
- Sayed, S.Y.; Wang, F.; Malac, M.; Meldrum, A.; Egerton, R.F.; Buriak, J.M. heteroepitaxial growth of gold nanostructures on silicon by galvanic displacement. ACS Nano 2009, 3, 2809–2817. [Google Scholar] [CrossRef]
- Preda, N.; Costas, A.; Lilli, M.; Sbardella, F.; Scheffler, C.; Tirillò, J.; Sarasini, F. Functionalization of basalt fibers with ZnO nanostructures by electroless deposition for improving the interfacial adhesion of basalt fibers/epoxy resin composites. Compos. A Appl. Sci. Manuf. 2021, 149, 106488. [Google Scholar] [CrossRef]
- Li, D.; Li, R.; Qin, X.-Y.; Song, C.-J.; Xin, H.-X.; Wang, L.; Zhang, J.; Guo, G.-L.; Zou, T.-H.; Liu, Y.-F.; et al. Co-precipitation synthesis of nanostructured Cu3SbSe4 and its Sn-doped sample with high thermoelectric performance. Dalton Trans. 2014, 43, 1888–1896. [Google Scholar] [CrossRef]
- Zakharchenko, R.V.; Díaz-Flores, L.L.; Pérez-Robles, J.F.; González-Hernández, J.; Vorobiev, Y.V. Nanostructured porous sol-gel materials for applications in solar cells engineering. Phys. Status Solidi C 2005, 2, 3308–3313. [Google Scholar] [CrossRef]
- Xia, X.; Zhang, Y.; Chao, D.; Guan, C.; Zhang, Y.; Li, L.; Ge, X.; Bacho, I.M.; Tu, J.; Fan, H.J. Solution synthesis of metal oxides for electrochemical energy storage applications. Nanoscale 2014, 6, 5008–5048. [Google Scholar] [CrossRef] [PubMed]
- Siddique, F.; Gonzalez-Cortes, S.; Mirzaei, A.; Xiao, T.; Rafiq, M.A.; Zhang, X. Solution combustion synthesis: The relevant metrics for producing advanced and nanostructured photocatalysts. Nanoscale 2022, 14, 11806–11868. [Google Scholar] [CrossRef] [PubMed]
- Koudahi, M.F.; Naji, L. Hydrothermal synthesis of nickel foam-supported spinel ZnNi2O4 nanostructure as electrode materials for supercapacitors. Electrochim. Acta 2022, 434, 141314. [Google Scholar] [CrossRef]
- Liang, Y.; Tian, H.; Repac, J.; Liou, S.-C.; Chen, J.; Han, W.; Wang, C.; Ehrman, S. Colloidal spray pyrolysis: A new fabrication technology for nanostructured energy storage materials. Energy Storage Mater. 2018, 13, 8–18. [Google Scholar] [CrossRef]
- Jiang, Y.; Meng, X.-M.; Liu, J.; Xie, Z.-Y.; Lee, C.-S.; Lee, S.-T. Hydrogen-assisted thermal evaporation synthesis of ZnS nanoribbons on a large scale. Adv. Mater. 2003, 15, 323–327. [Google Scholar] [CrossRef]
- Klotz, H.-D.; Mach, R.; Oleszak, F.; Maneck, H.-E.; Goering, H.; Brzezinka, K.-W. Synthesis and characterization of nanoscaled and nanostructured carbon containing materials produced by thermal plasma technology. Appl. Surf. Sci. 2001, 179, 1–7. [Google Scholar] [CrossRef]
- Liang, H.-W.; Liu, S.; Yu, S.-H. Controlled synthesis of one-dimensional inorganic nanostructures using pre-existing one-dimensional nanostructures as templates. Adv. Mater. 2010, 22, 3925–3937. [Google Scholar] [CrossRef]
- Sulka, G.D.; Zaraska, L.; Stępniowski, W.J. Anodic porous alumina as a template for nanofabrication. In Encyclopedia of Nanoscience and Nanotechnology, 2nd ed.; Nalwa, H.S., Ed.; American Scientific Publishers: Stevenson Ranch, CA, USA, 2011; Volume 11, pp. 261–349. [Google Scholar]
