Rosmarinus officinalis L. Essential Oils Impact on the Microbiological and Oxidative Stability of Sarshir (Kaymak)
Abstract
:1. Introduction
2. Results and Discussion
2.1. Chemical Composition of REO
2.2. Antibacterial Activity of REO
2.3. Antioxidant Activity of REO
2.4. Antibacterial Activity of REO in Sarshir
2.5. Antioxidant Activity of REO in Sarshir
3. Materials and Methods
3.1. Bacterial Strains
3.2. REO Extraction and Chemical Characterization
3.3. Antimicrobial and Antioxidant Activities of REO
3.4. Preparation of Sarshir Samples
3.5. Enumeration of Bacteria
3.6. Peroxide Value (PV) and Anisidine Value (AnV) Determination
3.7. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Pisoschi, A.M.; Pop, A.; Cimpeanu, C.; Turcuş, V.; Predoi, G.; Iordache, F. Nanoencapsulation techniques for compounds and products with antioxidant and antimicrobial activity—A critical view. Eur. J. Med. Chem. 2018, 157, 1326–1345. [Google Scholar] [CrossRef] [PubMed]
- Bensid, A.; El Abed, N.; Houicher, A.; Regenstein, J.M.; Özogul, F. Antioxidant and antimicrobial preservatives: Properties, mechanism of action and applications in food—A review. Crit. Rev. Food Sci. Nutr. 2022, 62, 2985–3001. [Google Scholar] [CrossRef]
- Gholamhosseinpour, A.; Hashemi, S.M.B.; Jafarpour, D. Nanoemulsion of Satureja sahendica bornm essential oil: Antibacterial and antioxidant activities. J. Food Meas. Charact. 2022, 17, 317–323. [Google Scholar] [CrossRef]
- Donsì, F.; Ferrari, G. Essential oil nanoemulsions as antimicrobial agents in food. J. Biotechnol. 2016, 233, 106–120. [Google Scholar] [CrossRef]
- de Macedo, L.M.; Santos, É.M.D.; Militão, L.; Tundisi, L.L.; Ataide, J.A.; Souto, E.B.; Mazzola, P.G. Rosemary (Rosmarinus officinalis L., syn Salvia rosmarinus Spenn.) and its topical applications: A review. Plants 2020, 9, 651. [Google Scholar] [CrossRef]
- Iqhrammullah, M.; Rizki, D.R.; Purnama, A.; Duta, T.F.; Harapan, H.; Idroes, R.; Ginting, B. Antiviral Molecular Targets of Essential Oils against SARS-CoV-2: A Systematic Review. Sci. Pharm. 2023, 91, 15. [Google Scholar] [CrossRef]
- Atti-Santos, A.C.; Rossato, M.; Pauletti, G.F.; Rota, L.D.; Rech, J.C.; Pansera, M.R.; Agostini, F.; Serafini, L.A.; Moyna, P. Physico-chemical evaluation of Rosmarinus officinalis L. essential oils. Braz. Arch. Biol. Technol. 2005, 48, 1035–1039. [Google Scholar] [CrossRef]
- Nieto, G.; Ros, G.; Castillo, J. Antioxidant and antimicrobial properties of rosemary (Rosmarinus officinalis, L.): A review. Medicines 2018, 5, 98. [Google Scholar] [CrossRef] [PubMed]
- Bozin, B.; Mimica-Dukic, N.; Samojlik, I.; Jovin, E. Antimicrobial and antioxidant properties of rosemary and sage (Rosmarinus officinalis L. and Salvia officinalis L., Lamiaceae) essential oils. J. Agric. Food Chem. 2007, 55, 7879–7885. [Google Scholar] [CrossRef]
- Yusnaini, R.; Nasution, R.; Saidi, N.; Arabia, T.; Idroes, R.; Ikhsan, I.; Bahtiar, R.; Iqhrammullah, M. Ethanolic extract from Limonia acidissima L. fruit attenuates serum uric acid level via URAT1 in potassium oxonate-induced hyperuricemic rats. Pharmaceuticals 2023, 16, 419. [Google Scholar] [CrossRef]
- de Souza, E.L. Insights into the current evidence on the effects of essential oils toward beneficial microorganisms in foods with a special emphasis to lactic acid bacteria—A review. Trends Food Sci. Technol. 2021, 114, 333–341. [Google Scholar] [CrossRef]
