Design, Synthesis and Various Bioactivity of Acylhydrazone-Containing Matrine Analogues
Abstract
:1. Introduction
2. Results and Discussion
2.1. Chemistry
2.1.1. The Synthesis and Configuration of 14-Acylhydrazone Derivatives of Matrine
2.1.2. The Synthesis and Configuration of 11-Butanehydrazone Derivatives of Matrine
2.2. Anti-TMV Activity
2.2.1. The Anti-TMV Activity of 14-Acylhydrazone Derivatives of Matrine 1–25
2.2.2. The Anti-TMV Activity of 11-Butanehydrazone Derivatives of Matrine 26–45
2.3. Insecticidal/Acaricidal Activity
2.4. Fungicidal Activity
3. Materials and Methods
3.1. Instruments and Chemicals
3.2. Synthetic Procedures
3.2.1. Synthesis of (41S,7aS,13aR,13bR)-10-Oxododecahydro-1H,5H,8H-dipyrido[2,1-f:3′,2′,1′-ij][1,6]naphthyridine-11-carbohydrazide (B)
3.2.2. Synthesis of (41S,7aS,13aR,13bR)-N′-((E)-2,4-Dimethoxybenzylidene)-10-oxododecahydro-1H,5H,8H-dipyrido[2,1-f:3′,2′,1′-ij][1,6]naphthyridine-11-carbohydrazide (1)
3.2.3. Synthesis of 4-((1R,3aS,3a1S,10aR)-2-Benzyldecahydro-1H,4H-pyrido[3,2,1-ij][1,6]naphthyridin-1-yl)butanehydrazide (E)
3.2.4. Synthesis of 4-((1R,3aS,3a1S,10aR)-2-Benzyldecahydro-1H,4H-pyrido[3,2,1-ij][1,6]naphthyridin-1-yl)-N′-((E)-2,4-dimethoxybenzylidene)butanehydrazide (26)
3.3. Biological Assay
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
Sample Availability
References
- Duarte, C.D.; Barreiro, E.J.; Fraga, C.A.M. Privileged Structures: A Useful Concept for the Rational Design of New Lead Drug Candidates. Mini-Rev. Med. Chem. 2007, 7, 1108–1119. [Google Scholar] [CrossRef] [PubMed]
- Narang, R.; Narasimhan, B.; Sharma, S. A Review on Biological Activities and Chemical Synthesis of Hydrazide Derivatives. Curr. Med. Chem. 2012, 19, 569–612. [Google Scholar] [CrossRef] [PubMed]
- Maia, R.D.; Tesch, R.; Fraga, C.A.M. Acylhydrazone Derivatives: A Patent Review. Expert Opin. Ther. Pat. 2014, 24, 1161–1170. [Google Scholar] [CrossRef]
- Zhang, H.; Min, S.; Zhang, L.; Li, L. Design, synthesis and protein-binding character of an acylhydrazone anticancer candidate. J. Mol. Liq. 2022, 348, 118034. [Google Scholar] [CrossRef]
- Huang, W.B.; Gao, Z.L.; Zhang, Z.G.; Fang, W.; Wang, Z.Q.; Wan, Z.Y.; Shi, L.Q.; Wang, K.M.; Ke, S.Y. Selective and Effective Anticancer Agents: Synthesis, Biological Evaluation and Structure-Activity Relationships of Novel Carbazole Derivatives. Bioorg. Chem. 2021, 113, 104991. [Google Scholar] [CrossRef]
- Shao, Z.B.; Jiang, K.J.; Cao, L.G.; Chao, C.; Wu, Y.Y.; Su, Z.Q.; Wang, Y.X.; Liu, S.H.; Wu, Y.R.; Liu, W.W. Synthesis of Emodin Acylhydrazone Derivatives and Determination of Vibrio harveyi Inhibitory Activity. Chem. Nat. Comp. 2022, 58, 222–226. [Google Scholar] [CrossRef]
- Osmaniye, D.; Saglik, B.N.; Levent, S.; Ozkay, Y.; Kaplancikli, Z.A. Design, Synthesis and Biological Evaluation of New N-Acyl Hydrazones with a Methyl Sulfonyl Moiety as Selective COX-2 Inhibitors. Chem. Biodiv. 2021, 18, e2100521. [Google Scholar] [CrossRef]
