Carbene-Catalyzed Atroposelective Annulation for Quick Access to Axially Chiral Thiazine Derivatives
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. General Information
3.2. General Procedure for the Synthesis of Target Compounds 3 or 4
- (Z)-N-(3-(2-iodophenyl)-4-oxo-6-phenyl-3,4-dihydro-2H-1,3-thiazin-2-ylidene)benzamide (3a), white solid, 54% yield, 27.5 mg, m.p. 134–136 °C; = +54.3 (c = 0.5 in CHCl3); 1H NMR (400 MHz, CDCl3) δ 8.04 (dd, J = 8.0, 1.4 Hz, 1H), 7.81–7.78 (m, 2H), 7.72–7.69 (m, 2H), 7.58–7.45 (m, 5H), 7.35–7.31 (m, 3H), 7.22 (td, J = 7.6, 1.6 Hz, 1H), 6.94 (s, 1H); 13C NMR (101 MHz, CDCl3) δ 175.6, 161.8, 160.4, 151.6, 141.4, 140.0, 135.0, 134.4, 133.1, 131.8, 130.13, 130.11, 129.7, 129.4, 129.1, 128.3, 126.8, 115.8, 98.0; HRMS (ESI-TOF) m/z: [M + Na]+ calcd for C23H15IN2O2SNa 532.9791, found 532.9786; UPLC analysis: 91:9 er (OD-3 column, 25 °C, hexane/iPrOH = 80/20, 0.5 mL/min, λ = 254 nm), Rt (major) = 25.9 min, Rt (minor) = 33.1 min.
- (Z)-N-(3-(2-iodophenyl)-6-(4-methoxyphenyl)-4-oxo-3,4-dihydro-2H-1,3-thiazin-2-ylidene)benzamide (3b), white solid, 78% yield, 42.3 mg, m.p. 118–120 °C; = +52.5 (c = 1.0 in CHCl3); 1H NMR (400 MHz, CDCl3) δ 8.03 (dd, J = 8.0, 1.4 Hz, 1H), 7.82–7.79 (m, 2H), 7.69–7.65 (m, 2H), 7.55 (td, J = 7.6, 1.4 Hz, 1H), 7.49–7.45 (m, 1H), 7.35–7.31 (m, 3H), 7.21 (td, J = 7.6, 1.6 Hz, 1H), 7.03–7.0 (m, 2H), 6.88 (s, 1H), 3.88 (s, 3H); 13C NMR (101 MHz, CDCl3) δ 175.6, 162.6, 162.0, 160.4, 150.9, 141.5, 139.8, 135.1, 133.0, 130.11, 130.05, 129.6, 129.2, 128.4, 128.3, 126.5, 114.8, 113.9, 98.1, 55.6; HRMS (ESI-TOF) m/z: [M + Na]+ calcd for C24H17IN2O3SNa 562.9897, found 562.9892; HPLC analysis: 86:14 er (AD-3 column, 25 °C, hexane/iPrOH = 80/20, 0.5 mL/min, λ = 254 nm), Rt (major) = 35.2 min, Rt (minor) = 42.3 min.
- (Z)-N-(3-(2-iodophenyl)-4-oxo-6-(p-tolyl)-3,4-dihydro-2H-1,3-thiazin-2-ylidene)benzamide (3c), white solid, 76% yield, 40.0 mg, m.p. 156–158 °C; = +17.3 (c = 1.0 in CHCl3); 1H NMR (400 MHz, CDCl3) δ 8.04 (dd, J = 8.0, 1.4 Hz, 1H), 7.78–7.76 (m, 2H), 7.57 (td, J = 7.6, 1.4 Hz, 1H), 7.49–7.44 (m, 1H), 7.39–7.29 (m, 7H), 7.22 (td, J = 7.6, 1.6 Hz, 1H), 6.64 (s, 1H), 2.46 (s, 3H); 13C NMR (101 MHz, CDCl3) δ 175.6, 161.5, 153.0, 141.5, 139.9, 135.6, 135.0, 134.1, 133.1, 131.1, 130.6, 130.1, 129.7, 129.2, 128.6, 128.3, 126.4, 119.2, 98.0, 19.9; HRMS (ESI-TOF) m/z: [M + Na]+ calcd for C24H17IN2O2SNa 546.9948, found 546.9941; HPLC analysis: 82:18 er (IB column, 25 °C, hexane/iPrOH = 80/20, 0.5 mL/min, λ = 254 nm), Rt (major) = 24.4 min, Rt (minor) = 25.9 min.
- (Z)-N-(6-(4-fluorophenyl)-3-(2-iodophenyl)-4-oxo-3,4-dihydro-2H-1,3-thiazin-2-ylidene)benzamide (3d), white solid, 61% yield, 32.2 mg, m.p. 216–218 °C; = +24.0 (c = 1.0 in CHCl3); 1H NMR (400 MHz, CDCl3) δ 8.04 (dd, J = 8.0, 1.4 Hz, 1H), 7.81–7.78 (m, 2H), 7.73–7.68 (m, 2H), 7.56 (td, J = 7.6, 1.4 Hz, 1H), 7.50–7.46 (m, 1H), 7.35–7.31 (m, 3H), 7.24–7.19 (m, 3H), 6.89 (s, 1H); 13C NMR (101 MHz, CDCl3) δ 175.6, 164.8 (d, J = 255.3 Hz), 161.7, 160.0 150.4, 141.3, 139.9, 134.9, 133.2, 130.58, 130.6 (d, J = 3.1 Hz), 130.1, 129.7, 129.1 (d, J = 4.2 Hz), 129.0, 128.3, 116.7 (d, J = 22.4 Hz), 115.8, 98.0; 19F NMR (377 MHz, CDCl3) δ -107.0; HRMS (ESI-TOF) m/z: [M + Na]+ calcd for C23H14FIN2O2SNa 550.9697, found 550.9698; HPLC analysis: 88:12 er (IA column, 25 °C, hexane/iPrOH = 80/20, 0.5 mL/min, λ = 254 nm), Rt (major) = 45.6 min, Rt (minor) = 48.8 m.
- (Z)-N-(6-(4-chlorophenyl)-3-(2-iodophenyl)-4-oxo-3,4-dihydro-2H-1,3-thiazin-2-ylidene)benzamide (3e), white solid, 57% yield, 31.2 mg, m.p. 180–182 °C; = +22.6 (c = 1.0 in CHCl3); 1H NMR (400 MHz, CDCl3) δ 8.04 (dd, J = 8.0, 1.4 Hz, 1H), 7.80–7.78 (m, 2H), 7.66–7.63 (m, 2H), 7.56 (td, J = 7.8, 1.4 Hz, 1H), 7.51–7.46 (m, 3H), 7.35–7.31 (m, 3H), 7.22 (td, J = 7.8, 1.6 Hz, 1H), 6.91 (s, 1H); 13C NMR (101 MHz, CDCl3) δ 175.6, 161.6, 160.0, 150.3, 141.3, 139.9, 138.2, 134.9, 133.2, 132.8, 130.2, 130.1, 129.8, 129.7, 129.1, 128.3, 128.1, 116.0, 98.0; HRMS (ESI-TOF) m/z: [M + Na]+ calcd for C23H14ClIN2O2SNa 566.9401, found 566.9391; HPLC analysis: 90:10 er (IB column, 25 °C, hexane/iPrOH = 80/20, 0.5 mL/min, λ = 254 nm), Rt (major) = 36.7 min, Rt (minor) = 40.1 min.
