Influence of a Composite Polylysine-Polydopamine-Quaternary Ammonium Salt Coating on Titanium on Its Ostogenic and Antibacterial Performance
Abstract
:1. Introduction
2. Results and Discussion
2.1. Wettability of Surfaces
2.2. Surface Roughness
2.3. Surface Composition
2.4. Molar Grafting Rate
2.5. Cell Compatibility
2.6. Antibacterial Performance
3. Materials and Methods
3.1. Materials
3.2. Preparation of Collagen Peptide Solution
3.3. Preparation of Polylysine-Polydopamine-Quaternary Ammonium Salt Composite Coating
3.4. Determination of UV-Visible Spectra
3.5. Determination of WCA
3.6. AFM Characterization
3.7. X-ray Photoelectron Spectroscopy (XPS)
3.8. Molar Grafting Rate
3.9. Cell Compatibility Determination
3.10. Antibacterial Performance Determination
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Zhang, Q.; Liu, X.M.; Tan, L. An UV to NIR-driven platform based on red phosphorus/graphene oxide film for rapid microbial inactivation. Chem. Eng. J. 2019, 383, 123088. [Google Scholar] [CrossRef]
- Chen, J.J.; Shi, X.T.; Zhu, Y. On-demand storage and release of antimicrobial peptides using Pandora’s box-like nanotubes gated with a bacterial infection-responsive polymer. Theranostics 2020, 10, 109–122. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.M.; Wang, F.M.; Huang, Q.L. Layer-by-layer immobilizing of polydopamine-assisted ε-polylysine and gum Arabic on titanium: Tailoring of antibacterial and osteogenic properties. Mater. Sci. Eng. C 2020, 110, 110690. [Google Scholar] [CrossRef] [PubMed]
- Mat-Baharin, N.H.; Razali, M.; Mohd-Said, S. Influence of alloying elements on cellular response and in-vitro corrosion behavior of titanium-molybdenum-chromium alloys for implant materials. J. Prosthodont. Res. 2020, 64, 490–497. [Google Scholar] [CrossRef]
- Gittens, R.A.; Scheideler, L.A.; Rupp, F. A review on the wettability of dental implant surfaces II: Biological and clinical aspects. Acta Biomater. 2014, 10, 2907–2918. [Google Scholar] [CrossRef]
- Lu, J.L.; Huang, T.; Liu, Z. Long-term wettability of titanium surfaces by combined femtosecond laser micro/nano structuring and chemical treatments. Appl. Surf. Sci. 2018, 459, 257–262. [Google Scholar] [CrossRef]
- Liu, Y.J.; Wu, J.; Zhang, H. Covalent immobilization of the phytic acid-magnesium layer on titanium improves the osteogenic and antibacterial properties. Colloids Surf. B 2021, 203, 111768. [Google Scholar] [CrossRef]
- Ye, J.; Li, B.; Zheng, Y.F. Eco-friendly bacteria-killing by nanorods through mechano-puncture with top selectivity. Bioact. Mater. 2022, 15, 173–184. [Google Scholar] [CrossRef]
- Shi, Q.; Qian, Z.Y.; Liu, D.H. Surface modification of dental titanium implant by layer-by-layer electrostatic self-assembly. Front. Physiol. 2017, 8, 574. [Google Scholar] [CrossRef]
- Jablonski, P.; Kyziol, A.; Pawcenis, D. Electrostatic self-assembly approach in the deposition of bio-functional chitosan-based layers enriched with caffeic acid on Ti-6Al-7Nb alloys by alternate immersion. Biomater. Adv. 2022, 136, 212791. [Google Scholar] [CrossRef]
- Zhang, Y.L.; Chen, L.G.; Liu, C.D. Self-assembly chitosan/gelatin composite coating on icariin-modified TiO2 nanotubes for the regulation of osteoblast bioactivity. Mater. Des. 2016, 92, 471–479. [Google Scholar] [CrossRef]