- Li, Y.J.; Lin, L.D.; Liu, J.H.; Gao, L.X.; Sheng, L.; Jin, K.; Liu, X.J.; Yang, H.J.; Li, J. Synthesis and Protein Tyrosine Phosphatase 1B (PTP1B) Inhibitory Activity Evaluation of Novel N-Acylhydrazone Derivatives Containing Carbazole and Aromatic Ring/Aromatic Fused Heterocycle. Chin. J. Org. Chem. 2021, 41, 3593–3607. [Google Scholar] [CrossRef]
- Shin, S.Y.; Lee, J.; Ahn, S.; Yoo, M.; Lee, Y.H.; Koh, D.; Lim, Y. Design, Synthesis, and Evaluation of 4-Chromenone Derivatives Combined with N-Acylhydrazone for Aurora Kinase A Inhibitor. Appl. Biol. Chem. 2021, 64, 21. [Google Scholar] [CrossRef]
- Yamazaki, D.A.S.; Rozada, A.M.F.; Barea, P.; Reis, E.C.; Basso, E.A.; Sarragiotto, M.H.; Seixas, F.A.V.; Gauze, G.F. Novel Arylcarbamate-N-Acylhydrazones Derivatives as Promising BuChE Inhibitors: Design, Synthesis, Molecular Modeling and Biological Evaluation. Bioorg. Med. Chem. 2021, 32, 115991. [Google Scholar] [CrossRef]
- Lv, X.; Xiang, S.Y.; Wang, X.C.; Wu, L.; Liu, C.Y.; Yuan, M.T.; Gong, W.W.; Win, H.; Hao, C.Y.; Xue, Y.; et al. Synthetic chloroinconazide compound exhibits highly efficient antiviral activity against tobacco mosaic virus. Pest Manag. Sci. 2020, 76, 3636–3648. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.X.; Song, H.J.; Huang, Y.Q.; Li, J.R.; Zhao, S.; Song, Y.C.; Yang, P.W.; Xiao, Z.X.; Liu, Y.X.; Li, Y.Q.; et al. Design, Synthesis, and Antiviral, Fungicidal, and Insecticidal Activities of Tetrahydro-β-carboline-3-carbohydrazide Derivatives. J. Agric. Food Chem. 2014, 62, 9987–9999. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.W.; Xie, J.L.; Song, H.J.; Liu, Y.X.; Gu, Y.C.; Wang, L.Z.; Wang, Q.M. Design, Synthesis, and Biological Activities of Spirooxindoles Containing Acylhydrazone Fragment Derivatives Based on the Biosynthesis of Alkaloids Derived from Tryptophan. J. Agric. Food Chem. 2016, 64, 6508–6516. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.Z.; Xie, D.D.; Gan, X.H.; Zeng, S.; Zhang, A.W.; Yin, L.M.; Song, B.A.; Jin, L.H.; Hu, D.Y. Synthesis, Antiviral Activity, and Molecular Docking Study of trans-Ferulic Acid Derivatives containing Acylhydrazone Moiety. Bioorg. Med. Chem. Lett. 2017, 27, 4096–4100. [Google Scholar] [CrossRef]
- Xie, J.L.; Xu, W.T.; Song, H.J.; Liu, Y.X.; Zhang, J.J.; Wang, Q.M. Synthesis and Antiviral/Fungicidal/Insecticidal Activities Study of Novel Chiral Indole Diketopiperazine Derivatives Containing Acylhydrazone Moiety. J. Agric. Food Chem. 2020, 68, 5555–5571. [Google Scholar] [CrossRef]
- Zhang, X.P.; Huang, W.B.; Lu, X.; Liu, S.S.; Feng, H.; Yang, W.N.; Ye, J.L.; Li, F.; Ke, S.Y.; Wei, D.G. Identification of Carbazole Alkaloid Derivatives with Acylhydrazone as Novel Anti-TMV Agents with the Guidance of a Digital Fluorescence Visual Screening. J. Agric. Food Chem. 2021, 69, 7458–7466. [Google Scholar] [CrossRef]
- Li, L.L.; Yang, R.X.; Liu, J.H.; Zhang, J.J.; Song, H.J.; Liu, Y.X.; Wang, Q.M. Design, Synthesis, and Bioactivities of Novel Tryptophan Derivatives Containing 2,5-Diketopiperazine and Acyl Hydrazine Moieties. Molecules 2022, 27, 5758. [Google Scholar] [CrossRef]