- (Z)-N-(6-(4-bromophenyl)-3-(2-iodophenyl)-4-oxo-3,4-dihydro-2H-1,3-thiazin-2-ylidene)benzamide (3f), white solid, 48% yield, 28.2 mg, m.p. 94–96 °C; = +10.0 (c =1.0 in CHCl3); 1H NMR (400 MHz, CDCl3) δ 8.04 (dd, J = 8.0, 1.4 Hz, 1H), 7.80–7.78 (m, 2H), 7.67–7.64 (m, 2H), 7.59–7.54 (m, 3H), 7.50–7.46 (m, 1H), 7.35–7.31 (m, 3H), 7.22 (td, J = 7.6, 1.6 Hz, 1H), 6.91 (s, 1H); 13C NMR (101 MHz, CDCl3) δ 175.6, 161.6, 160.0, 150.4, 141.3, 139.9, 134.9, 133.3, 133.2, 132.7, 130.2, 130.1, 129.7, 129.1, 128.3, 128.2, 126.6, 116.0, 98.0; HRMS (ESI-TOF) m/z: [M + Na]+ calcd for C23H14BrIN2O2SNa 610.8896, found 610.8893; UPLC analysis: 92:8 er (AD-3 column, 25 °C, hexane/iPrOH = 80/20, 0.5 mL/min, λ = 254 nm), Rt (major) = 46.2 min, Rt (minor) = 49.9 min.
- (Z)-N-(3-(2-iodophenyl)-6-(3-methoxyphenyl)-4-oxo-3,4-dihydro-2H-1,3-thiazin-2-ylidene)benzamide (3g), white solid, 66% yield, 35.8 mg, m.p. 118–120 °C; = +15.5 (c = 1.0 in CHCl3); 1H NMR (400 MHz, CDCl3) δ 8.04 (dd, J = 8.0, 1.4 Hz, 1H), 7.81–7.78 (m, 2H), 7.55 (dd, J = 7.8, 1.4 Hz, 1H), 7.50–7.45 (m, 1H), 7.42 (t, J = 8.0 Hz, 1H), 7.37–7.27 (m, 4H), 7.24–7.18 (m, 2H), 7.10–7.07 (m, 1H), 6.93 (s, 1H), 3.88 (s, 3H); 13C NMR (101 MHz, CDCl3) δ 175.5, 161.8, 160.34, 160.25, 151.6, 141.4, 139.9 (2C), 135.7, 135.0, 133.1, 130.5, 130.1, 129.7, 129.1, 128.3, 119.2, 117.7, 115.9, 111.9, 98.0, 55.6; HRMS (ESI-TOF) m/z: [M + Na]+ calcd for C24H17IN2O3SNa 562.9897, found 562.9886; HPLC analysis: 87:13 er (IB column, 25 °C, hexane/iPrOH = 80/20, 0.5 mL/min, λ = 254 nm), Rt (major) = 27.0 min, Rt (minor) = 32.6 min.
- (Z)-N-(3-(2-iodophenyl)-4-oxo-6-(m-tolyl)-3,4-dihydro-2H-1,3-thiazin-2-ylidene)benzamide (3h), white solid, 53% yield, 27.8 mg, m.p. 206–208 °C; = +24.0 (c = 1.0 in CHCl3); 1H NMR (400 MHz, CDCl3) δ 8.04 (dd, J = 8.0, 1.4 Hz, 1H), 7.82–7.79 (m, 2H), 7.56 (td, J = 7.8, 1.4 Hz, 1H), 7.51–7.45 (m, 3H), 7.39–7.31 (m, 5H), 7.21 (td, J = 7.8, 1.6 Hz, 1H), 6.92 (s, 1H), 2.44 (s, 3H); 13C NMR (101 MHz, CDCl3) δ 175.6, 161.8, 160.5, 151.8, 141.5, 139.9, 139.4, 135.0, 134.3, 133.1, 132.6, 130.12, 130.09, 129.7, 129.3, 129.1, 128.3, 127.4, 123.9, 115.6, 98.1, 21.4; HRMS (ESI-TOF) m/z: [M + Na]+ calcd for C24H17IN2O2SNa 546.9947, found 546.9944; HPLC analysis: 97:3 er (ODH column, 25 °C, hexane/iPrOH = 80/20, 0.5 mL/min, λ = 254 nm), Rt (major) = 35.4 min, Rt (minor) = 38.5 min.
- (Z)-N-(6-(3-fluorophenyl)-3-(2-iodophenyl)-4-oxo-3,4-dihydro-2H-1,3-thiazin-2-ylidene)benzamide (3i), white solid, 65% yield, 34.4 mg, m.p. 162–164 °C; = +10.0 (c = 1.0 in CHCl3); 1H NMR (400 MHz, CDCl3) δ 8.04 (dd, J = 8.0, 1.4 Hz, 1H), 7.80–7.78 (m, 2H), 7.57 (td, J = 7.8, 1.4 Hz, 1H), 7.51–7.46 (m, 3H), 7.43–7.39 (m, 1H), 7.35–7.31 (m, 3H), 7.25–7.20 (m, 2H), 6.92 (s, 1H); 13C NMR (101 MHz, CDCl3) δ 175.6, 163.0 (d, J = 250.7, Hz), 161.5, 160.0, 150.2, 141.3, 139.9, 136.4 (d, J = 7.9 Hz), 134.9, 133.2, 131.2 (d, J = 4.2 Hz), 130.19, 130.15, 129.7, 129.1, 128.3, 122.6 (d, J = 3.0 Hz), 118.8 (d, J = 21.1 Hz), 116.5, 114.0 (d, J = 23.9 Hz), 98.0; 19F NMR (377 MHz, CDCl3) δ -110.3; HRMS (ESI-TOF) m/z: [M + Na]+ calcd for C23H14FIN2O2SNa 550.9697, found 550.9687; HPLC analysis: 97:3 er (ODH column, 25 °C, hexane/iPrOH = 80/20, 0.5 mL/min, λ = 254 nm), Rt (minor) = 45.0 min, Rt (major) = 47.1 min.
- (Z)-N-(3-(2-iodophenyl)-4-oxo-6-(o-tolyl)-3,4-dihydro-2H-1,3-thiazin-2-ylidene)benzamide (3j), white solid, 53% yield, 28.0 mg, m.p. 160–162 °C; = +19.3 (c = 1.0 in CHCl3); 1H NMR (400 MHz, CDCl3) δ 8.04 (dd, J = 8.0, 1.4 Hz, 1H), 7.78–7.76 (m, 2H), 7.57 (td, J = 7.4, 1.2 Hz, 1H), 7.49–7.44 (m, 1H), 7.38–7.31 (m, 7H), 7.22 (td, J = 7.8, 1.6 Hz, 1H), 6.64 (s, 1H), 2.46 (s, 3H); 13C NMR (101 MHz, CDCl3) δ 175.6, 161.5, 161.2, 153.0, 141.5, 139.9 (2C), 135.6, 135.0, 134.1, 133.1, 131.1, 130.6, 130.1, 129.7, 129.2, 128.6, 128.3, 126.4, 119.2, 98.0, 19.9; HRMS (ESI-TOF) m/z: [M + Na]+ calcd for C24H17IN2O2SNa 546.9948, found 546.9941; UPLC analysis: 97:3 er (OD-3 column, 25 °C, hexane/iPrOH = 80/20, 0.5 mL/min, λ = 254 nm), Rt (minor) = 14.7 min, Rt (major) = 17.3 min.