- Liu, Y.; Goebl, J.; Yin, Y. Templated synthesis of nanostructured materials. Chem. Soc. Rev. 2013, 42, 2610–2653. [Google Scholar] [CrossRef]
- Kuroda, Y.; Kuroda, K. Templated synthesis for nanostructured materials. In Handbook of Solid State Chemistry, 1st ed.; Dronskowski, R., Kikkawa, S., Stein, A., Eds.; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2017; pp. 201–232. [Google Scholar]
- Aricò, A.S.; Bruce, P.; Scrosati, B.; Tarascon, J.-M.; van Schalkwijk, W. Nanostructured materials for advanced energy conversion and storage devices. Nature Mater. 2005, 4, 366–377. [Google Scholar] [CrossRef] [PubMed]
- Huang, T.; Xu, L.K.; Jia, G.; Du, J. Surface modification of hollow nanostructured materials for energy storage. Cryst. Growth Des. 2022, 22, 5755–5769. [Google Scholar] [CrossRef]
- Balach, J.; Linnemann, J.; Jaumann, T.; Giebeler, L. Metal-based nanostructured materials for advanced lithium–sulfur batteries. J. Mater. Chem. A 2018, 6, 23127–23168. [Google Scholar] [CrossRef]
- Nguyen, Q.T.; Nakate, U.T.; Chen, J.Y.; Tran, D.T.; Park, S. Hybrid nanostructured bismuth-cobalt oxides/hydroxides binder-free electrodes fabricated by two-step electrodeposition for high-performance supercapacitors. Int. J. Energy Res. 2022, 46, 12254–12265. [Google Scholar] [CrossRef]
- Toprak, M.S.; Darab, M.; Syvertsen, G.E.; Muhammed, M. Synthesis of nanostructured BSCF by oxalate co-precipitation–As potential cathode material for solid oxide fuels cells. Int. J. Hydrogen Energy 2010, 35, 9448–9454. [Google Scholar] [CrossRef]
- Dalavi, D.S.; Desai, R.S.; Patil, P.S. Nanostructured materials for electrochromic energy storage systems. J. Mater. Chem. A 2022, 10, 1179–1226. [Google Scholar] [CrossRef]
- Faustini, M.; Nicole, L.; Boissière, C.; Innocenzi, P.; Sanchez, C.; Grosso, D. Hydrophobic, antireflective, self-cleaning, and antifogging sol−gel coatings: An example of multifunctional nanostructured materials for photovoltaic cells. Chem. Mater. 2010, 22, 4406–4413. [Google Scholar] [CrossRef]
- Channegowda, M.; Mulla, R.; Nagaraj, Y.; Lokesh, S.; Nayak, S.; Mudhulu, S.; Rastogi, C.K.; Dunnill, C.W.; Rajan, H.K.; Khosla, A. Comprehensive insights into synthesis, structural features, and thermoelectric properties of high-performance inorganic chalcogenide nanomaterials for conversion of waste heat to electricity. ACS Appl. Energy Mater. 2022, 5, 7913–7943. [Google Scholar] [CrossRef]
- Xu, C.; Anusuyadevi, P.R.; Aymonier, C.; Luque, R.; Marre, S. Nanostructured materials for photocatalysis. Chem. Soc. Rev. 2019, 48, 3868–3902. [Google Scholar] [CrossRef]
- Samanta, B.; Morales-García, Á.; Illas, F.; Goga, N.; Anta, J.A.; Calero, S.; Bieberle-Hütter, A.; Libisch, F.; Muñoz-García, A.B.; Pavone, M.; et al. Challenges of modeling nanostructured materials for photocatalytic water splitting. Chem. Soc. Rev. 2022, 51, 3794–3818. [Google Scholar] [CrossRef]
- Kumar, S.; Sharma, R.; Bhawna; Gupta, A.; Singh, P.; Kalia, S.; Thakur, P.; Kumar, V. Prospects of biosensors based on functionalized and nanostructured solitary materials: Detection of viral infections and other risks. ACS Omega 2022, 7, 22073–22088. [Google Scholar] [CrossRef]