- Zhang, J.J.; Yang, R.X.; Li, L.L.; Liu, J.H.; Liu, Y.X.; Song, H.J.; Wang, Q.M. Design, Synthesis, and Bioactivity Study of Novel Tryptophan Derivatives Containing Azepine and Acylhydrazone Moieties. Molecules 2022, 27, 6700. [Google Scholar] [CrossRef]
- Ren, Z.L.; Lv, M.; Sun, Z.Q.; Li, T.Z.; Zhang, S.Y.; Xu, H. Regioselective Hemisynthesis and Insecticidal Activity of C8-Hydrazones/Acylhydrazones/Sulfonylhydrazones Coumarin-type Derivatives of Osthole. Bioorg. Med. Chem. Lett. 2021, 40, 127962. [Google Scholar] [CrossRef]
- Yang, Y.D.; He, Y.H.; Ma, K.Y.; Li, H.; Zhang, Z.J.; Sun, Y.; Wang, Y.L.; Hu, G.F.; Wang, R.X.; Liu, Y.Q. Design and Discovery of Novel Antifungal Quinoline Derivatives with Acylhydrazide as a Promising Pharmacophore. J. Agric. Food Chem. 2021, 69, 8347–8357. [Google Scholar] [CrossRef]
- Zhang, H.; Chen, L.L.; Sun, X.P.; Yang, Q.J.; Wan, L.L.; Guo, C. Matrine: A Promising Natural Product with Various Pharmacological Activities. Front. Pharmacol. 2020, 11, 588. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.L.; Xu, H. Matrine: Bioactivities and Structural Modifications. Curr. Top. Med. Chem. 2016, 16, 3365–3378. [Google Scholar] [CrossRef] [PubMed]
- Rashid, H.U.; Xu, Y.M.; Muhammad, Y.; Wang, L.S.; Jiang, J. Research Advances on Anticancer Activities of Matrine and its Derivatives: An Updated Overview. Eur. J. Med. Chem. 2019, 161, 205–238. [Google Scholar] [CrossRef] [PubMed]
- Cai, X.H.; Zhang, H.Y.; Xie, B. Matrine-Family Alkaloids: Versatile Precursors for Bioactive Modifications. Med. Chem. 2020, 16, 431–453. [Google Scholar] [CrossRef] [PubMed]
- You, L.T.; Yang, C.J.; Du, Y.Y.; Wang, W.P.; Sun, M.Y.; Liu, J.; Ma, B.R.; Pang, L.N.; Zeng, Y.W.; Zhang, Z.Q.; et al. A Systematic Review of the Pharmacology, Toxicology and Pharmacokinetics of Matrine. Front. Pharmacol. 2020, 11, 1067. [Google Scholar] [CrossRef]
- Li, X.; Tang, Z.W.; Wen, L.; Jiang, C.; Feng, Q.S. Matrine: A Review of its Pharmacology, Pharmacokinetics, Toxicity, Clinical Application and Preparation Researches. J. Ethnopharmacol. 2021, 269, 113682. [Google Scholar] [CrossRef]
- Lin, Y.D.; He, F.M.; Wu, L.; Xu, Y.; Du, Q. Matrine Exerts Pharmacological Effects Through Multiple Signaling Pathways: A Comprehensive Review. Drug Des. Devel. Ther. 2022, 16, 533–569. [Google Scholar] [CrossRef]
- Ni, W.J.; Li, C.; Liu, Y.X.; Song, H.J.; Wang, L.Z.; Song, H.B.; Wang, Q.M. Various Bioactivity and Relationship of Structure–Activity of Matrine Analogues. J. Agric. Food Chem. 2017, 65, 2039–2047. [Google Scholar] [CrossRef]
- Ni, W.J.; Wang, L.Z.; Song, H.J.; Liu, Y.X.; Wang, Q.M. Synthesis and Evaluation of 11-Butyl Matrine Derivatives as Potential Anti-Virus Agents. Molecules 2022, 27, 7563. [Google Scholar] [CrossRef]
- Zhao, L.H.; Mao, L.N.; Hong, G.; Yang, X.J.; Liu, T.J. Design, Synthesis and Anticancer Activity of Matrine-1H-1,2,3-Triazole-Chalcone Conjugates. Bioorg. Med. Chem. Lett. 2015, 25, 2540–2544. [Google Scholar] [CrossRef]