- (Z)-N-(6-(2-fluorophenyl)-3-(2-iodophenyl)-4-oxo-3,4-dihydro-2H-1,3-thiazin-2-ylidene)benzamide (3k), white solid, 48% yield, 25.8 mg, m.p. 114–116 °C; = +10.2 (c = 1.0 in CHCl3); 1H NMR (400 MHz, CDCl3) δ 8.04 (dd, J = 8.0, 1.4 Hz, 1H), 7.79–7.77 (m, 2H), 7.63–7.45 (m, 4H), 7.36–7.29 (m, 4H), 7.25–7.20 (m, 2H), 6.95 (d, J = 1.0 Hz, 1H); 13C NMR (101 MHz, CDCl3) δ 175.6, 161.4, 160.6, 159.4 (d, J = 258.5 Hz), 146.0, 141.4, 139.9, 134.9, 133.1, 133.0, 130.1, 129.7, 129.1, 128.3, 125.0 (d, J = 3.6 Hz), 124.2, 123.6, 122.4 (d, J = 6.55 Hz), 119.8 (d, J = 5.6 Hz), 117.0 (d, J = 21.9 Hz), 98.0; 19F NMR (377 MHz, CDCl3) δ -112.4; HRMS (ESI-TOF) m/z: [M + Na]+ calcd for C23H14FIN2O2SNa 550.9697, found 550.9682; UPLC analysis: 91:9 er (AD-3 column, 25 °C, hexane/iPrOH = 80/20, 0.5 mL/min, λ = 254 nm), Rt (minor) = 35.4 min, Rt (major) = 47.6 min.
- (Z)-N-(6-(2-chlorophenyl)-3-(2-iodophenyl)-4-oxo-3,4-dihydro-2H-1,3-thiazin-2-ylidene)benzamide (3l), yellow solid, 42% yield, 23.0 mg, m.p. 168–170 °C; = +9.0 (c = 1.0 in CHCl3); 1H NMR (400 MHz, CDCl3) δ 8.05 (dd, J = 8.0, 1.4 Hz, 1H), 7.78–7.75 (m, 2H), 7.60–7.30 (m, 9H), 7.23 (td, J = 7.8, 1.6 Hz, 1H), 6.77 (s, 1H); 13C NMR (101 MHz, CDCl3) δ 175.6, 161.4, 161.2, 150.0, 141.4, 139.9, 134.9, 133.3, 133.1, 132.4, 131.8, 130.7, 130.24, 130.16, 130.1, 129.7, 129.1, 128.3, 127.4, 120.5, 98.0; HRMS (ESI-TOF) m/z: [M + Na]+ calcd for C23H14ClIN2O2SNa 566.9401, found 566.9395; HPLC analysis: 92:8 er (IB column, 25 °C, hexane/iPrOH = 80/20, 0.5 mL/min, λ = 254 nm), Rt (minor) = 18.4 min, Rt (major) = 21.1 min.
- (Z)-N-(3-(2-iodophenyl)-6-(naphthalen-1-yl)-4-oxo-3,4-dihydro-2H-1,3-thiazin-2-ylidene)benzamide (3m), white solid, 57% yield, 32.0 mg, m.p. 185–187 °C; = +24.0 (c = 1.0 in CHCl3); 1H NMR (400 MHz, CDCl3) δ 8.14–8.12 (m, 1H), 8.07 (dd, J = 8.0, 1.4 Hz, 1H), 7.99 (d, J = 8.2 Hz, 1H), 7.95–7.93 (m, 1H), 7.78–7.76 (m, 2H), 7.66–7.54 (m, 5H), 7.48–7.41 (m, 2H), 7.32 (t, J = 7.8 Hz, 2H), 7.23 (dd, J = 7.8, 1.6 Hz, 1H), 6.87 (s, 1H); 13C NMR (101 MHz, CDCl3) δ 175.6, 161.5, 161.3, 151.8, 141.5, 139.9, 135.0, 133.8, 133.1, 132.0, 131.3, 130.1(2C), 130.0, 129.7, 129.2, 128.8, 128.3, 127.7, 127.0, 126.9, 125.1, 124.5, 120.2, 98.1; HRMS (ESI-TOF) m/z: [M + Na]+ calcd for C27H17IN2O2SNa 582.9948, found 582.9943; HPLC analysis: 97:3 er (ODH column, 25 °C, hexane/iPrOH = 80/20, 0.5 mL/min, λ = 254 nm), Rt (major) = 35.4 min, Rt (minor) = 38.5 min.
- (Z)-N-(3-(2-iodophenyl)-4-oxo-6-(thiophen-2-yl)-3,4-dihydro-2H-1,3-thiazin-2-ylidene)benzamide (3n), white solid, 80% yield, 41.8 mg, m.p. 144–146 °C; = +7.6 (c = 1.0 in CHCl3); 1H NMR (400 MHz, CDCl3) δ 8.03 (dd, J = 8.0, 1.4 Hz, 1H), 7.81–7.78 (m, 2H), 7.64 (dd, J = 3.8, 1.2 Hz, 1H), 7.60–7.53 (m, 2H), 7.50–7.46 (m, 1H), 7.35–7.31 (m, 3H), 7.23–7.18 (m, 2H), 6.93 (s, 1H); 13C NMR (101 MHz, CDCl3) δ 175.6, 161.6, 160.0, 144.1, 141.5, 139.8, 136.9, 134.9, 133.1, 130.6, 130.13, 130.10, 129.6, 129.1, 128.9, 128.3, 113.2, 98.0; HRMS (ESI-TOF) m/z: [M + Na]+ calcd for C21H13IN2O2S2Na 538.9355, found 538.9376; HPLC analysis: 99:1 er (ODH column, 25 °C, hexane/iPrOH = 80/20, 0.5 mL/min, λ = 254 nm), Rt (minor) = 40.9 min, Rt (major) = 46.7 min.
- (Z)-N-(3-(2-iodophenyl)-4-oxo-6-phenyl-3,4-dihydro-2H-1,3-thiazin-2-ylidene)-4-methylbenzamide (4a), yellow solid, 45% yield, 23.4 mg, m.p. 156–158 °C; = +16.1 (c = 1.0 in CHCl3); 1H NMR (400 MHz, CDCl3) δ 8.03 (dd, J = 8.0, 1.4 Hz, 1H), 7.71–7.68 (m, 4H), 7.57–7.49 (m, 4H), 7.33 (dd, J = 8.0, 1.6 Hz, 1H), 7.20 (td, J = 7.8, 1.6 Hz, 1H), 7.13 (d, J = 8.0 Hz, 2H), 6.92 (s, 1H), 2.36 (s, 3H); 13C NMR (101 MHz, CDCl3) δ 175.6, 161.9, 159.9, 151.7, 144.0, 141.4, 139.8, 134.4, 132.4, 131.8, 130.2, 130.1, 129.7, 129.4, 129.1, 126.8, 115.7, 98.1, 21.8; HRMS (ESI-TOF) m/z: [M + Na]+ calcd for C24H17IN2O2SNa 546.9948, found 546.9949; UPLC analysis: 93:7 er (OD-3 column, 25 °C, hexane/iPrOH = 80/20, 0.5 mL/min, λ = 254 nm), Rt (major) = 24.1 min, Rt (minor) = 32.6 min.