- Jeckson, T.A.; Neo, Y.P.; Sisinthy, S.P. Delivery of Therapeutics from Layer-by-Layer Electrospun Nanofiber Matrix for Wound Healing: An Update. J. Pharm. Sci. 2021, 110, 635–653. [Google Scholar] [CrossRef] [PubMed]
- Richert, L.; Arntz, Y.; Schaaf, P. pH dependent growth of poly(L-lysine)/poly(L-glutamic) acid multilayer films and their cell adhesion properties. Surf. Sci. 2004, 570, 13–29. [Google Scholar] [CrossRef]
- Wang, Z.Y.; Lin, C.L.; Ming, R. Macroscopic Supramolecular Assembly Strategy to Construct 3D Biocompatible Microenvironments with Site-Selective Cell Adhesion. ACS Appl. Mater. Interfaces 2021, 13, 28774–28781. [Google Scholar] [CrossRef] [PubMed]
- Gebtil, O.G.; Semenov, O.; Roca, A.S. Engineering the Extracellular Environment: Strategies for Building 2D and 3D Cellular Structures. Adv. Mater. 2010, 22, 5443–5462. [Google Scholar]
- Wang, J.; Chen, G.; Liu, N. Strategies for improving the safety and RNAi efficacy of noncovalent peptide/siRNA nanocomplexes. Adv. Colloid Interface Sci. 2022, 302, 102638. [Google Scholar] [CrossRef]
- Liu, C.X.; Zhang, N. Nanoparticles in gene therapy principles, prospects, and challenges. Prog. Mol. Biol. Transl. 2011, 104, 509–562. [Google Scholar]
- Hashemi, M.; Omidi, M.; Muralidharan, B. Layer-by-layer assembly of graphene oxide on thermosensitive liposomes for photo-chemotherapy. Acta Biomater. 2018, 65, 376–392. [Google Scholar] [CrossRef]
- Kim, Y.S.; Chien, A.J.; Guo, J.L. Chondrogenesis of cocultures of mesenchymal stem cells and articular chondrocytes in poly(l-lysine)-loaded hydrogels. J. Control. Release 2020, 328, 710–721. [Google Scholar] [CrossRef]
- Guo, C.C.; Cui, W.D.; Wang, X.W. Poly-l-lysine/Sodium Alginate Coating Loading Nanosilver for Improving the Antibacterial Effect and Inducing Mineralization of Dental Implants. ACS Omega 2020, 5, 10562–10571. [Google Scholar] [CrossRef]
- Xu, J.; Xu, Z.; Qiao, C.D. Effect of anionic surfactants on grafting density of gelatin modified with PDMS-E. Colloid Surf. B 2014, 114, 310–315. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.X.; Wang, X.Y.; Hong, H.Y. Galactosylated chitosan-modified ethosomes combined with silk fibroin nanofibers is useful in transcutaneous immunization. J. Control. Release 2020, 327, 88–89. [Google Scholar] [CrossRef] [PubMed]
- Gribova, V.; Velty, R.A.; Picart, C. Polyelectrolyte Multilayer Assemblies on Materials Surfaces: From Cell Adhesion to Tissue Engineering. Chem. Mater. 2011, 24, 854–869. [Google Scholar] [CrossRef] [PubMed]
- Mandru, M.B.; Serbezean, B.; Butnaru, M. Poly(vinyl alcohol)/Plant Extracts Films: Preparation, Surface Characterization and Antibacterial Studies against Gram Positive and Gram Negative Bacteria. Materials 2022, 15, 2493. [Google Scholar] [CrossRef]
- Patil, N.A.; Kandasubramanian, B. Functionalized polylysine biomaterials for advanced medical applications: A. review. Eur. Polym. J. 2021, 146, 110248. [Google Scholar] [CrossRef]
- Lv, J.; Cheng, Y.Y. Fluoropolymers in biomedical applications: State-of-the-art and future perspectives. Chem. Soc. Rev. 2021, 50, 5435–5467. [Google Scholar] [CrossRef]
- Zhu, M.S.Q.; Liu, J.; Gan, L.H. Research progress in bio-based self-healing materials. Eur. Polym. J. 2020, 129, 109651. [Google Scholar] [CrossRef]