- Tan, C.J.; Zhao, Y.; Goto, M.; Hsieh, K.Y.; Yang, X.M.; Morris-Natschke, S.L.; Liu, L.N.; Zhao, B.Y.; Lee, K.H. Alkaloids from Oxytropis Ochrocephala and Antiproliferative Activity of Sophoridine Derivatives against Cancer Cell Lines. Bioorg. Med. Chem. Lett. 2016, 26, 1495–1497. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.X.; Huang, J.K.; Gao, L.L.; He, L.Q.; Huang, P.; Wang, X.S. Synthesis and Biological Evaluation of Matrine Derivatives as Anti-Hepatocellular Cancer Agents. Bioorg. Med. Chem. Lett. 2016, 26, 4267–4271. [Google Scholar] [CrossRef] [PubMed]
- Lv, M.; Ma, Q.J.; Zhang, S.Y.; Xu, H. Agrochemical Properties Evaluation of some Imines Alkaloids of Matrine/Oxymatrine. Bioorg. Med. Chem. Lett. 2021, 48, 128246. [Google Scholar] [CrossRef] [PubMed]
- Lv, M.; Ma, Q.J.; Zhang, S.Y.; Xu, H. Construction of spiro-1,2,4-Oxadiazoline-Fused Matrine-Type Alkaloids as Pesticidal Agents. Bioorg. Med. Chem. Lett. 2021, 51, 128356. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.; Zhang, K.; Lv, M.; Hao, M. Construction of Cholesterol Oxime Ether Derivatives Containing Isoxazoline/Isoxazole Fragments and Their Agricultural Bioactive Properties/Control Efficiency. J. Agric. Food Chem. 2021, 69, 8098–8109. [Google Scholar] [CrossRef]
- Bi, C.W.; Zhang, C.X.; Li, Y.H.; Tang, S.; Wang, S.G.; Shao, R.G.; Fu, H.G.; Su, F.; Song, D.Q. Synthesis and Biological Evaluation of Sophoridinol Derivatives as a Novel Family of Potential Anticancer Agents. ACS Med. Chem. Lett. 2014, 5, 1225–1229. [Google Scholar] [CrossRef]
- Wang, S.G.; Li, Y.K.; Li, Y.H.; Cheng, X.Y.; Su, F.; Tang, S.; Bi, C.W.; Jiang, J.D.; Li, Y.H.; Song, D.Q. Structure–Activity Relationship of N-Benzenesulfonyl Matrinic Acid Derivatives as a Novel Class of Coxsackievirus B3 Inhibitors. Bioorg. Med. Chem. Lett. 2015, 5, 3690–3693. [Google Scholar] [CrossRef]
- Li, D.D.; Dai, L.L.; Zhang, N.; Tao, Z.W. Synthesis, Structure–Activity Relationship and Biological Evaluation of Novel Nitrogen Mustard Sophoridinic Acid Derivatives as Potential Anticancer Agents. Bioorg. Med. Chem. Lett. 2015, 25, 4092–4096. [Google Scholar] [CrossRef]
- Tang, S.; Kong, L.Y.; Li, Y.H.; Jiang, J.D.; Gao, L.M.; Cheng, X.Y.; Ma, L.L.; Zhang, X.; Li, Y.H.; Song, D.Q. Novel N-Benzenesulfonyl Sophocarpinol Derivatives as Coxsackie B Virus Inhibitors. ACS Med. Chem. Lett. 2015, 6, 183–186. [Google Scholar] [CrossRef]
- Cheng, X.Y.; Li, Y.H.; Tang, S.; Zhang, X.; Wang, Y.X.; Wang, S.G.; Jiang, J.D.; Li, Y.H.; Song, D.Q. Synthesis and Evaluation of Halogenated 12N-Sulfonyl Matrinic Butanes as Potential anti-Coxsackievirus Agents. Eur. J. Med. Chem. 2017, 126, 133–142. [Google Scholar] [CrossRef]
- Huang, J.L.; Lv, M.; Xu, H. Semisynthesis of some Matrine Ether Derivatives as Insecticidal Agents. RSC Adv. 2017, 7, 15997–16004. [Google Scholar] [CrossRef]