- Mroczka, R.; Słodkowska, A.; Ładniak, A. Studies of bis-(sodium-sulfopropyl)-disulfide and 3-mercapto-1-propanesulfonate on/into the copper electrodeposited layer by time-of-flight secondary-ion mass spectrometry. Molecules 2022, 27, 8116. [Google Scholar] [CrossRef] [PubMed]
- Mroczka, R.; Słodkowska, A.; Ładniak, A.; Chrzanowska, A. Interaction of bis-(sodium-sulfopropyl)-disulfide and polyethylene glycol on the copper electrodeposited layer by time-of-flight secondary-ion mass spectrometry. Molecules 2023, 28, 433. [Google Scholar] [CrossRef]
- Saito, N.; Yamamoto, T. Poly(l,5-naphthyridine-2,6-diyl) having a highly extended and electron-withdrawing p-conjugation system. Preparation, optical properties, and electrochemical redox reaction. Macromolecules 1995, 28, 4260–4267. [Google Scholar] [CrossRef]
- Zhong, Y.-W.; Yao, C.-J.; Nie, H.-J. Electropolymerized films of vinyl-substituted polypyridine complexes: Synthesis, characterization, and applications. Coord. Chem. Rev. 2013, 257, 1357–1372. [Google Scholar] [CrossRef]
- Napierała, S.; Muras, K.; Dutkiewicz, G.; Wałęsa-Chorab, M. Reductive electropolymerization and electrochromism of iron(II) complex with styrene-based ligand. Materials 2021, 14, 4831. [Google Scholar] [CrossRef]
- Rendón-Enríquez, I.; Palma-Cando, A.; Körber, F.; Niebisch, F.; Forster, M.; Tausch, M.W.; Scherf, U. Thin polymer films by oxidative or reductive electropolymerization and their application in electrochromic windows and thin-film sensors. Molecules 2023, 28, 883. [Google Scholar] [CrossRef]
- Sulka, G.D.; Brzózka, A.; Zaraska, L.; Jaskuła, M. Through-hole membranes of nanoporous alumina formed by anodizing in oxalic acid and their applications in fabrication of nanowire arrays. Electrochim. Acta 2010, 55, 4368–4376. [Google Scholar] [CrossRef]
- Zaraska, L.; Sulka, G.D.; Jaskuła, M. Porous anodic alumina membranes formed by anodization of AA1050 alloy as templates for fabrication of metallic nanowire arrays. Surf. Coat. Technol. 2010, 205, 2432–2437. [Google Scholar] [CrossRef]
- Sulka, G.D.; Brzózka, A.; Liu, L. Fabrication of diameter-modulated and ultrathin porous nanowires in anodic aluminum oxide template. Electrochim. Acta 2011, 56, 4972–4979. [Google Scholar] [CrossRef]
- Zaraska, L.; Kurowska, E.; Sulka, G.D.; Jaskuła, M. Template assisted fabrication of tin and antimony based nanowire arrays. Appl. Surf. Sci. 2012, 258, 9718–9722. [Google Scholar] [CrossRef]
- Zaraska, L.; Kurowska, E.; Sulka, G.D.; Jaskuła, M. Porous alumina membranes with branched nanopores as templates for fabrication of Y-shaped nanowire arrays. J. Solid State Electrochem. 2012, 16, 3611–3619. [Google Scholar] [CrossRef]
- Sulka, G.D.; Hnida, K.; Brzózka, A. pH sensors based on on polypyrrole nanowire arrays. Electrochim. Acta 2013, 104, 536–541. [Google Scholar] [CrossRef]
- Hnida, K.; Baessler, S.; Akinsinde, L.; Gooth, J.; Nielsch, K.; Socha, R.; Łaszcz, A.; Czerwinski, A.; Sulka, G.D. Tuning the polarity of charge transport in InSb nanowires via heat treatment. Nanotechnology 2015, 26, 285701. [Google Scholar] [CrossRef] [PubMed]