- (Z)-N-(3-(2-iodophenyl)-4-oxo-6-phenyl-3,4-dihydro-2H-1,3-thiazin-2-ylidene)-3-methylbenzamide (4b), white solid, 41% yield, 21.7 mg, m.p. 128–130 °C; = +17.5 (c = 1.0 in CHCl3); 1H NMR (400 MHz, CDCl3) δ 8.04 (dd, J = 8.0, 1.4 Hz, 1H), 7.71–7.69 (m, 2H), 7.62–7.49 (m, 6H), 7.35 (dd, J = 8.0, 1.4 Hz, 1H), 7.30–7.28 (m, 1H), 7.24–7.19 (m, 2H), 6.93 (s, 1H), 2.30 (s, 3H); 13C NMR (101 MHz, CDCl3) δ 175.7, 161.8, 159.7, 151.5, 141.5, 139.8, 138.0, 134.9, 134.4, 133.9, 131.8, 130.9, 130.0, 129.7, 129.4, 129.2, 129.1, 128.2, 127.2, 126.8, 115.7, 98.1, 21.3; HRMS (ESI-TOF) m/z: [M + Na]+ calcd for C24H17IN2O2SNa 546.9948, found 546.9941; UPLC analysis: 90:10 er (AD-3 column, 25 °C, hexane/iPrOH = 80/20, 0.5 mL/min, λ = 254 nm), Rt (major) = 32.5 min, Rt (minor) = 36.2 min.
- (Z)-N-(3-(2-iodophenyl)-4-oxo-6-phenyl-3,4-dihydro-2H-1,3-thiazin-2-ylidene)-3-methoxybenzamide (4c), white solid, 49% yield, 26.6 mg, m.p. 131–133 °C; = +14.3 (c = 1.0 in CHCl3); 1H NMR (400 MHz, CDCl3) δ 8.03 (dd, J = 8.0, 1.4 Hz, 1H), 7.73–7.70 (m, 2H), 7.59–7.50 (m, 4H), 7.45 (dt, J = 7.6, 1.2 Hz, 1H), 7.35 (dd, J = 8.0, 1.6 Hz, 1H), 7.29–7.28 (m, 1H), 7.24–7.18 (m, 2H), 7.04–7.01 (m, 1H), 6.94 (s, 1H), 3.70 (s, 3H); 13C NMR (101 MHz, CDCl3) δ 175.4, 161.8, 160.8, 159.4, 151.7, 141.6, 139.8, 136.4, 134.3, 131.9, 130.0, 129.7, 129.5, 129.4, 129.1, 126.8, 122.6, 120.7, 115.8, 113.4, 98.1, 55.3; HRMS (ESI-TOF) m/z: [M + Na]+ calcd for C24H17IN2O3SNa 562.9897, found 562.9893; UPLC analysis: 90:10 er (AD-3 column, 25 °C, hexane/iPrOH = 80/20, 0.5 mL/min, λ = 254 nm), Rt (minor) = 34.3 min, Rt (major) = 43.5 min.
- (Z)-N-(3-(2-iodophenyl)-4-oxo-6-phenyl-3,4-dihydro-2H-1,3-thiazin-2-ylidene)-2-methylbenzamide (4d), light yellow solid, 42% yield, 22.1 mg, m.p. 139–141 °C; = +10.7 (c = 1.0 in CHCl3); 1H NMR (400 MHz, CDCl3) δ 8.01 (dd, J = 8.0, 1.4 Hz, 1H), 7.72–7.69 (m, 2H), 7.62 (dd, J = 8.0, 1.5 Hz, 1H), 7.58–7.49 (m, 4H), 7.34–7.30 (m, 2H), 7.20–7.15 (m, 2H), 7.09 (td, J = 7.6, 1.4 Hz, 1H), 6.92 (s, 1H), 2.50 (s, 3H); 13C NMR (101 MHz, CDCl3) δ 177.2, 161.9, 159.5, 151.7, 141.5, 141.2, 139.9, 134.5, 133.7, 132.3, 132.2, 131.9, 131.8, 130.1, 129.7, 129.4, 129.1, 126.9, 125.6, 115.8, 98.2, 22.3; HRMS (ESI-TOF) m/z: [M + Na]+ calcd for C24H17IN2O2SNa 546.9948, found 546.9937; UPLC analysis: 87:13 er (AD-3 column, 25 °C, hexane/iPrOH = 80/20, 0.5 mL/min, λ = 254 nm), Rt (minor) = 17.4 min, Rt (major) = 25.5 min.
- (Z)-4-fluoro-N-(3-(2-iodophenyl)-4-oxo-6-phenyl-3,4-dihydro-2H-1,3-thiazin-2-ylidene)benzamide (4e), yellow solid, 49% yield, 26.1 mg, m.p. 147–149 °C; = +17.0 (c = 1.0 in CHCl3); 1H NMR (400 MHz, CDCl3) δ 8.04 (dd, J = 8.0, 1.4 Hz, 1H), 7.82–7.77 (m, 2H), 7.72–7.69 (m, 2H), 7.59–7.50 (m, 4H), 7.33 (dd, J = 8.0, 1.6 Hz, 1H), 7.22 (td, J = 7.8, 1.6 Hz, 1H), 7.02–6.96 (m, 2H), 6.94 (s, 1H); 13C NMR (101 MHz, CDCl3) δ 174.4, 165.9 (d, J = 255.4 Hz), 161.7, 161.0, 151.6, 141.4, 139.9, 134.3, 132.7 (d, J = 9.5 Hz), 131.9, 131.4 (d, J = 2.6 Hz), 130.2, 129.7, 129.5, 129.0, 126.8, 115.8, 115. 4 (d, J = 21.9 Hz), 98.0; 19F NMR (377 MHz, CDCl3) δ -105.5; HRMS (ESI-TOF) m/z: [M + Na]+ calcd for C23H14FIN2O2SNa 550.9697, found 550.9694; UPLC analysis: 93:7 er (OD-3 column, 25 °C, hexane/iPrOH = 80/20, 0.5 mL/min, λ = 254 nm), Rt (major) = 21.3 min, Rt (minor) = 33.9 min.
- (Z)-4-chloro-N-(3-(2-iodophenyl)-4-oxo-6-phenyl-3,4-dihydro-2H-1,3-thiazin-2-ylidene)benzamide (4f), white solid, 63% yield, 34.3 mg, m.p. 160–163 °C; = +17.4 (c = 1.0 in CHCl3); 1H NMR (400 MHz, CDCl3) δ 8.03 (dd, J = 8.0, 1.4 Hz, 1H), 7.72–7.69 (m, 4H), 7.59–7.50 (m, 5H), 7.34–7.28 (m, 3H), 7.22 (td, J = 7.8, 1.6 Hz, 1H), 6.95 (s, 1H); 13C NMR (101 MHz, CDCl3) δ 174.5, 161.6, 161.2, 151.6, 141.4, 139.9, 139.5, 134.3, 133.6, 131.9, 131.5, 130.6, 129.7, 129.5, 129.1, 128.6, 126.8, 115.9, 97.9; HRMS (ESI-TOF) m/z: [M + Na]+ calcd for C23H14ClIN2O2SNa 566.9401, found 566.9392; UPLC analysis: 90:10 er (AD-3 column, 25 °C, hexane/iPrOH = 80/20, 0.5 mL/min, λ = 254 nm), Rt (major) = 36.2 min, Rt (minor) = 56.0 min.