- Zhang, B.C.; Sun, Z.Q.; Lv, M.; Xu, H. Semisynthesis of Matrinic Acid/Alcohol/Ester Derivatives, their Pesticidal Activities, and Investigation of Mechanisms of Action against Tetranychus cinnabarinus. J. Agric. Food Chem. 2018, 66, 12898–12910. [Google Scholar] [CrossRef]
- Xu, H.; Xu, M.; Sun, Z.Q.; Li, S.C. Preparation of Matrinic/Oxymatrinic Amide Derivatives as Insecticidal/Acaricidal Agents and Study on the Mechanisms of Action against Tetranychus cinnabarinu. J. Agric. Food Chem. 2019, 67, 12182–12190. [Google Scholar] [CrossRef]
- Xu, J.W.; Lv, M.; Hao, M.; Li, T.Z.; Zhang, S.Y.; Xu, H. Natural-product-based Pesticides: Semisynthesis, Structural Elucidation, and Evaluation of new Cholesterol-Matrine Conjugates as Pesticidal Agents. Bioorg. Med. Chem. Lett. 2021, 50, 128350. [Google Scholar] [CrossRef] [PubMed]
- Achi, P.A.; Coulibali, S.; Molou, K.Y.G.; Coulibaly, S.; Kouassi, S.; Sissouma, D.; Ouattara, L.; Ane, A. Stereochemical design and conformation determinations of new benzimidazole-N-acylhydrazone derivatives. Synth. Commun. 2022, 52, 1306–1317. [Google Scholar] [CrossRef]
- He, L.Q.; Gu, H.X.; Yin, D.K.; Zhang, Y.H.; Wang, X.S. Synthesis and Biological Evaluation of Nitric Oxide-Releasing Matrine Derivatives as Anticancer Agents. Chem. J. Chin. Univ. 2010, 31, 1541–1547. [Google Scholar] [CrossRef]
Compound | Concentration (μg/mL) | In Vitro | In Vivo | ||
---|---|---|---|---|---|
Inhibition Rate (%) a | Inactivation Effect (%) b | Curative Effect (%) b | Protection Effect (%) b | ||
Ningnanmycin | 500 | 55.4 | 57.8 ± 1.4 | 55.3 ± 0.5 | 60.3 ± 1.2 |
100 | 26.1 | 29.7 ± 0.2 | 24.2 ± 1.0 | 27.0 ± 0.3 | |
Ribavirin | 500 | 40.9 | 36.5 ± 0.9 | 38.0 ± 1.6 | 35.1 ± 2.2 |
100 | 10 | 8.5 ± 0.1 | 6.4 ± 0.8 | 12.1 ± 1.1 | |
Matrine | 500 | 29.8 | 39 ± 2.8 | 33.4 ± 3.1 | 40.3 ± 1.5 |
100 | 15 | 5.5 ± 0.6 | 7.5 ± 0.4 | 13.2 ± 1.7 | |
1 | 500 | 32.1 | 38 ± 1.9 | 34.2 ± 0.7 | 41.5 ± 2.0 |
100 | 0 | 7.9 ± 0.8 | 0 | 0 | |
2 | 500 | 26.2 | 43 ± 1.8 | 35.4 ± 0.9 | 45.1 ± 2.6 |
100 | 0 | 0 | 0 | 0 | |
3 | 500 | 38 | 46.8 ± 2.4 | 40.7 ± 0.9 | 34.6 ± 3.6 |
100 | 0 | 0 | 0 | 0 | |
4 | 500 | 34.3 | 47.8 ± 1.2 | 45.1 ± 1.5 | 48.3 ± 2.2 |
100 | 6.6 | 4.5 ± 3.4 | 19.6 ± 0.2 | 9.2 ± 5.0 | |
5 | 500 | 42.2 | 48.5 ± 3.1 | 45 ± 0.8 | 50.6 ± 2.0 |
100 | 5 | 14.1 ± 0.7 | 6.2 ± 0.5 | 12.7 ± 0.2 | |
6 | 500 | 29.4 | 36.4 ± 3.5 | 42 ± 1.0 | 26.5 ± 4.1 |
100 | 0 | 0 | 0 | 0 | |
7 | 500 | 49.6 | 42.4 ± 3.6 | 46 ± 1.3 | 39 ± 2.2 |
100 | 0 | 0 | 0 | 8.6 ± 0.4 | |
8 | 500 | 47.0 | 42.1 ± 1.7 | 45.5 ± 3.8 | 48.3 ± 1.0 |
100 | 5.2 | 0 | 9.5 ± 1.6 | 14 ± 1.4 | |
9 | 500 | 42.2 | 52.4 ± 4.8 | 48.3 ± 3.0 | 55 ± 1.3 |
100 | 19.4 | 11.5 ± 0.7 | 20.2 ± 0.9 | 23.1 ± 2.5 | |
10 | 500 | 21.3 | 38.3 ± 0.9 | 28.9 ± 1.2 | 32 ± 1.9 |
100 | 0 | 0 | 0 | 0 | |
11 | 500 | 51.3 | 46.8 ± 3.7 | 40.2 ± 0.5 | 49.8 ± 1.0 |
100 | 14.4 | 8.1 ± 1.0 | 18.2±3.4 | 12±2.2 | |
12 | 500 | 38.4 | 46.2 ± 1.6 | 41.5 ± 0.9 | 46.7 ± 3.1 |
100 | 0 | 15.9 ± 2.3 | 0 | ||
13 | 500 | 41.1 | 33.5 ± 3.3 | 37.2 ± 4.5 | 31 ± 1.6 |
100 | 8.8 | 0 | 5.3 ± 0.1 | 0 | |