- Ropero-Vega, J.L.; Redondo-Ortega, J.F.; Galvis-Curubo, Y.J.; Rondón-Villarreal, P.; Flórez-Castillo, J.M. A bioinspired peptide in TIR protein as recognition molecule on electrochemical biosensors for the detection of E. coli O157:H7 in an aqueous matrix. Molecules 2021, 26, 2559. [Google Scholar] [CrossRef] [PubMed]
- Keller, F.; Hunter, M.S.; Robinson, D.L. Structural features of oxide coatings on aluminum. J. Electrochem. Soc. 1953, 100, 411–419. [Google Scholar] [CrossRef]
- Masuda, H.; Satoh, M. Fabrication of gold nanodot array using anodic porous alumina as an evaporation mask. JPN J. Appl. Phys. 1996, 35, L126–L129. [Google Scholar] [CrossRef]
- Sulka, G.D. Introduction to anodization of metals. In Nanostructured Anodic Metal Oxides, Synthesis and Applications; Sulka, G.D., Ed.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 1–34. [Google Scholar]
- Ono, S. Nanostructure analysis of anodic films formed on aluminum-focusing on the effects of electric field strength and electrolyte anions. Molecules 2021, 26, 7270. [Google Scholar] [CrossRef]
- Brudzisz, A.M.; Giziński, D.; Stępniowski, W.J. Incorporation of ions into nanostructured anodic oxides—Mechanism and functionalities. Molecules 2021, 26, 6378. [Google Scholar] [CrossRef]
- Husak, Y.; Michalska, J.; Oleshko, O.; Korniienko, V.; Grundsteins, K.; Dryhval, B.; Altundal, S.; Mishchenko, O.; Viter, R.; Pogorielov, M.; et al. Bioactivity performance of pure Mg after plasma electrolytic oxidation in silicate-based solutions. Molecules 2021, 26, 2094. [Google Scholar] [CrossRef]
- Guo, X.; Facchetti, A. The journey of conducting polymers from discovery to application. Nat. Mater. 2020, 19, 922–928. [Google Scholar] [CrossRef] [PubMed]
- Bard, A.J.; Faulkner, L.R. Electrochemical Methods: Fundamentals and Applications, 2nd ed.; John Wiley & Sons: Hoboken, NJ, USA, 2001. [Google Scholar]
- Brudzisz, A.M.; Brzózka, A.; Sulka, G.D. Effect of the supporting electrolyte on the chloroform reduction at a silver electrode in aqueous solutions. Molecules 2021, 26, 525. [Google Scholar] [CrossRef] [PubMed]
- Yang, P.; Yuan, Y.; Zhang, D.; Yang, Q.; Guo, S.; Cheng, J. Nanocapsule of MnS nanopolyhedron core@CoS nanoparticle/carbon shell@pure carbon shell as anode material for high-performance lithium storage. Molecules 2023, 28, 898. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sulka, G.D. Electrochemistry of Thin Films and Nanostructured Materials. Molecules 2023, 28, 4040. https://doi.org/10.3390/molecules28104040
Sulka GD. Electrochemistry of Thin Films and Nanostructured Materials. Molecules. 2023; 28(10):4040. https://doi.org/10.3390/molecules28104040
Chicago/Turabian StyleSulka, Grzegorz Dariusz. 2023. "Electrochemistry of Thin Films and Nanostructured Materials" Molecules 28, no. 10: 4040. https://doi.org/10.3390/molecules28104040
APA StyleSulka, G. D. (2023). Electrochemistry of Thin Films and Nanostructured Materials. Molecules, 28(10), 4040. https://doi.org/10.3390/molecules28104040