- Baltatu, M.S.; Tugui, C.A.; Perju, M.C. Biocompatible Titanium Alloys used in Medical Applications. Rev. Chim. 2019, 70, 1302–1306. [Google Scholar] [CrossRef]
- Jung, H.D. Titanium and Its Alloys for Biomedical Applications. Metals 2021, 11, 1945. [Google Scholar] [CrossRef]
- Piyaphong, P.; Saad, L.; Eleni, Z. Dental composites with calcium/strontium phosphates and polylysine. PLoS ONE 2016, 11, e0164653. [Google Scholar]
- Du, X.; Yin, S.P.; Xu, L.Q. Polylysine and cysteine functionalized chitosan nanoparticle as an efficient platform for oral delivery of paclitaxel. Carbohydr. Polym. 2020, 229, 115484. [Google Scholar] [CrossRef]
- George, M.N.; Liu, X.F.; Miller, A.L. Injectable pH-responsive adhesive hydrogels for bone tissue engineering inspired by the underwater attachment strategy of marine mussels. Mater. Sci. Eng. C 2021, 13, 112606. [Google Scholar] [CrossRef] [PubMed]
- Li, W.J.; Li, Y.; Sheng, M. Enhanced adhesion of carbon nanotubes by dopamine modification. Langmuir 2019, 35, 4527–4533. [Google Scholar] [CrossRef]
- Yang, X.B.; Yan, L.L.; Ran, F.T. Interface-confined surface engineering constructing water-unidirectional Janus membrane. J. Membr. Sci. 2019, 576, 9–16. [Google Scholar] [CrossRef]
- Karan, A.; Khezerlou, E.; Rezaei, F. Morphological changes in astrocytes by self-oxidation of dopamine to polydopamine and quantification of dopamine through multivariate regression analysis of polydopamine images. Polymers 2020, 12, 2483. [Google Scholar] [CrossRef] [PubMed]
- Cao, L.L.; Tian, D.; Lin, B.C. Fabrication of self-healing nanocomposite hydrogels with the cellulose nanocrystals-based Janus hybrid nanomaterials. Int. J. Biol. Macromol. 2021, 184, 259–270. [Google Scholar] [CrossRef] [PubMed]
- Han, L.; Jiang, Y.N.; Lv, C. Mussel-inspired hybrid coating functionalized porous hydroxyapatite scaffolds for bone tissue regeneration. Colloid Surf. B 2019, 179, 470–478. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Lynge, M.E.; Teo, B.M. Mixed poly(dopamine)/poly(l-lysine) (composite) coatings: From assembly to interaction with endothelial cells. Biomater. Sci. 2015, 3, 1188–1196. [Google Scholar] [CrossRef]
- Xu, S.L.; Niu, X.L.; Xu, J. A multifunctional gelatine-quaternary ammonium copolymer: An efficient material for reducing dye emission in leather tanning process by superior anionic dye adsorption. J. Hazard. Mater. 2020, 383, 121142. [Google Scholar] [CrossRef]
- Li, Z.S.; Yang, X.X.; Liu, H. Dual-functional antimicrobial coating based on a quaternary ammonium salt from rosin acid with in vitro and in vivo antimicrobial and antifouling properties. Chem. Eng. J. 2019, 374, 564–575. [Google Scholar] [CrossRef]
- Zeng, J.Q.; Qi, P.F.; Wang, Y. Electrostatic assembly construction of polysaccharide functionalized hybrid membrane for enhanced antimony removal. J. Hazard. Mater. 2021, 410, 124633. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.Y.; Gao, S.; Zhang, Y.W. Antibacterial biomaterials in bone tissue engineering. J. Mater. Chem. B 2021, 9, 2594–2612. [Google Scholar] [CrossRef] [PubMed]