- (Z)-4-bromo-N-(3-(2-iodophenyl)-4-oxo-6-phenyl-3,4-dihydro-2H-1,3-thiazin-2-ylidene)benzamide (4g), white solid, 48% yield, 28.3 mg, m.p. 166–168 °C; = +20.4 (c = 1.0 in CHCl3); 1H NMR (400 MHz, CDCl3) δ 8.03 (dd, J = 8.0, 1.4 Hz, 1H), 7.72–7.69 (m, 2H), 7.64–7.61 (m, 2H), 7.59–7.49 (m, 4H), 7.48–7.45 (m, 2H), 7.32 (dd, J = 8.0, 1.6 Hz, 1H), 7.21 (td, J = 7.8, 1.6 Hz, 1H), 6.94 (s, 1H); 13C NMR (101 MHz, CDCl3) δ 174.7, 161.6, 161.3, 151.6, 141.4, 139.9, 134.3, 134.0, 131.9, 131.63, 131.59, 130.2, 129.7, 129.5, 129.1, 128.3, 126.8, 115.9, 97.9; HRMS (ESI-TOF) m/z: [M + Na]+ calcd for C23H14BrIN2O2SNa 610.8896, found 610.8890; HPLC analysis: 90:10 er (IA column, 25 °C, hexane/iPrOH = 80/20, 0.5 mL/min, λ = 254 nm), Rt (major) = 37.0 min, Rt (minor) = 48.5 min.
- (Z)-3-fluoro-N-(3-(2-iodophenyl)-4-oxo-6-phenyl-3,4-dihydro-2H-1,3-thiazin-2-ylidene)benzamide (4h), white solid, 51% yield, 26.7 mg, m.p. 132–134 °C; = +23.6 (c = 1.0 in CHCl3); 1H NMR (400 MHz, CDCl3) δ 8.05 (dd, J = 8.0, 1.4 Hz, 1H), 7.72–7.69 (m, 2H), 7.60–7.50 (m, 5H), 7.43–7.39 (m, 1H), 7.34–7.27 (m, 2H), 7.25–7.14 (m, 2H), 6.95 (s, 1H); 13C NMR (101 MHz, CDCl3) δ 174.3, 162.7 (d, J = 247.9 Hz), 161.6, 161.5, 151.6, 141.3, 139.9, 137.4 (d, J = 7.3 Hz), 134.3, 131.9, 130.2, 129.9 (d, J = 7.9 Hz), 129.7, 129.5, 129.0, 126.8, 125.7 (d, J = 2.9 Hz), 120.0 (d, J = 21.8 Hz), 116.8 (d, J = 23.1 Hz), 115.9, 97.9; 19F NMR (377 MHz, CDCl3) δ -112.6; HRMS (ESI-TOF) m/z: [M + Na]+ calcd for C23H14FIN2O2SNa 550.9697, found 550.9694; UPLC analysis: 90:10 er (AD-3 column, 25 °C, hexane/iPrOH = 80/20, 0.5 mL/min, λ = 254 nm), Rt (minor) = 29.5 min, Rt (major) = 33.9 min.
- (Z)-3-chloro-N-(3-(2-iodophenyl)-4-oxo-6-phenyl-3,4-dihydro-2H-1,3-thiazin-2-ylidene)benzamide (4i), white solid, 70% yield, 38.5 mg, m.p. 124–126 °C; = +32.7 (c = 1.0 in CHCl3); 1H NMR (400 MHz, CDCl3) δ 8.05 (dd, J =7.6, 1.2 Hz, 1H), 7.71–7.66 (m, 4H), 7.60–7.49 (m, 4H), 7.44–7.41 (m, 1H), 7.33 (dd, J = 7.6, 1.6 Hz, 1H), 7.27 (d, J = 7.8 Hz, 1H), 7.25–7.21 (m, 1H), 6.95 (s, 1H); 13C NMR (101 MHz, CDCl3) δ 174.1, 161.6, 161.4, 151.5, 141.3, 139.9, 136.9, 134.4, 134.3, 132.9, 131.9, 130.4, 130.2, 129.7, 129.6, 129.5, 129.0, 128.0, 126.8, 115.9, 97.9; HRMS (ESI-TOF) m/z: [M + Na]+ calcd for C23H14ClIN2O2SNa 566.9401, found 566.9395; HPLC analysis: 88:12 er (IB column, 25 °C, hexane/iPrOH = 80/20, 0.5 mL/min, λ = 254 nm), Rt (major) = 27.6 min, Rt (minor) = 38.8 min.
- (Z)-3-bromo-N-(3-(2-iodophenyl)-4-oxo-6-phenyl-3,4-dihydro-2H-1,3-thiazin-2-ylidene)benzamide (4j), white solid, 48% yield, 28.5 mg, m.p. 126–128 °C; = +25.1 (c = 1.0 in CHCl3); 1H NMR (400 MHz, CDCl3) δ 8.06 (dd, J = 8.0, 1.4 Hz, 1H), 7.85 (t, J = 1.8 Hz, 1H), 7.75–7.69 (m, 3H), 7.60–7.50 (m, 5H), 7.33 (dd, J = 7.8, 1.4 Hz, 1H), 7.24–7.19 (m, 2H), 6.96 (s, 1H); 13C NMR (101 MHz, CDCl3) δ 174.0, 161.6, 161.5, 151.5, 141.3, 140.0, 137.0, 135.8, 134.2, 133.4, 132.0, 130.3, 129.9, 129.8, 129.5, 129.0, 128.4, 126.8, 122.5, 116.0, 97.9; HRMS (ESI-TOF) m/z: [M + Na]+ calcd for C23H14BrIN2O2SNa 610.8896, found 610.8890; UPLC analysis: 89:11 er (AD-3 column, 25 °C, hexane/iPrOH = 80/20, 0.5 mL/min, λ = 254 nm), Rt (minor) = 31.0 min, Rt (major) = 35.4 min.
- (Z)-2-fluoro-N-(3-(2-iodophenyl)-4-oxo-6-phenyl-3,4-dihydro-2H-1,3-thiazin-2-ylidene)benzamide (4k), yellow solid, 56% yield, 29.6 mg, m.p. 131–133 °C; = +8.4 (c = 1.0 in CHCl3); 1H NMR (400 MHz, CDCl3) δ 8.02 (dd, J = 8.0, 1.4 Hz, 1H), 7.72–7.69 (m, 2H), 7.59–7.49 (m, 5H), 7.46–7.40 (m, 1H), 7.32 (dd, J = 8.0, 1.4 Hz, 1H), 7.20 (td, J = 7.8, 1.6 Hz, 1H), 7.08–7.00 (m, 2H), 6.95 (s, 1H); 13C NMR (101 MHz, CDCl3) δ 173.2, 162.8 (d, J = 263.2 Hz), 161.7, 160.9, 151.7, 141.3, 139.8, 134.7 (d, J = 9.4 Hz), 134.3, 133.0, 131.9, 130.1, 129.7, 129.5, 129.1, 126.8, 123.7 (d, J = 4.3 Hz), 123.2 (d, J = 6.9 Hz), 117.0 (d, J = 22.2 Hz), 115.8, 98.0; 19F NMR (377 MHz, CDCl3) δ -110.2; HRMS (ESI-TOF) m/z: [M + Na]+ calcd for C23H14FIN2O2SNa 550.9697, found 550.9692; UPLC analysis: 88:12 er (AD-3 column, 25 °C, hexane/iPrOH = 80/20, 0.5 mL/min, λ = 254 nm), Rt (minor) = 28.8 min, Rt (major) = 51.5 min.