14 | 500 | 44.5 | 53.3 ± 2.9 | 49.6 ± 1.4 | 50 ± 0.8 |
100 | 13.2 | 14.1 ± 1.5 | 6.3 ± 0.7 | 9.0 ± 1.2 | |
15 | 500 | 49.4 | 53.7 ± 2.4 | 50.8 ± 1.7 | 56.8 ± 3.5 |
100 | 10.3 | 21.8 ± 0.1 | 14.5 ± 0.6 | 17.9 ± 0.9 | |
16 | 500 | 40.2 | 36.8 ± 3.9 | 33 ± 3.0 | 41.3 ± 0.6 |
100 | 5.1 | 8.7 ± 0.6 | 0 | 7.3 ± 0.4 | |
17 | 500 | 24.1 | 40 ± 2.9 | 30.7 ± 0.6 | 36.4 ± 3.0 |
100 | 0 | 9.7 ± 1.4 | 0 | 5.1 ± 0.3 | |
18 | 500 | 33.7 | 39.1 ± 1.0 | 42 ± 2.9 | 38.4 ± 3.8 |
100 | 15.9 | 8.8 ± 1.5 | 14.8 ± 0.8 | 0 | |
19 | 500 | 40.6 | 42.2 ± 3.0 | 50.4 ± 2.2 | 44 ± 3.4 |
100 | 0 | 17.3 ± 0.5 | 11.9 ± 1.8 | 9 ± 0.1 | |
20 | 500 | 49.5 | 47.3 ± 5.4 | 39.3 ± 3.7 | 40.9 ± 1.8 |
100 | 6.4 | 9.5 ± 2.8 | 4.1 ± 1.6 | 0 | |
21 | 500 | 39.2 | 46.5 ± 0.4 | 49 ± 0.6 | 42 ± 3.6 |
100 | 22.7 | 6.2 ± 2.1 | 14 ± 3.4 | 5.3 ± 1.1 | |
22 | 500 | 48 | 32.9 ± 2.0 | 36.1 ± 0.9 | 40.5 ± 0.6 |
100 | 9.1 | 0 | 0 | 16.9 ± 2.8 | |
23 | 500 | 36.5 | 43.1 ± 4.0 | 48.2 ± 2.8 | 39.7 ± 0.5 |
100 | 0 | 0 | 5.2 ± 0.7 | 8.1 ± 2.5 | |
24 | 500 | 40.5 | 51.9 ± 1.6 | 47.1 ± 2.7 | 53.5 ± 4.0 |
100 | 0 | 4.5 ± 2.8 | 6.8 ± 0.3 | 15.9 ± 1.9 | |
25 | 500 | 55.4 | 44.6 ± 2.7 | 49.8 ± 3.3 | 50.2 ± 3.9 |
100 | 17 | 7.9 ± 0.9 | 16.8 ± 0.7 | 6.4 ± 0.2 | |
26 | 500 | 46.9 | 46.2 ± 2.5 | 40.4 ± 2.8 | 38.9 ± 1.0 |
100 | 18.5 | 5.4 ± 4.1 | 11.0 ± 0.7 | 16.6 ± 0.3 | |
27 | 500 | 51.2 | 57.0 ± 2.1 | 53.1 ± 4.3 | 58.9 ± 1.5 |
100 | 19 | 14.8 ± 0.5 | 27.0 ± 0.9 | 11.5 ± 0.3 | |
28 | 500 | 54.5 | 61.9 ± 3.0 | 57.3 ± 0.4 | 51.2 ± 2.2 |
100 | 27 | 19.4 ± 1.1 | 23.0 ± 0.2 | 15.4 ± 2.9 | |
29 | 500 | 43.7 | 53.5 ± 2.0 | 50.8 ± 0.4 | 47.9 ± 3.6 |
100 | 22.2 | 16.9 ± 3.4 | 9.1 ± 1.8 | 13.4 ± 0.3 | |
30 | 500 | 37.3 | 45.2 ± 2.8 | 39.6 ± 0.3 | 41.5 ± 2.5 |
100 | 19.4 | 15.3 ± 0.4 | 8.4 ± 3.1 | 12.7 ± 0.3 | |
31 | 500 | 50.2 | 59.2 ± 2.8 | 61.5 ± 0.9 | 56.4 ± 3.0 |
100 | 27 | 18.1 ± 0.5 | 23.4 ± 0.7 | 20.0 ± 0.5 | |
32 | 500 | 33.9 | 41.4 ± 0.9 | 35.2 ± 1.8 | 43.6 ± 1.1 |
100 | 14 | 8.9 ± 0.3 | 5.4 ± 0.1 | 9.6 ± 1.4 | |
33 | 500 | 61.4 | 62.2 ± 1.5 | 65.0 ± 3.9 | 57.9 ± 4.5 |
100 | 29.8 | 26.3 ± 0.6 | 20.8 ± 2.4 | 25.7 ± 1.0 | |
34 | 500 | 47.2 | 61.4 ± 2.5 | 63.2 ± 1.8 | 59.0 ± 3.3 |
100 | 22 | 28.3 ± 0.7 | 25.7 ± 0.4 | 13.8 ± 2.1 | |
35 | 500 | 48.9 | 53.8 ± 2.2 | 47.1 ± 4.0 | 50.0 ± 2.9 |
100 | 15.3 | 19.5 ± 0.1 | 12.8 ± 0.8 | 9.0 ± 3.3 | |
36 | 500 | 57 | 62.5 ± 3.2 | 64.7 ± 1.5 | 56.2 ± 3.6 |
100 | 25.3 | 18.0 ± 1.4 | 27.0 ± 0.3 | 22.5 ± 0.8 | |
37 | 500 | 51.1 | 59.7 ± 0.9 | 52.3 ± 3.7 | 58.0 ± 2.5 |
100 | 16 | 21.9 ± 1.0 | 19.0 ± 0.2 | 18.3 ± 2.0 | |
38 | 500 | 38.4 | 48.1 ± 4.4 | 42.3 ± 0.8 | 44.0 ± 0.5 |
100 | 9.8 | 12.6 ± 0.3 | 9.5 ± 3.6 | 8.3 ± 0.4 | |
39 | 500 | 48.5 | 56.4 ± 3.1 | 51.0 ± 2.5 | 60.7 ± 4.1 |
100 | 14 | 16.6 ± 0.8 | 20.2 ± 1.0 | 22.0 ± 0.2 | |
40 | 500 | 51.4 | 60.1 ± 3.4 | 55.8 ± 2.6 | 63.9 ± 1.8 |
100 | 13.7 | 25.2 ± 0.1 | 19.3 ± 0.5 | 26.4 ± 0.2 | |
41 | 500 | 33.5 | 35.4 ± 4.1 | 38.1 ± 1.7 | 32.0 ± 2.2 |
100 | 9.2 | 4.6 ± 0.9 | 10.3 ± 0.2 | 6.9 ± 2.4 | |