- Awonusi, B.O.; Li, J.Z.; Li, H.W. In vitro and in vivo studies on bacteria and encrustation resistance of heparin/poly-L-lysine-Cu nanoparticles coating mediated by PDA for ureteral stent application. Regen. Biomater. 2022, 9, 047. [Google Scholar] [CrossRef] [PubMed]
- Deng, Z.J.; Wang, W.W.; Xu, X. Biofunction of Polydopamine Coating in Stem Cell Culture. ACS Appl. Mater. Interfaces 2021, 13, 10748–10759. [Google Scholar] [CrossRef]
- Kim, M.; Kim, J.S.; Lee, H. Polydopamine-Decorated Sticky, Water-Friendly, Biodegradable Polycaprolactone Cell Carriers. Macromol. Biosci. 2016, 16, 738–747. [Google Scholar] [CrossRef]
- Hussain, A.K.; Sudin, I.; Basheer, U.M. A review on graphene-based polymer composite coatings for the corrosion protection of metals. Corros. Rev. 2019, 37, 343–363. [Google Scholar] [CrossRef]
Sample | QAS | ||||
---|---|---|---|---|---|
EPTAC | DEQAS | MPA-N+ | DEQAS/MPA-N+ | ||
DEQAS | MPA-N+ | ||||
pTi-(PLL-PDA)1 | 4.074 | 3.732 | 4.936 | 4.839 (±0.001) | 1.862 (±0.001) |
pTi-(PLL-PDA)5 | 5.752 | 4.573 | 4.830 | 5.109 (±0.001) | 1.959 (±0.001) |
pTi-(PLL-PDA)10 | 7.103 | 6.291 | 5.138 | 7.480 (±0.001) | 3.162 (±0.001) |
pTi-(PLL-PDA)15 | 7.940 | 6.493 | 5.392 | 7.529 (±0.001) | 3.257 (±0.001) |
Study Group | Properties Determined | |||
---|---|---|---|---|
WCA | Grafting Rate | Cell Viability | Kill% | |
As-received, uncoated Ti | + | + | + | |
Porous Ti (pTi) | + | |||
pTi-PLL | + | |||
pTi-(PLL-PDA)1 | + | |||
pTi-(PLL-PDA)2 | + | |||
pTi-(PLL-PDA)5 | + | |||
pTi-(PLL-PDA)10 | + | |||
pTi-(PLL-PDA)15 | + | |||
pTi-(PLL-PDA)1-EPTAC | + | |||
pTi-(PLL-PDA)1-DEQAS | + | |||
pTi-(PLL-PDA)1-(MPA-N+) | + | |||
pTi-(PLL-PDA)1-(MPA-N+)/DEQAS | + | |||
pTi-(PLL-PDA)5-EPTAC | + | |||
pTi-(PLL-PDA)5-DEQAS | + | |||
pTi-(PLL-PDA)5-(MPA-N+) | + | |||
pTi-(PLL-PDA)5-(MPA-N+)/DEQAS | + | |||
pTi-(PLL-PDA)10-EPTAC | + | |||
pTi-(PLL-PDA)10-DEQAS | + | |||
pTi-(PLL-PDA)10-(MPA-N+) | + | |||
pTi-(PLL-PDA)10-(MPA-N+)/DEQAS | + | |||
pTi-(PLL-PDA)15-EPTAC | + | + | ||
pTi-(PLL-PDA)15-DEQAS | + | + | + | |
pTi-(PLL-PDA)15-(MPA-N+) | + | + | + | |
pTi-(PLL-PDA)15-(MPA-N+)/DEQAS | + | + | + |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xing, L.; Song, H.; Wei, J.; Wang, X.; Yang, Y.; Zhe, P.; Luan, M.; Xu, J. Influence of a Composite Polylysine-Polydopamine-Quaternary Ammonium Salt Coating on Titanium on Its Ostogenic and Antibacterial Performance. Molecules 2023, 28, 4120. https://doi.org/10.3390/molecules28104120
Xing L, Song H, Wei J, Wang X, Yang Y, Zhe P, Luan M, Xu J. Influence of a Composite Polylysine-Polydopamine-Quaternary Ammonium Salt Coating on Titanium on Its Ostogenic and Antibacterial Performance. Molecules. 2023; 28(10):4120. https://doi.org/10.3390/molecules28104120
Chicago/Turabian StyleXing, Lei, Hongyang Song, Jinjian Wei, Xue Wang, Yaozhen Yang, Pengbo Zhe, Mingming Luan, and Jing Xu. 2023. "Influence of a Composite Polylysine-Polydopamine-Quaternary Ammonium Salt Coating on Titanium on Its Ostogenic and Antibacterial Performance" Molecules 28, no. 10: 4120. https://doi.org/10.3390/molecules28104120
APA StyleXing, L., Song, H., Wei, J., Wang, X., Yang, Y., Zhe, P., Luan, M., & Xu, J. (2023). Influence of a Composite Polylysine-Polydopamine-Quaternary Ammonium Salt Coating on Titanium on Its Ostogenic and Antibacterial Performance. Molecules, 28(10), 4120. https://doi.org/10.3390/molecules28104120