- Hashemi, S.M.B.; Mousavi Khaneghah, A.; Kontominas, M.G.; Eş, I.; Sant’Ana, A.S.; Martinez, R.R.; Drider, D. Fermentation of sarshir (kaymak) by lactic acid bacteria: Antibacterial activity, antioxidant properties, lipid and protein oxidation and fatty acid profile. J. Sci. Food Agric. 2017, 97, 4595–4603. [Google Scholar] [CrossRef]
- Akarca, G.; Tomar, O.; Çaglar, A. Production of Afyon kaymak with traditional and technological methods. J. Food Sci. Eng. 2014, 4, 115–119. [Google Scholar]
- Cakmakci, S.; Hayaloglu, A.A. Evaluation of the chemical, microbiological and volatile aroma characteristics of Ispir Kaymak, a traditional Turkish dairy product. Int. J. Dairy Technol. 2011, 64, 444–450. [Google Scholar] [CrossRef]
- Albay, Z.; Şimşek, B. Tarçın ve Tarçın Uçucu Yağı ile Üretilen Kaymakların Bazı Özelliklerinin Belirlenmesi. Ed. Özgür Doğan Gürcü 2019, 296, 191–203. [Google Scholar]
- Bajalan, I.; Rouzbahani, R.; Ghasemi Pirbalouti, A.; Maggi, F. Quali-quantitative variation of essential oil from Iranian rosemary (Rosmarinus officinalis L.) accessions according to environmental factors. J. Essent. Oil Res. 2018, 30, 16–24. [Google Scholar] [CrossRef]
- Oualdi, I.; Diass, K.; Azizi, S.-E.; Dalli, M.; Touzani, R.; Gseyra, N.; Yousfi, E.B. Rosmarinus officinalis essential oils from Morocco: New advances on extraction, GC/MS analysis, and antioxidant activity. Nat. Prod. Res. 2022, 1–6. [Google Scholar] [CrossRef]
- Ozogul, Y.; Boğa, E.K.; Akyol, I.; Durmus, M.; Ucar, Y.; Regenstein, J.M.; Köşker, A.R. Antimicrobial activity of thyme essential oil nanoemulsions on spoilage bacteria of fish and food-borne pathogens. Food Biosci. 2020, 36, 100635. [Google Scholar] [CrossRef]
- Rashidipour, M.; Ashrafi, B.; Hadavand, S.; Beyranvand, F.; Zareivenovel, M. Evaluation of the Chemical Compounds and the Antibacterial, Antioxidant and Cytotoxic Activities of Echinophora Cinerea Boiss Essential oil. Herb. Med. J. 2020, 5, 1–10. [Google Scholar]
- Saleh, A.; Al Kamaly, O.; Alanazi, A.S.; Noman, O. Phytochemical Analysis and Antimicrobial Activity of Rosmarinus officinalis L. Growing in Saudi Arabia: Experimental and Computational Approaches. Processes 2022, 10, 2422. [Google Scholar] [CrossRef]
- Mattazi, N.; Farah, A.; Fadil, M.; Chraibi, M.; Benbrahim, K. Essential oils analysis and antibacterial activity of the leaves of Rosmarinus officinalis, Salvia officinalis and Mentha piperita cultivated in Agadir (Morocco). Int. J. Pharm. Pharm. Sci. 2015, 7, 73–79. [Google Scholar]
- Azizkhani, M.; Jafari Kiasari, F.; Tooryan, F.; Shahavi, M.H.; Partovi, R. Preparation and evaluation of food-grade nanoemulsion of tarragon (Artemisia dracunculus L.) essential oil: Antioxidant and antibacterial properties. J. Food Sci. Technol. 2021, 58, 1341–1348. [Google Scholar] [CrossRef] [PubMed]
- Noori, S.; Zeynali, F.; Almasi, H. Antimicrobial and antioxidant efficiency of nanoemulsion-based edible coating containing ginger (Zingiber officinale) essential oil and its effect on safety and quality attributes of chicken breast fillets. Food Control 2018, 84, 312–320. [Google Scholar] [CrossRef]
- Gul, O.; Saricaoglu, F.T.; Besir, A.; Atalar, I.; Yazici, F. Effect of ultrasound treatment on the properties of nano-emulsion films obtained from hazelnut meal protein and clove essential oil. Ultrason. Sonochem. 2018, 41, 466–474. [Google Scholar] [CrossRef]