- (Z)-2-chloro-N-(3-(2-iodophenyl)-4-oxo-6-phenyl-3,4-dihydro-2H-1,3-thiazin-2-ylidene)benzamide (4l), yellow solid, 40% yield, 21.6 mg, m.p. 141–143 °C; = +7.1 (c = 1.0 in CHCl3); 1H NMR (400 MHz, CDCl3) δ 8.00 (dd, J = 8.0, 1.4 Hz, 1H), 7.73–7.70 (m, 2H), 7.59–7.50 (m, 5H), 7.39–7.29 (m, 3H), 7.20–7.12 (m, 2H), 6.95 (s, 1H); 13C NMR (101 MHz, CDCl3) δ 174.5, 161.7, 161.2, 151.7, 141.4, 139.8, 134.7, 134.3, 133.4, 133.0, 132.7, 132.0, 131.4, 130.1, 129.6, 129.5, 129.1, 126.9, 126.4, 115.9, 98.0; HRMS (ESI-TOF) m/z: [M + Na]+ calcd for C23H14ClIN2O2SNa 566.9401, found 566.9392; HPLC analysis: 84:16 er (IB column, 25 °C, hexane/iPrOH = 80/20, 0.5 mL/min, λ = 254 nm), Rt (minor) = 28.2 min, Rt (major) = 31.9 min.
- (Z)-2-bromo-N-(3-(2-iodophenyl)-4-oxo-6-phenyl-3,4-dihydro-2H-1,3-thiazin-2-ylidene)benzamide (4m), yellow solid, 37% yield, 21.7 mg, m.p. 138–140 °C; = +10.2 (c = 0.8 in CHCl3); 1H NMR (400 MHz, CDCl3) δ 8.00 (dd, J = 8.0, 1.4 Hz, 1H), 7.73–7.70 (m, 2H), 7.61–7.50 (m, 6H), 7.31 (dd, J = 8.0, 1.6 Hz, 1H), 7.25–7.15 (m, 3H), 6.95 (s, 1H); 13C NMR (101 MHz, CDCl3) δ 174.9, 161.7, 161.3, 151.7, 141.3, 139.8, 135.1, 134.8, 134.3, 133.1, 132.7, 131.9, 130.1, 129.7, 129.5, 129.2, 127.0, 126.9, 122.7, 115.9, 98.0; HRMS (ESI-TOF) m/z: [M + Na]+ calcd for C23H14BrIN2O2SNa 610.8896, found 610.8890; UPLC analysis: 85:15 er (AD-3 column, 25 °C, hexane/iPrOH = 80/20, 0.5 mL/min, λ = 254 nm), Rt (minor) = 25.2 min, Rt (major) = 47.3 min.
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- De Pestel, D.D.; Benninger, M.S.; Danziger, L.; LaPlante, K.L.; May, C.; Luskin, A.; Pichichero, M.; Hadley, J.A. Cephalosporin use in treatment of patients with penicillin allergies. J. Am. Pharm. Assoc. 2008, 48, 530–540. [Google Scholar] [CrossRef] [PubMed]
- Zhanel, G.G.; Lam, A.; Schweizer, F.; Thomson, K.; Walkty, A.; Rubinstein, E.; Gin, A.S.; Hoban, D.J.; Noreddin, A.M.; Karlowsky, J.A. Ceftobiprole: A review of a broad-spectrum and anti-MRSA cephalosporin. Am. J. Clin. Dermatol. 2008, 9, 245–254. [Google Scholar] [CrossRef] [PubMed]
- Choudhary, S.; Silakari, O.; Singh, P.K. Key updates on the chemistry and biological roles of thiazine scaffold: A review. Mini-Rev. Med. Chem. 2018, 18, 1452–1478. [Google Scholar] [CrossRef] [PubMed]
- Shah, M.I.A.; Khan, R.; Arfan, M.; Wadood, A.; Ghufran, M. Synthesis, in vitro urease inhibitory activity and molecular docking of 3,5-disubstituted thiadiazine-2-thiones. J. Heterocycl. Chem. 2019, 56, 3073–3080. [Google Scholar] [CrossRef]
- Asif, M.; Imran, M.; Abida. Antimicrobial activities of various thiazine based heterocyclic compounds: A mini-review. Mini-Rev. Org. Chem. 2022, 19, 166–172. [Google Scholar] [CrossRef]
- Salarian, A.A.; Mollamahale, Y.B.; Hami, Z.; Soltani-Rezaee-Rad, M. Cephalexin nanoparticles: Synthesis, cytotoxicity and their synergistic antibacterial study in combination with silver nanoparticles. Mater. Chem. Phys. 2017, 198, 125–130. [Google Scholar] [CrossRef]
- Hartwig, J.; Sommer, H.; Mueller, F. Nematicides. In Ullmann’s Encyclopedia of Industrial Chemistry; Wiley Online Library: New York, NY, USA, 2001; pp. 17–125. [Google Scholar]
- Mansour, R.; Belzunces, L.P.; Suma, P.; Zappalà, L.; Mazzeo, G.; Grissa-Lebdi, K.; Russo, A.; Biondi, A. Vine and citrus mealybug pest control based on synthetic chemicals. A review. Agron. Sustain. Dev. 2018, 38, 37. [Google Scholar] [CrossRef]
- Behalo, M.S. Synthesis of some novel thiazolo[3,2-a]pyrimidine and pyrimido[2,1-b][1,3]thiazine derivatives and their antimicrobial evaluation. J. Heterocycl. Chem. 2015, 55, 1391–1397. [Google Scholar] [CrossRef]
- Ishak, E.A. Microwave-assisted green synthesis of 1,3-thiazines as potential antifungal agents using lemon juice. J. Mater. Environ. Sci. 2019, 10, 54–59. [Google Scholar]
- Chen, Y.; Li, T.; Jin, Z.; Chi, Y.R. New axially chiral molecular scaffolds with antibacterial activities against Xanthomonas oryzae pv. oryzae for protection of rice. J. Agric. Food Chem. 2022, 70, 6050–6058. [Google Scholar] [CrossRef]
- Mizutani, N.; Chiou, W.-H.; Ojima, I. New and efficient synthesis of azabicyclo[4.4.0]alkane amino acids by Rh-catalyzed cyclohydrocarbonylation. Org. Lett. 2002, 4, 4575–4578. [Google Scholar] [CrossRef]
- Evans, D.A.; Fandrick, K.R.; Song, H.-J.; Scheidt, K.A.; Xu, R. Enantioselective Friedel-Crafts alkylations catalyzed by bis(oxazolinyl)pyridine-scandium(III) triflate complexes. J. Am. Chem. Soc. 2007, 129, 10029–10041. [Google Scholar] [CrossRef]
- La-Venia, A.; Ventosa-Andrés, P.; Hradilová, L.; Krchňák, V. From amino acids to nature-inspired molecular scaffolds: Incorporation of medium-sized bridged heterocycles into a peptide backbone. J. Org. Chem. 2014, 79, 10378–10389. [Google Scholar] [CrossRef]
- Unsworth, W.P.; Coulthard, G.; Kitsiou, C.; Taylor, R.J.K. Direct imine acylation for molecular diversity in heterocyclic synthesis. J. Org. Chem. 2014, 79, 1368–1376. [Google Scholar] [CrossRef]
- Xiong, J.; Zhong, G.; Liu, Y. Domino reactions initiated by copper-catalyzed aryl-I bond thiolation for the switchable synthesis of 2,3-dihydrobenzothiazinones and benzoisothiazolones. Adv. Synth. Catal. 2019, 361, 550–555. [Google Scholar] [CrossRef]
- Nosova, E.V.; Lipunova, G.N.; Charushin, V.N.; Chupakhin, O.N. Synthesis and biological activity of 2-amino- and 2-aryl (heteryl) substituted 1,3-benzothiazin-4-ones. Mini-Rev. Med. Chem. 2019, 19, 999–1014. [Google Scholar] [CrossRef]
