One-Step Synthesis of Ag2O/Fe3O4 Magnetic Photocatalyst for Efficient Organic Pollutant Removal via Wide-Spectral-Response Photocatalysis–Fenton Coupling
Abstract
:1. Introduction
2. Results and Discussion
2.1. TEM Analysis
2.2. SEM and EDS Analysis
2.3. XRD Analysis
2.4. XPS Elemental Analysis
2.5. UV–Vis and PL Analysis
2.6. Electrochemical Characterization Analysis
2.7. Photocatalytic Performance Analysis
2.8. Magnetic Properties Analysis
2.9. Photocatalytic Reaction Mechanism Analysis
3. Materials and Methods
3.1. Material
3.2. Preparation of Fe3O4
3.3. Preparation of Ag2O
3.4. Preparation of Ag2O/Fe3O4
3.5. Characterization
3.6. Photocatalytic Measurement
3.7. Photoelectrochemical Measurement
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Nuengmatcha, P.; Chanthai, S.; Mahachai, R.; Oh, W.-C. Sonocatalytic performance of ZnO/graphene/TiO2 nanocomposite for degradation of dye pollutants (methylene blue, texbrite BAC-L, texbrite BBU-L and texbrite NFW-L) under ultrasonic irradiation. Dye. Pigment. 2016, 134, 487–497. [Google Scholar] [CrossRef]
- Portillo-Vélez, N.S.; Hernández-Gordillo, A.; Bizarro, M. Morphological effect of ZnO nanoflakes and nanobars on the photocatalytic dye degradation. Catal. Today 2017, 287, 106–112. [Google Scholar] [CrossRef]
- Vijayan, P.; Mahendiran, C.; Suresh, C.; Shanthi, K. Photocatalytic activity of iron doped nanocrystalline titania for the oxidative degradation of 2, 4, 6-trichlorophenol. Catal. Today 2009, 141, 220–224. [Google Scholar] [CrossRef]
- Wen, X.-J.; Shen, C.-H.; Fei, Z.-H.; Fang, D.; Liu, Z.-T.; Dai, J.-T.; Niu, C.-G. Recent developments on AgI based heterojunction photocatalytic systems in photocatalytic application. Chem. Eng. J. 2020, 383, 123083. [Google Scholar] [CrossRef]
- Liu, B.; Zhao, X.; Terashima, C.; Fujishima, A.; Nakata, K. Thermodynamic and kinetic analysis of heterogeneous photocatalysis for semiconductor systems. Phys. Chem. Chem. Phys. 2014, 16, 8751–8760. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, W. Research progress on the photocatalysis of TiO2 under visible light. Rare Met. Mater. Eng. 2007, 36, 1299–1303. [Google Scholar]
- Liu, L.; Zhang, X.; Yang, L.; Ren, L.; Wang, D.; Ye, J. Metal nanoparticles induced photocatalysis. Nat. Sci. Rev. 2017, 4, 761–780. [Google Scholar] [CrossRef]
- Long, Z.; Li, Q.; Wei, T.; Zhang, G.; Ren, Z. Historical development and prospects of photocatalysts for pollutant removal in water. J. Hazard. Mater. 2020, 395, 122599. [Google Scholar] [CrossRef]
- Chen, F.; Ren, Z.; Gong, S.; Li, X.; Shen, G.; Han, G. Selective Deposition of Silver Oxide on Single-Domain Ferroelectric Nanoplates and Their Efficient Visible-Light Photoactivity. Chem. Eur. J. 2016, 22, 12160–12165. [Google Scholar] [CrossRef]
- Torabi, S.; Mansoorkhani, M.J.K.; Majedi, A.; Motevalli, S. Synthesis, medical and photocatalyst applications of nano-Ag2O. J. Coord. Chem. 2020, 73, 1861–1880. [Google Scholar] [CrossRef]
- Khattak, R.; Begum, B.; Qazi, R.A.; Gul, H.; Khan, M.S.; Khan, S.; Bibi, N.; Han, C.; Rahman, N.U. Green Synthesis of Silver Oxide Microparticles Using Green Tea Leaves Extract for an Efficient Removal of Malachite Green from Water: Synergistic Effect of Persulfate. Catalysts 2023, 13, 227. [Google Scholar]
- Yu, K.; Yang, S.; Liu, C.; Chen, H.; Li, H.; Sun, C.; Boyd, S.A. Degradation of organic dyes via bismuth silver oxide initiated direct oxidation coupled with sodium bismuthate based visible light photocatalysis. Environ. Sci. Technol. 2012, 46, 7318–7326. [Google Scholar] [CrossRef]
- Liu, G.; Wang, G.; Hu, Z.; Su, Y.; Zhao, L. Ag2O nanoparticles decorated TiO2 nanofibers as a pn heterojunction for enhanced photocatalytic decomposition of RhB under visible light irradiation. Appl. Surf. Sci. 2019, 465, 902–910. [Google Scholar] [CrossRef]