- Goudoum, A.; Abdou, A.B.; Ngamo, L.S.T.; Ngassoum, M.B.; Mbofung, C.M. Antioxidant activities of essential oil of Bidens pilosa (Linn. Var. Radita) used for the preservation of food qualities in North Cameroon. Food Sci. Nutr. 2016, 4, 671–678. [Google Scholar] [CrossRef] [PubMed]
- Hashemi, M.B.; Niakousari, M.; Saharkhiz, M.J. Antioxidant activity of Satureja bachtiarica Bunge essential oil in rapeseed oil irradiated with UV rays. Eur. J. Lipid Sci. Technol. 2011, 113, 1132–1137. [Google Scholar] [CrossRef]
- Ergüden, B. Phenol group of terpenoids is crucial for antibacterial activity upon ion leakage. Lett. Appl. Microbiol. 2021, 73, 438–445. [Google Scholar] [CrossRef]
- El-Sayed, S.M.; Youssef, A.M. Potential application of herbs and spices and their effects in functional dairy products. Heliyon 2019, 5, e01989. [Google Scholar] [CrossRef]
- Puvača, N.; Milenković, J.; Galonja Coghill, T.; Bursić, V.; Petrović, A.; Tanasković, S.; Pelić, M.; Ljubojević Pelić, D.; Miljković, T. Antimicrobial activity of selected essential oils against selected pathogenic bacteria: In vitro study. Antibiotics 2021, 10, 546. [Google Scholar] [CrossRef]
- Kamel, D.G.; Mansour, A.I.; El-Diin, M.A.N.; Hammam, A.R.; Mehta, D.; Abdel-Rahman, A.M. Using Rosemary Essential Oil as a Potential Natural Preservative during Stirred-like Yogurt Making. Foods 2022, 11, 1993. [Google Scholar] [CrossRef]
- Kontogianni, V.G.; Kasapidou, E.; Mitlianga, P.; Mataragas, M.; Pappa, E.; Kondyli, E.; Bosnea, L. Production, characteristics and application of whey protein films activated with rosemary and sage extract in preserving soft cheese. LWT 2022, 155, 112996. [Google Scholar] [CrossRef]
- Dunn, L.L.; Davidson, P.M.; Critzer, F.J. Antimicrobial efficacy of an array of essential oils against lactic acid bacteria. J. Food Sci. 2016, 81, M438–M444. [Google Scholar] [CrossRef]
- Moro, A.; Librán, C.M.; Berruga, M.I.; Carmona, M.; Zalacain, A. Dairy matrix effect on the transference of rosemary (Rosmarinus officinalis) essential oil compounds during cheese making. J. Sci. Food Agric. 2015, 95, 1507–1513. [Google Scholar] [CrossRef] [PubMed]
- de Souza, E.L. The effects of sublethal doses of essential oils and their constituents on antimicrobial susceptibility and antibiotic resistance among food-related bacteria: A review. Trends Food Sci. Technol. 2016, 56, 1–12. [Google Scholar] [CrossRef]
- Diniz-Silva, H.T.; Brandão, L.R.; de Sousa Galvão, M.; Madruga, M.S.; Maciel, J.F.; de Souza, E.L.; Magnani, M. Survival of Lactobacillus acidophilus LA-5 and Escherichia coli O157: H7 in Minas Frescal cheese made with oregano and rosemary essential oils. Food Microbiol. 2020, 86, 103348. [Google Scholar] [CrossRef] [PubMed]
- Cheng, H. Volatile flavor compounds in yogurt: A review. Crit. Rev. Food Sci. Nutr. 2010, 50, 938–950. [Google Scholar] [CrossRef] [PubMed]
- Hashemi, S.M.B.; Gholamhosseinpour, A.; Abedi, E. Biopreservative potential of Lactobacillus strains in yoghurt dessert. J. Food Meas. Charact. 2021, 15, 1634–1643. [Google Scholar] [CrossRef]
- Ullah, R.; Nadeem, M.; Imran, M. Omega-3 fatty acids and oxidative stability of ice cream supplemented with olein fraction of chia (Salvia hispanica L.) oil. Lipids Health Dis. 2017, 16, 34. [Google Scholar] [CrossRef]
- Shimada, Y.; Roos, Y.; Karel, M. Oxidation of methyl linoleate encapsulated in amorphous lactose-based food model. J. Agric. Food Chem. 1991, 39, 637–641. [Google Scholar] [CrossRef]