- Luo, Z.; Bhavanarushi, S.; Sreenivas, A.; Reddy, N.S.; Valeru, A.; Khan, I.; Xu, Y.; Liu, B.; Xie, J. Trifluoroborane catalyzed chemoselective synthesis of highly functionalized 1,3-thiazin-2-ylidenes. J. Heterocycl. Chem. 2020, 57, 3334–3341. [Google Scholar] [CrossRef]
- Wang, H.; Gu, S.; Yan, Q.; Ding, L.; Chen, F.-E. Asymmetric catalysis in synthetic strategies for chiral benzothiazepines. Green Synth. Catal. 2020, 1, 12–25. [Google Scholar] [CrossRef]
- Giacalone, F.; Gruttadauria, M.; Agrigento, P.; Noto, R. Low-loading asymmetric organocatalysis. Chem. Soc. Rev. 2012, 41, 2406–2447. [Google Scholar] [CrossRef]
- Akiyama, T.; Mori, K. Stronger brønsted acids: Recent progress. Chem. Rev. 2015, 115, 9277–9306. [Google Scholar] [CrossRef]
- Tang, W.; Zhang, X. New chiral phosphorus ligands for enantioselective hydrogenation. Chem. Rev. 2003, 103, 3029–3070. [Google Scholar] [CrossRef] [PubMed]
- Parmar, D.; Sugiono, E.; Raja, S.; Rueping, M. Complete field guide to asymmetric BINOL-phosphate derived brønsted acid and metal catalysis: History and classification by mode of activation; brønsted acidity, hydrogen bonding, ion pairing, and metal phosphates. Chem. Rev. 2014, 114, 9047–9153. [Google Scholar] [CrossRef] [PubMed]
- LaPlante, S.R.; Fader, L.D.; Fandrick, K.R.; Fandrick, D.R.; Hucke, O.; Kemper, R.; Miller, S.P.F.; Edwards, P.J. Assessing atropisomer axial chirality in drug discovery and development. J. Med. Chem. 2011, 54, 7005–7022. [Google Scholar] [CrossRef] [PubMed]
- LaPlante, S.R.; Edwards, P.J.; Fader, L.D.; Jakalian, A.; Hucke, O. Revealing atropisomer axial chirality in drug discovery. ChemMedChem 2011, 6, 505–513. [Google Scholar] [CrossRef] [PubMed]
- Enders, D.; Niemeier, O.; Henseler, A. Organocatalysis by N-heterocyclic carbenes. Chem. Rev. 2007, 107, 5606–5655. [Google Scholar] [CrossRef]
- Biju, A.T.; Kuhl, N.; Glorius, F. Extending NHC-catalysis: Coupling aldehydes with unconventional reaction partners. Acc. Chem. Res. 2011, 44, 1182–1195. [Google Scholar] [CrossRef]
- Bugaut, X.; Glorius, F. Organocatalytic umpolung: N-heterocyclic carbenes and beyond. Chem. Soc. Rev. 2012, 41, 3511–3522. [Google Scholar] [CrossRef]
- Cohen, D.T.; Scheidt, K.A. Cooperative Lewis acid/N-heterocyclic carbene catalysis. Chem. Sci. 2012, 3, 53–57. [Google Scholar] [CrossRef]
- André Grossmann, D.-C.; Enders, D. N-heterocyclic carbene catalyzed domino reactions. Angew. Chem. Int. Ed. 2012, 51, 314–325. [Google Scholar] [CrossRef]
- Ryan, S.J.; Candisha, L.; Lupton, D.W. Acyl anion free N-heterocyclic carbene organocatalysis. Chem. Soc. Rev. 2013, 42, 4906–4917. [Google Scholar] [CrossRef]
- Connon, S.J. Diaminocyclopropenylidene organocatalysts: Beyond N-heterocyclic carbenes. Angew. Chem. Int. Ed. 2014, 53, 1203–1205. [Google Scholar] [CrossRef]
- Hopkinson, M.N.; Richter, C.; Schedler, M.; Glorius, F. An overview of N-heterocyclic carbenes. Nature 2014, 510, 485–496. [Google Scholar] [CrossRef]
- Mahatthananchai, J.; Bode, J.W. On the mechanism of N-heterocyclic carbene-catalyzed reactions involving acyl azoliums. Acc. Chem. Res. 2014, 47, 696–707. [Google Scholar] [CrossRef]
- Flanigan, D.M.; Romanov-Michailidis, F.; White, N.A.; Rovis, T. Organocatalytic reactions enabled by N-heterocyclic carbenes. Chem. Rev. 2015, 115, 9307–9387. [Google Scholar] [CrossRef]
- Menon, R.S.; Biju, A.T.; Nair, V. Recent advances in employing homoenolates generated by N-heterocyclic carbene (NHC) catalysis in carbon–carbon bond-forming reactions. Chem. Soc. Rev. 2015, 44, 5040–5052. [Google Scholar] [CrossRef]
- Wang, M.H.; Scheidt, K.A. Cooperative catalysis and activation with N-heterocyclic carbenes. Angew. Chem. Int. Ed. 2016, 55, 14912–14922. [Google Scholar] [CrossRef]
- Zhang, C.; Hooper, J.F.; Lupton, D.W. N-heterocyclic carbene catalysis via the α,β-unsaturated acyl azolium. ACS Catal. 2017, 7, 2583–2596. [Google Scholar] [CrossRef]
- Murauski, K.J.R.; Jaworskia, A.A.; Scheidt, K.A. A continuing challenge: N-heterocyclic carbene-catalyzed syntheses of γ-butyrolactones. Chem. Soc. Rev. 2018, 47, 1773–1782. [Google Scholar] [CrossRef]
- Smith, C.A.; Narouz, M.R.; Lummis, P.A.; Singh, I.; Nazemi, A.; Li, C.-H.; Crudden, C.M. N-Heterocyclic carbenes in materials chemistry. Chem. Rev. 2019, 119, 4986–5056. [Google Scholar] [CrossRef]
- Biju, A.T. N-Heterocyclic Carbenes in Organocatalysis; Wiley-VCH: Weinheim, Germany, 2019. [Google Scholar]
- Kim, Y.; Li, C.-J. Perspectives on green synthesis and catalysis. Green Synth. Catal. 2020, 1, 1–11. [Google Scholar] [CrossRef]
- Chen, X.; Wang, H.; Jin, Z.; Chi, Y.R. N-heterocyclic carbene organocatalysis: Activation modes and typical reactive intermediates. Chin. J. Chem. 2020, 38, 1167–1202. [Google Scholar] [CrossRef]
- Zhao, C.; Blaszczyk, S.A.; Wang, J. Asymmetric reactions of N-heterocyclic carbene (NHC)-based chiral acyl azoliums and azolium enolates. Green Synth. Catal. 2021, 2, 198–215. [Google Scholar] [CrossRef]
- Bellotti, P.; Koy, M.; Glorius, F.; Hopkinson, M.N. Recent advances in the chemistry and applications of N-heterocyclic carbenes. Nat. Rev. Chem. 2021, 5, 711–725. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Wang, H.; Jin, Z.; Chi, Y.R. Development of green and low-cost chiral oxidants for asymmetric catalytic hydroxylation of enals. Green Synth. Catal. 2021, 2, 295–298. [Google Scholar] [CrossRef]