- Wang, X.; Li, S.; Yu, H.; Yu, J.; Liu, S. Ag2O as a new visible-light photocatalyst: Self-stability and high photocatalytic activity. Chem. Eur. J. 2011, 17, 7777–7780. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Tian, J.; Li, T.; Cui, H. Synthesis of novel Ag/Ag2O heterostructures with solar full spectrum (UV, visible and near-infrared) light-driven photocatalytic activity and enhanced photoelectrochemical performance. Catal. Commun. 2016, 87, 82–85. [Google Scholar] [CrossRef]
- Suo, J.; Jiao, K.; Fang, D.; Bu, H.; Liu, Y.; Li, F.; Ruzimuradov, O. Visible photocatalytic properties of Ag–Ag2O/ITO NWs fabricated by mechanical injection-discharge-oxidation method. Vacuum 2022, 204, 111338. [Google Scholar] [CrossRef]
- Nordin, A.H.; Ahmad, Z.; Husna, S.M.N.; Ilyas, R.A.; Azemi, A.K.; Ismail, N.; Nordin, M.L.; Ngadi, N.; Siti, N.H.; Nabgan, W. The State of the Art of Natural Polymer Functionalized Fe3O4 Magnetic Nanoparticle Composites for Drug Delivery Applications: A Review. Gels 2023, 9, 121. [Google Scholar] [CrossRef]
- Zhao, S.; Yu, X.; Qian, Y.; Chen, W.; Shen, J. Multifunctional magnetic iron oxide nanoparticles: An advanced platform for cancer theranostics. Theranostics 2020, 10, 6278. [Google Scholar] [CrossRef]
- Wu, W.; Jiang, C.Z.; Roy, V.A. Designed synthesis and surface engineering strategies of magnetic iron oxide nanoparticles for biomedical applications. Nanoscale 2016, 8, 19421–19474. [Google Scholar] [CrossRef]
- Yu, S.; Tang, Y.; Yan, M.; Aguilar, Z.P.; Lai, W.; Xu, H. A fluorescent cascade amplification method for sensitive detection of Salmonella based on magnetic Fe3O4 nanoparticles and hybridization chain reaction. Sens. Actuators B Chem. 2019, 279, 31–37. [Google Scholar] [CrossRef]
- Hudson, R.; Feng, Y.; Varma, R.S.; Moores, A. Bare magnetic nanoparticles: Sustainable synthesis and applications in catalytic organic transformations. Green Chem. 2014, 16, 4493–4505. [Google Scholar] [CrossRef]
- Serga, V.; Burve, R.; Maiorov, M.; Krumina, A.; Skaudžius, R.; Zarkov, A.; Kareiva, A.; Popov, A.I. Impact of gadolinium on the structure and magnetic properties of nanocrystalline powders of iron oxides produced by the extraction-pyrolytic method. Materials 2020, 13, 4147. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.-E.; Devthade, V.; Moru, S.; Jo, W.-K.; Tonda, S. Magnetically sensitive TiO2 hollow sphere/Fe3O4 core-shell hybrid catalyst for high-performance sunlight-assisted photocatalytic degradation of aqueous antibiotic pollutants. J. Alloys Compd. 2022, 902, 163612. [Google Scholar] [CrossRef]
- Wang, C.; Jiang, R.; Yang, J.; Wang, P. Corrigendum: Enhanced Heterogeneous Fenton Degradation of Organic Pollutants by CRC/Fe3O4 Catalyst at Neutral pH. Front. Chem. 2022, 10, 892424. [Google Scholar] [CrossRef]
- Liu, X.; Sun, C.; Chen, L.; Yang, H.; Ming, Z.; Bai, Y.; Feng, S.; Yang, S.-T. Decoloration of methylene blue by heterogeneous Fenton-like oxidation on Fe3O4/SiO2/C nanospheres in neutral environment. Mat. Chem. Phys. 2018, 213, 231–238. [Google Scholar] [CrossRef]
- Cleveland, V.; Bingham, J.-P.; Kan, E. Heterogeneous Fenton degradation of bisphenol A by carbon nanotube-supported Fe3O4. Sep. Purif. Technol. 2014, 133, 388–395. [Google Scholar] [CrossRef]
- Jiao, Y.; Wan, C.; Bao, W.; Gao, H.; Liang, D.; Li, J. Facile hydrothermal synthesis of Fe3O4@ cellulose aerogel nanocomposite and its application in Fenton-like degradation of Rhodamine B. Carbohydr. Polym. 2018, 189, 371–378. [Google Scholar] [CrossRef]
- Zhang, L.; Li, P.; Mi, W.; Jiang, E.; Bai, H. Positive and negative magnetoresistance in Fe3O4-based heterostructures. J. Magn. Magn. Mater. 2012, 324, 3731–3736. [Google Scholar] [CrossRef]
- Takahashi, H.; Soeya, S.; Hayakawa, J.; Ito, K.; Kida, A.; Asano, H.; Matsui, M. Half-metallic Fe/sub 3/O/sub 4/films for high-sensitivity magnetoresistive devices. IEEE Trans. Magn. 2004, 40, 313–318. [Google Scholar] [CrossRef]