- Hashemi, S.M.B.; Shahidi, F.; Mortazavi, S.A.; Milani, E.; Eshaghi, Z. Effect of Lactobacillus plantarum LS5 on oxidative stability and lipid modifications of Doogh. Int. J. Dairy Technol. 2016, 69, 550–558. [Google Scholar] [CrossRef]
- Batool, M.; Nadeem, M.; Imran, M.; Gulzar, N.; Shahid, M.Q.; Shahbaz, M.; Ajmal, M.; Khan, I.T. Impact of vitamin E and selenium on antioxidant capacity and lipid oxidation of cheddar cheese in accelerated ripening. Lipids Health Dis. 2018, 17, 79. [Google Scholar] [CrossRef] [PubMed]
- Citta, A.; Folda, A.; Scalcon, V.; Scutari, G.; Bindoli, A.; Bellamio, M.; Feller, E.; Rigobello, M.P. Oxidative changes in lipids, proteins, and antioxidants in yogurt during the shelf life. Food Sci. Nutr. 2017, 5, 1079–1087. [Google Scholar] [CrossRef]
- Tseng, A.; Zhao, Y. Wine grape pomace as antioxidant dietary fibre for enhancing nutritional value and improving storability of yogurt and salad dressing. Food Chem. 2013, 138, 356–365. [Google Scholar] [CrossRef]
- Nadeem, M.; Abdullah, M.; Hussain, I.; Inayat, S.; Javid, A.; Zahoor, Y. Antioxidant potential of Moringa oleifera leaf extract for the stabilisation of butter at refrigeration temperature. Czech J. Food Sci. 2013, 31, 332–339. [Google Scholar] [CrossRef]
- Olmedo, R.H.; Nepote, V.; Grosso, N.R. Preservation of sensory and chemical properties in flavoured cheese prepared with cream cheese base using oregano and rosemary essential oils. LWT Food Sci. Technol. 2013, 53, 409–417. [Google Scholar] [CrossRef]
- Branciari, R.; Ranucci, D.; Trabalza-Marinucci, M.; Codini, M.; Orru, M.; Ortenzi, R.; Forte, C.; Ceccarini, M.R.; Valiani, A. Evaluation of the antioxidant properties and oxidative stability of Pecorino cheese made from the raw milk of ewes fed Rosmarinus officinalis L. leaves. Int. J. Food Sci. Technol. 2015, 50, 558–565. [Google Scholar] [CrossRef]
- Qiu, X.; Jacobsen, C.; Sørensen, A.-D.M. The effect of rosemary (Rosmarinus officinalis L.) extract on the oxidative stability of lipids in cow and soy milk enriched with fish oil. Food Chem. 2018, 263, 119–126. [Google Scholar] [CrossRef]
- Ullah, H.; Hussain, Y.; Santarcangelo, C.; Baldi, A.; Di Minno, A.; Khan, H.; Xiao, J.; Daglia, M. Natural Polyphenols for the Preservation of Meat and Dairy Products. Molecules 2022, 27, 1906. [Google Scholar] [CrossRef]
- British Pharmacopoeia Commission, HMS Office. 2. London 1980, 2, 109–110. Available online: https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Pharmacopoeia%2C+B.%2B+1980%2B109-110.&btnG= (accessed on 3 March 2023).
- Hashemi, S.M.B.; Nikmaram, N.; Esteghlal, S.; Khaneghah, A.M.; Niakousari, M.; Barba, F.J.; Roohinejad, S.; Koubaa, M. Efficiency of Ohmic assisted hydrodistillation for the extraction of essential oil from oregano (Origanum vulgare subsp. viride) spices. Innov. Food Sci. Emerg. Technol. 2017, 41, 172–178. [Google Scholar] [CrossRef]
- Adams, R.P. Identification of Essential Oil Components by Gas Chromatography/Mass Spectrometry, 5th ed.; Texensis Publishing: Carol Stream, IL, USA, 2017. [Google Scholar]
- Hashemi, S.M.B.; Khaneghah, A.M.; Koubaa, M.; Barba, F.J.; Abedi, E.; Niakousari, M.; Tavakoli, J. Extraction of essential oil from Aloysia citriodora Palau leaves using continuous and pulsed ultrasound: Kinetics, antioxidant activity and antimicrobial properties. Process Biochem. 2018, 65, 197–204. [Google Scholar] [CrossRef]
- Burits, M.; Bucar, F. Antioxidant activity of Nigella sativa essential oil. Phytother. Res. 2000, 14, 323–328. [Google Scholar] [CrossRef] [PubMed]