- Li, T.; Jin, Z.; Chi, Y.R. N-heterocyclic carbene-catalyzed arene formation reactions. Sci. China Chem. 2022, 65, 210–223. [Google Scholar] [CrossRef]
- Wang, K.; Fan, R.; Wei, X.; Fang, W. Palladacyclic N-heterocyclic carbene precatalysts for transition metal catalysis. Green Synth. Catal. 2022, 3, 327–338. [Google Scholar] [CrossRef]
- Risi, C.D.; Brandolese, A.; Carmine, G.D.; Ragno, D.; Massi, A.; Bortolini, O. Oxidative N-heterocyclic carbene catalysis. Chem. Eur. J. 2023, 29, e202202467. [Google Scholar]
- Zhang, C.; Gao, Y.; Wang, H.-Y.; Zhou, B.-A.; Ye, S. Enantioselective synthesis of axially chiral benzothiophene/benzofuran-fused biaryls by N-heterocyclic carbene catalyzed arene formation. Angew. Chem. Int. Ed. 2021, 60, 13918–13922. [Google Scholar] [CrossRef]
- Feng, J.; Du, D. Asymmetric synthesis of atropisomers enabled by N-heterocyclic carbene catalysis. Tetrahedron 2021, 100, 132456. [Google Scholar] [CrossRef]
- Barik, S.; Das, R.C.; Balanna, K.; Biju, A.T. Kinetic resolution approach to the synthesis of C–N axially chiral N-aryl aminomaleimides via NHC-catalyzed [3 + 3] annulation. Org. Lett. 2022, 24, 5456–5461. [Google Scholar] [CrossRef]
- Wu, Y.-J.; Liao, G.; Shi, B.-F. Stereoselective construction of atropisomers featuring a C-N chiral axis. Green Synth. Catal. 2022, 3, 117–136. [Google Scholar] [CrossRef]
- Li, T.; Mou, C.; Qi, P.; Peng, X.; Jiang, S.; Hao, G.; Xue, W.; Yang, S.; Hao, L.; Chi, Y.R.; et al. N-heterocyclic carbene-catalyzed atroposelective annulation for access to thiazine derivatives with C-N axial chirality. Angew. Chem. Int. Ed. 2021, 60, 9362–9367. [Google Scholar] [CrossRef]
- Kerr, M.S.; Read de Alaniz, J.; Rovis, T. A highly enantioselective catalytic intramolecular Stetter reaction. J. Am. Chem. Soc. 2002, 124, 10298–10299. [Google Scholar] [CrossRef]
- He, M.; Struble, J.R.; Bode, J.W. Highly enantioselective azadiene Diels−Alder reactions catalyzed by chiral N-heterocyclic carbenes. J. Am. Chem. Soc. 2006, 128, 8418–8420. [Google Scholar] [CrossRef]
- Cardinal-David, B.; Raup, D.E.A.; Scheidt, K.A. Cooperative N-heterocyclic carbene/Lewis acid catalysis for highly stereoselective annulation reactions with homoenolates. J. Am. Chem. Soc. 2010, 132, 5345–5347. [Google Scholar] [CrossRef]
- Kerr, M.S.; Rovis, T. Enantioselective synthesis of quaternary stereocenters via a catalytic asymmetric Stetter reaction. J. Am. Chem. Soc. 2004, 126, 8876–8877. [Google Scholar] [CrossRef]
- Zhao, C.; Li, F.; Wang, J. N-heterocyclic carbene catalyzed dynamic kinetic resolution of pyranones. Angew. Chem. Int. Ed. 2016, 55, 1852–1856. [Google Scholar] [CrossRef]
- Kuwano, S.; Harada, S.; Kang, B.; Oriez, R.; Yamaoka, Y.; Takasu, K.; Yamada, K. Enhanced rate and selectivity by carboxylate salt as a basic cocatalyst in chiral N-heterocyclic carbene-catalyzed asymmetric acylation of secondary alcohols. J. Am. Chem. Soc. 2013, 135, 11485–11488. [Google Scholar] [CrossRef]
- Mew, T.W. Focus on bacterial blight of rice. Plant Pathol. 1993, 77, 5–12. [Google Scholar] [CrossRef]
- Rodl, C.B.; Vogt, D.; Kretschmer, S.B.; Ihlefeld, K.; Barzen, S.; Bruggerhoff, A.; Achenbach, J.; Proschak, E.; Steinhilber, D.; Stark, H.; et al. Multi-dimensional target profiling of N,4-diaryl-1,3-thiazole-2-amines as potent inhibitors of eicosanoid metabolism. Eur. J. Med. Chem. 2014, 84, 302–311. [Google Scholar] [CrossRef]
Entry | NHC | Base | Solvent | Yield [b] [%] | E.r. [c] |
---|---|---|---|---|---|
1 | A | DMAP | furan | 30 | 81:19 |
2 | B | DMAP | furan | 29 | 56:44 |
3 | C | DMAP | furan | <5 | - |
4 | D | DMAP | furan | 27 | 86:14 |
5 | E | DMAP | furan | 27 | 84:16 |
6 | D | Et3N | furan | 12 | 88:12 |
7 | D | Cs2CO3 | furan | 13 | 86:14 |
8 | D | DABCO | THF | <5 | - |
9 | D | DMAP | THF | 54 | 91:9 |
10 | D | DMAP | EtOAc | 34 | 89:11 |
11 | D | DMAP | DCM | 22 | 77:23 |
Compounds | Xanthomonas oryzae pv. oryzae (Xoo) Inhibition Ratio (%) [a] | |
---|---|---|
100 μg/mL | 50 μg/mL | |
3a | 95.4 ± 2.2 | 54.5 ± 0.8 |
3d | 90.1 ± 1.2 | 50.5 ± 0.8 |
3g | 94.9 ± 0.3 | 89.6 ± 0.5 |
3h | 89.6 ± 0.6 | 48.6 ± 0.9 |
3j | 88.3 ± 1.8 | 23.9 ± 2.3 |
4b | 94.7 ± 0.2 | 87.6 ± 0.2 |
4c | 92.2 ± 2.3 | 88.6 ± 1.3 |
4d | 87.7 ± 1.5 | 35.2 ± 1.1 |
4f | 87.2 ± 0.5 | 37.4 ± 2.6 |
4k | 98.3 ± 0.4 | 46.4 ± 0.1 |
4m | 83.7 ± 1.1 | 73.3 ± 2.1 |
Thiodiazole copper | 78.2 ± 1.7 | 56.5 ± 1.3 |
Bismerthiazol | 95.4 ± 0.3 | 72.3 ± 0.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, X.; Li, T.; Chen, J.; Huang, Y.; Shen, T.; Li, S.; Jin, Z.; Ren, S.-C. Carbene-Catalyzed Atroposelective Annulation for Quick Access to Axially Chiral Thiazine Derivatives. Molecules 2023, 28, 4052. https://doi.org/10.3390/molecules28104052
Yang X, Li T, Chen J, Huang Y, Shen T, Li S, Jin Z, Ren S-C. Carbene-Catalyzed Atroposelective Annulation for Quick Access to Axially Chiral Thiazine Derivatives. Molecules. 2023; 28(10):4052. https://doi.org/10.3390/molecules28104052
Chicago/Turabian StyleYang, Xiaoqun, Tingting Li, Jinli Chen, Yixian Huang, Tingwei Shen, Shiguang Li, Zhichao Jin, and Shi-Chao Ren. 2023. "Carbene-Catalyzed Atroposelective Annulation for Quick Access to Axially Chiral Thiazine Derivatives" Molecules 28, no. 10: 4052. https://doi.org/10.3390/molecules28104052
APA StyleYang, X., Li, T., Chen, J., Huang, Y., Shen, T., Li, S., Jin, Z., & Ren, S. -C. (2023). Carbene-Catalyzed Atroposelective Annulation for Quick Access to Axially Chiral Thiazine Derivatives. Molecules, 28(10), 4052. https://doi.org/10.3390/molecules28104052