- Choi, J.; Han, S.; Kim, H.; Sohn, E.-H.; Choi, H.J.; Seo, Y. Suspensions of hollow polydivinylbenzene nanoparticles decorated with Fe3O4 nanoparticles as magnetorheological fluids for microfluidics applications. ACS Appl. Nano Mater. 2019, 2, 6939–6947. [Google Scholar] [CrossRef]
- Liu, J.; Liu, G.; Yuan, C.; Chen, L.; Tian, X.; Fang, M. Fe3O4/ZnFe2O4 micro/nanostructures and their heterogeneous efficient Fenton-like visible-light photocatalysis process. N. J. Chem. 2018, 42, 3736–3747. [Google Scholar] [CrossRef]
- Kucukcongar, S.; Alwindawi, A.G.J.; Turkyilmaz, M.; Ozaytekin, I. Reactive Dye Removal by Photocatalysis and Sonophotocatalysis Processes Using Ag/TiO2/Fe3O4 Nanocomposite. Water Air Soil Pollut. 2023, 234, 103. [Google Scholar] [CrossRef]
- Banić, N.; Šojić Merkulov, D.; Despotović, V.; Finčur, N.; Ivetić, T.; Bognár, S.; Jovanović, D.; Abramović, B. Rapid Removal of Organic Pollutants from Aqueous Systems under Solar Irradiation Using ZrO2/Fe3O4 Nanoparticles. Molecules 2022, 27, 8060. [Google Scholar] [CrossRef]
- Tseng, W.J.; Chuang, Y.-C.; Chen, Y.-A. Mesoporous Fe3O4@Ag@TiO2 nanocomposite particles for magnetically recyclable photocatalysis and bactericide. Adv. Powder Technol. 2018, 29, 664–671. [Google Scholar] [CrossRef]
- Cai, A.; Sun, Y.; Du, L.; Wang, X. Hierarchical Ag2O–ZnO–Fe3O4 composites with enhanced visible-light photocatalytic activity. J. Alloys Compd. 2015, 644, 334–340. [Google Scholar] [CrossRef]
- Atta, A.M.; El-Faham, A.; Al-Lohedan, H.A.; Othman, Z.A.A.; Abdullah, M.M.; Ezzat, A.O. Modified triazine decorated with Fe3O4 and Ag/Ag2O nanoparticles for self-healing of steel epoxy coatings in seawater. Prog. Org. Coat. 2018, 121, 247–262. [Google Scholar] [CrossRef]
- Tong, Y.; Liu, W.; Li, C.; Liu, X.; Liu, J.; Zhang, X. A metal/semiconductor contact induced Mott–Schottky junction for enhancing the electrocatalytic activity of water-splitting catalysts. Sustain. Energy Fuels 2023, 7, 12–30. [Google Scholar] [CrossRef]
- Guo, Z.; Wu, H.; Li, M.; Tang, T.; Wen, J.; Li, X. Phosphorus-doped graphene quantum dots loaded on TiO2 for enhanced photodegradation. Appl. Surf. Sci. 2020, 526, 146724. [Google Scholar] [CrossRef]
- Kumar, A.P.; Bilehal, D.; Desalegn, T.; Kumar, S.; Ahmed, F.; Murthy, H.A.; Kumar, D.; Gupta, G.; Chellappan, D.K.; Singh, S.K. Studies on synthesis and characterization of Fe3O4@SiO2@Ru hybrid magnetic composites for reusable photocatalytic application. Adsorpt. Sci. Technol. 2022, 2022, 1–18. [Google Scholar] [CrossRef]
Element | Line Type | wt% | wt% Sigma | at% |
---|---|---|---|---|
O | K series | 21.33 | 0.46 | 63.01 |
Fe | K series | 6.17 | 0.23 | 5.22 |
Ag | L series | 72.49 | 0.47 | 31.76 |
Total | 100.00 | 100.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shan, C.; Su, Z.; Liu, Z.; Xu, R.; Wen, J.; Hu, G.; Tang, T.; Fang, Z.; Jiang, L.; Li, M. One-Step Synthesis of Ag2O/Fe3O4 Magnetic Photocatalyst for Efficient Organic Pollutant Removal via Wide-Spectral-Response Photocatalysis–Fenton Coupling. Molecules 2023, 28, 4155. https://doi.org/10.3390/molecules28104155
Shan C, Su Z, Liu Z, Xu R, Wen J, Hu G, Tang T, Fang Z, Jiang L, Li M. One-Step Synthesis of Ag2O/Fe3O4 Magnetic Photocatalyst for Efficient Organic Pollutant Removal via Wide-Spectral-Response Photocatalysis–Fenton Coupling. Molecules. 2023; 28(10):4155. https://doi.org/10.3390/molecules28104155
Chicago/Turabian StyleShan, Chuanfu, Ziqian Su, Ziyi Liu, Ruizheng Xu, Jianfeng Wen, Guanghui Hu, Tao Tang, Zhijie Fang, Li Jiang, and Ming Li. 2023. "One-Step Synthesis of Ag2O/Fe3O4 Magnetic Photocatalyst for Efficient Organic Pollutant Removal via Wide-Spectral-Response Photocatalysis–Fenton Coupling" Molecules 28, no. 10: 4155. https://doi.org/10.3390/molecules28104155