42 | 500 | 65.8 | 71.8 ± 2.8 | 66.8 ± 1.3 | 69.5 ± 3.1 |
100 | 29 | 33.5 ± 0.7 | 24.1 ± 0.2 | 30.3 ± 0.6 | |
43 | 500 | 63.1 | 52.4 ± 4.4 | 55.7 ± 1.6 | 60.8 ± 2.0 |
100 | 20.3 | 17.6 ± 0.8 | 9.5 ± 2.2 | 21.6 ± 0.9 | |
44 | 500 | 40.7 | 30.5 ± 1.3 | 38.2 ± 2.7 | 36.1 ± 0.4 |
100 | 3.4 | 4.3 ± 0.3 | 15.4 ± 4.1 | 8.2 ± 0.6 | |
45 | 500 | 46.3 | 51.0 ± 2.7 | 53.1 ± 3.9 | 48.4 ± 1.1 |
100 | 19.2 | 13.8 ± 0.5 | 16.4 ± 1.6 | 12.0 ± 1.7 |
Larvicidal Activity (Mortality %) at Concentration (µg/mL) | |||||||
---|---|---|---|---|---|---|---|
Compound | P. xylostella | C. pipiens pallens | |||||
600 | 200 | 100 | 50 | 10 | 5 | 2 | |
Matrine | 100 ± 0 | 60 ± 0 | 0 ± 0 | - | 100 ± 0 | 60 ± 0 | 0 ± 0 |
1 | 80 ± 10 | 0 ± 0 | - | - | 100 ± 0 | 40 ± 0 | - |
2 | 90 ± 10 | 30 ± 0 | 0 ± 0 | 0 | 70 ± 0 | - | - |
3 | 85 ± 5 | 50 ± 10 | 0 ± 0 | 0 | 30 ± 10 | - | - |
4 | 100 ± 0 | 30 ± 0 | 0 ± 0 | - | 60 ± 0 | - | - |
5 | 50 ± 10 | 0 ± 0 | - | - | 65 ± 5 | - | - |
6 | 100 ± 0 | 50 ± 0 | 0 ± 0 | - | 70 ± 0 | - | - |
7 | 100 ± 0 | 75 ± 5 | 10 ± 10 | 0 ± 0 | 100 ± 0 | 0 ± 0 | - |
8 | 100 ± 0 | 60 ± 0 | 0 ± 0 | 0 ± 0 | 40 ± 0 | - | - |
9 | 100 ± 0 | 100 ± 0 | 80 ± 0 | 30 ± 10 | 100 ± 0 | 100 ± 0 | 40 ± 0 |
10 | 70 ± 0 | 0 ± 0 | 100 ± 0 | 40 ± 0 | - | ||
11 | 100 ± 0 | 85 ± 5 | 50 ± 0 | 30 ± 0 | 65 ± 5 | - | - |
12 | 100 ± 0 | 100 ± 0 | 75 ± 5 | 20 ± 0 | 100 ± 0 | 40 ± 0 | - |
13 | 100 ± 0 | 85 ± 5 | 30 ± 0 | 0 ± 0 | 100 ± 0 | 40 ± 10 | - |
14 | 100 ± 0 | 85 ± 5 | 50 ± 0 | 20 ± 0 | 100 ± 0 | 0 ± 0 | - |
15 | 80 ± 10 | 20 ± 10 | 0 ± 0 | - | 100 ± 0 | 100 ± 0 | 40 ± 0 |
16 | 60 ± 0 | 0 ± 0 | - | - | 70 ± 0 | - | - |
17 | 100 ± 0 | 60 ± 10 | 0 ± 0 | - | 100 ± 0 | 20 ± 0 | - |
18 | 100 ± 0 | 100 ± 0 | 60 ± 10 | 0 ± 0 | 50 ± 10 | - | - |
19 | 30 ± 10 | 0 ± 0 | - | - | 100 ± 0 | 20 ± 0 | - |
20 | 100 ± 0 | 100 ± 0 | 70 ± 10 | 25 ± 5 | 40 ± 0 | - | - |
21 | 90 ± 10 | 50 ± 0 | 0 ± 0 | - | 60 ± 0 | - | - |
22 | 100 ± 0 | 70 ± 0 | 20 ± 0 | 0 ± 0 | 100 ± 0 | 60 ± 0 | - |
23 | 100 ± 0 | 90 ± 10 | 65 ± 5 | 0 ± 0 | 60 ± 0 | - | - |
24 | 60 ± 0 | 0 ± 0 | - | - | 100 ± 0 | 60 ± 0 | - |
25 | 100 ± 0 | 40 ± 0 | 0 ± 0 | - | 100 ± 0 | 20 ± 10 | - |
26 | 70 ± 0 | - | - | - | 100 ± 0 | 20 ± 0 | - |
27 | 85 ± 5 | - | - | - | 60 ± 10 | - | - |
28 | 60 ± 10 | - | - | - | 0 ± 0 | - | - |
29 | 70 ± 0 | - | - | - | 40 ± 0 | - | - |
30 | 55 ± 5 | - | - | - | 20 ± 0 | - | - |
31 | 90 ± 10 | - | - | 0 ± 0 | - | - | |
32 | 60 ± 0 | - | - | 20 ± 0 | - | - | |
33 | 40 ± 10 | - | - | 100 ± 0 | 0 ± 0 | - | |
34 | 70 ± 0 | - | - | 0 ± 0 | - | - | |
35 | 50 ± 0 | - | - | 20 ± 0 | - | - | |
36 | 85 ± 5 | - | - | 0 ± 0 | - | - | |
37 | 80 ± 10 | - | - | 0 ± 0 | - | - | |
38 | 60 ± 0 | - | - | 60 ± 0 | - | - | |
39 | 40 ± 0 | - | - | 20 ± 0 | - | - | |
40 | 70 ± 0 | - | - | 20 ± 10 | - | - | |
41 | 75 ± 5 | - | - | 0 ± 0 | - | - | |
42 | 85 ± 5 | - | - | 40 ± 10 | - | - | |
43 | 100 ± 0 | 40 ± 10 | 0 ± 0 | 20 ± 0 | - | - | |
44 | 70 ± 0 | - | - | 0 ± 0 | - | - | |
45 | 80 ± 10 | - | - | 0 ± 0 | - | - |