- Bligh, E.G.; Dyer, W.J. A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 1959, 37, 911–917. [Google Scholar] [CrossRef] [PubMed]
- Shantha, N.C.; Decker, E.A. Rapid, sensitive, iron-based spectrophotometric methods for determination of peroxide values of food lipids. J. AOAC Int. 1994, 77, 421–424. [Google Scholar] [CrossRef] [PubMed]
- AOCS. Official, Methods and Recommended Practices of the American Oil Chemists’ Society, Method: Cd 18-90; AOCS Press: Champaign, IL, USA, 1998. [Google Scholar]
N. | Constituents | Retention Index (RI) | Relative Percentage (%) |
---|---|---|---|
1 | Tricyclene | 928 | 0.4 |
2 | α-Thujene | 933 | 0.05 |
3 | α-Pinene | 941 | 24.62 |
4 | Camphene | 955 | 8.1 |
5 | Verbenene | 971 | 1.22 |
6 | Sabinene | 980 | 0.12 |
7 | β-Pinene | 982 | 1.09 |
8 | Octen 3-ol | 983 | 0.1 |
9 | 3-Octanone | 987 | 1.3 |
10 | Myrcene | 992 | 4.1 |
11 | 3-Octanol | 994 | 0.1 |
12 | 6-Methyl-5-Hepten-2-ol | 996 | 0.1 |
13 | α-Phellandrene | 1005 | 0.1 |
14 | δ-2-Carene | 1006 | 0.1 |
15 | α-Terpinene | 1021 | 1 |
16 | para-Cymene | 1031 | 1 |
17 | Limonene | 1034 | 6.1 |
18 | 1,8-Cineole | 1039 | 14.1 |
19 | Z-β-Ocimen | 1044 | 0.06 |
20 | Benzene acetaldehyde | 1049 | 0.1 |
21 | γ-Terpinene | 1066 | 1.1 |
22 | Cis-Sabinene hydrate | 1081 | 0.06 |
23 | Terpinolene | 1095 | 1.1 |
24 | Linalool | 1107 | 2.13 |
25 | Phenyl ethyl alcohol | 1111 | 0.022 |
26 | endo-Fenchol | 1125 | 0.05 |
27 | Chrysanthenone | 1139 | 0.6 |
28 | Camphor | 1157 | 13.53 |
29 | Camphene hydrate | 1159 | 0.07 |
30 | Trans-Pinocamphone | 1171 | 0.45 |
31 | Pinocarvone | 1174 | 0.17 |
32 | Borneol | 1177 | 2.13 |
33 | n-Nonanol | 1178 | 0.56 |
34 | Terpine-4-ol | 1190 | 0.62 |
35 | α-Terpineol | 1194 | 1.09 |
36 | Myrtenol | 1207 | 0.3 |
37 | Verbenone | 1220 | 5.21 |
38 | Citronellol | 1233 | 0.1 |
39 | Carvone | 1248 | 0.1 |
40 | Geraniol | 1259 | 0.3 |
41 | Bornyl acetate | 1298 | 3.4 |
42 | para-Cymene-7-ol | 1299 | 0.1 |
43 | Trans-Sabinyl acetate | 1302 | 0.04 |
44 | Tridecane | 1305 | 0.09 |
45 | Neryl acetate | 1373 | 0.1 |
46 | Geranyl acetate | 1388 | 0.1 |
47 | β-Caryophyllene | 1428 | 1.8 |
48 | Geranyl acetone | 1462 | 0.1 |
49 | α-Humulene | 1464 | 0.27 |
50 | Caryophyllene oxide | 1590 | 0.11 |
51 | Eicosane | 2007 | 0.3 |
Total identified | 99.96 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hashemi, S.M.B.; Gholamhosseinpour, A.; Barba, F.J. Rosmarinus officinalis L. Essential Oils Impact on the Microbiological and Oxidative Stability of Sarshir (Kaymak). Molecules 2023, 28, 4206. https://doi.org/10.3390/molecules28104206
Hashemi SMB, Gholamhosseinpour A, Barba FJ. Rosmarinus officinalis L. Essential Oils Impact on the Microbiological and Oxidative Stability of Sarshir (Kaymak). Molecules. 2023; 28(10):4206. https://doi.org/10.3390/molecules28104206
Chicago/Turabian StyleHashemi, Seyed Mohammad Bagher, Aliakbar Gholamhosseinpour, and Francisco J. Barba. 2023. "Rosmarinus officinalis L. Essential Oils Impact on the Microbiological and Oxidative Stability of Sarshir (Kaymak)" Molecules 28, no. 10: 4206. https://doi.org/10.3390/molecules28104206
APA StyleHashemi, S. M. B., Gholamhosseinpour, A., & Barba, F. J. (2023). Rosmarinus officinalis L. Essential Oils Impact on the Microbiological and Oxidative Stability of Sarshir (Kaymak). Molecules, 28(10), 4206. https://doi.org/10.3390/molecules28104206