Compound | Fungicidal Activity (%) at 50 µg/mL | |||
---|---|---|---|---|
P.P. | R.C. | P.C. | S.S. | |
Chlorothalonil | 74 ± 1 | 96 ± 2 | P.C. | S.S. |
Carbendazim | 97 ± 1 | 98 ± 1 | 98 ± 1 | 97 ± 1 |
matrine | 31 ± 2 | 44 ± 1 | 58 ± 2 | 80 ± 1 |
1 | 21 ± 2 | 36 ± 1 | 12 ± 2 | 8 ± 1 |
2 | 45 ± 1 | 28 ± 1 | 25 ± 1 | 20 ± 1 |
3 | 48 ± 1 | 74 ± 1 | 36 ± 1 | 18 ± 1 |
4 | 36 ± 1 | 78 ± 1 | 46 ± 1 | 26 ± 1 |
5 | 38 ± 1 | 32 ± 1 | 29 ± 1 | 45 ± 1 |
6 | 34 ± 1 | 48 ± 1 | 32 ± 2 | 26 ± 1 |
7 | 23 ± 1 | 46 ± 1 | 25 ± 1 | 20 ± 1 |
8 | 36 ± 2 | 44 ± 1 | 11 ± 2 | 20 ± 2 |
9 | 27 ± 1 | 24 ± 3 | 61 ± 2 | 59 ± 1 |
10 | 48 ± 1 | 70 ± 2 | 54 ± 2 | 33 ± 1 |
11 | 16 ± 1 | 31 ± 1 | 25 ± 1 | 20 ± 2 |
12 | 34 ± 1 | 42 ± 1 | 29 ± 2 | 13 ± 1 |
13 | 30 ± 1 | 21 ± 1 | 43 ± 1 | 20 ± 2 |
14 | 54 ± 2 | 46 ± 2 | 18 ± 1 | 29 ± 1 |
15 | 66 ± 1 | 80 ± 1 | 39 ± 1 | 20 ± 1 |
16 | 52 ± 1 | 82 ± 1 | 64 ± 1 | 24 ± 2 |
17 | 34 ± 1 | 40 ± 1 | 29 ± 2 | 13 ± 1 |
18 | 34 ± 1 | 33 ± 1 | 11 ± 2 | 26 ± 1 |
19 | 32 ± 1 | 30 ± 2 | 21 ± 2 | 24 ± 1 |
20 | 18 ± 1 | 38 ± 2 | 25 ± 1 | 20 ± 2 |
21 | 54 ± 1 | 74 ± 1 | 21 ± 2 | 28 ± 2 |
22 | 36 ± 1 | 31 ± 1 | 43 ± 1 | 20 ± 2 |
23 | 29 ± 2 | 33 ± 1 | 25 ± 1 | 13 ± 1 |
24 | 30 ± 1 | 33 ± 1 | 14 ± 1 | 20 ± 2 |
25 | 88 ± 1 | 46 ± 1 | 14 ± 1 | 24 ± 2 |
26 | 58 ± 1 | 12 ± 2 | 57 ± 1 | 26 ± 1 |
27 | 38 ± 2 | 9 ± 1 | 6 ± 2 | 6 ± 3 |
28 | 58 ± 2 | 23 ± 3 | 19 ± 2 | 15 ± 2 |
29 | 45 ± 2 | 23 ± 2 | 6 ± 2 | 6 ± 2 |
30 | 62 ± 2 | 16 ± 1 | 13 ± 3 | 24 ± 1 |
31 | 46 ± 1 | 58 ± 1 | 31 ± 2 | 24 ± 1 |
32 | 32 ± 2 | 29 ± 1 | 31 ± 1 | 6 ± 2 |
33 | 45 ± 2 | 47 ± 3 | 31 ± 2 | 39 ± 1 |
34 | 51 ± 2 | 33 ± 2 | 75 ± 1 | 43 ± 2 |
35 | 53 ± 1 | 23 ± 2 | 75 ± 2 | 52 ± 2 |
36 | 38 ± 2 | 22 ± 1 | 6 ± 2 | 33 ± 2 |
37 | 31 ± 1 | 17 ± 2 | 81 ± 1 | 44 ± 2 |
38 | 37 ± 2 | 28 ± 1 | 63 ± 2 | 30 ± 3 |
39 | 24 ± 2 | 28 ± 1 | 6 ± 2 | 15 ± 2 |
40 | 95 ± 2 | 81 ± 2 | 31 ± 1 | 43 ± 2 |
41 | 49 ± 3 | 8 ± 2 | 6 ± 2 | 30 ± 2 |
42 | 0 ± 0 | 52 ± 2 | 31 ± 2 | 61 ± 2 |
43 | 38 ± 1 | 49 ± 1 | 31 ± 2 | 33 ± 3 |
44 | 54 ± 1 | 35 ± 1 | 63 ± 3 | 43 ± 3 |
45 | 47 ± 2 | 12 ± 2 | 3 ± 2 | 50 ± 2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ni, W.; Song, H.; Wang, L.; Liu, Y.; Wang, Q. Design, Synthesis and Various Bioactivity of Acylhydrazone-Containing Matrine Analogues. Molecules 2023, 28, 4163. https://doi.org/10.3390/molecules28104163
Ni W, Song H, Wang L, Liu Y, Wang Q. Design, Synthesis and Various Bioactivity of Acylhydrazone-Containing Matrine Analogues. Molecules. 2023; 28(10):4163. https://doi.org/10.3390/molecules28104163
Chicago/Turabian StyleNi, Wanjun, Hongjian Song, Lizhong Wang, Yuxiu Liu, and Qingmin Wang. 2023. "Design, Synthesis and Various Bioactivity of Acylhydrazone-Containing Matrine Analogues" Molecules 28, no. 10: 4163. https://doi.org/10.3390/molecules28104163
APA StyleNi, W., Song, H., Wang, L., Liu, Y., & Wang, Q. (2023). Design, Synthesis and Various Bioactivity of Acylhydrazone-Containing Matrine Analogues. Molecules, 28(10), 4163. https://doi.org/10.3390/molecules28104163