Interfacial Adhesion Property of Asphalt Binder with Calcium Alginate Carrier of Asphalt Rejuvenator
Abstract
:1. Introduction
2. Result and Discussion
2.1. Analysis of Interfacial Adhesion Behavior
2.1.1. The Interfacial Wetting Process
2.1.2. The Permeation Process
2.2. Evaluation of Interfacial Adhesion Strength
3. Establishment of Molecular Models
3.1. Molecular Model of Asphalt Binder
3.2. Molecular Model of Calcium Alginate Carrier
3.3. Molecular Model of Interfacial Adhesion Model
4. Molecular Dynamics Simulation of Interfacial Adhesion Behavior
4.1. Simulation Details
4.2. Thermodynamic Equilibrium State
5. Conclusions
- (1)
- Asphalt binder moved towards the calcium alginate carrier during the simulation period and finally adsorbed on its surface, indicating that they were compatible with each other.
- (2)
- Asphalt binder wetted the surface of the calcium alginate carrier, and permeated into the porous structure of calcium alginate, forming a good interface interaction effect. Two indexes, namely permeation depth and permeation degree, were proposed to quantitatively characterize the permeation behavior of asphalt binder into calcium alginate carrier.
- (3)
- It was very hard for asphalt molecules to infiltrate into the interior of TiO2, and thus asphalt molecules could only accumulate and spread on the surface of TiO2.
- (4)
- The interfacial adhesion strength between asphalt binder and calcium alginate carrier can satisfy the requirements of the asphalt mixture. In addition, the formation of interfacial adhesion strength between asphalt binder and calcium alginate carrier mainly depended on the Van der Waals interactions, followed by electrostatic interactions.
- (5)
- The interfacial adhesion property could be further improved by a certain degree of asphalt aging and the addition of titanium dioxide in the calcium alginate carrier.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Li, Y.; Hao, P.W.; Zhang, M.Y. Fabrication, Characterization and Assessment of the Capsules Containing Rejuvenator for Improving the Self-Healing Performance of Asphalt Materials: A Review. J. Clean. Prod. 2021, 287, 125079. [Google Scholar] [CrossRef]
- Micaelo, R.; Al-Mansoori, T.; Garcia, A. Study of the Mechanical Properties and Self-Healing Ability of Asphalt Mixture Containing Calcium-Alginate Capsules. Constr. Build. Mater. 2016, 123, 734–744. [Google Scholar] [CrossRef]
- Tabaković, A.; Braak, D.; van Gerwen, M.; Copuroglu, O.; Post, W.; Garcia, S.J.; Schlangen, E.; García, S.J.; Schlangen, E.; Van Gerwen, M.; et al. The Compartmented Alginate Fibres Optimisation for Bitumen Rejuvenator Encapsulation. J. Traffic Transp. Eng. Engl. Ed. 2017, 4, 347–359. [Google Scholar] [CrossRef]
- Xu, S.; Tabaković, A.; Liu, X.; Schlangen, E. Calcium Alginate Capsules Encapsulating Rejuvenator as Healing System for Asphalt Mastic. Constr. Build. Mater. 2018, 169, 379–387. [Google Scholar] [CrossRef]
- Ruiz-Riancho, N.; Garcia, A.; Grossegger, D.; Saadoon, T.; Hudson-Griffiths, R. Properties of Ca-Alginate Capsules to Maximise Asphalt Self-Healing Properties. Constr. Build. Mater. 2021, 284, 122728. [Google Scholar] [CrossRef]
- Li, Y.; Hao, P.W.; Zhang, M.Y.; Sun, B.W.; Liu, J.W.; Li, N.B. Synthesis and Characterization of Calcium Alginate Capsules Encapsulating Soybean Oil for in Situ Rejuvenation of Aged Asphalt. J. Mater. Civ. Eng. 2021, 33, 4021310. [Google Scholar] [CrossRef]
- Li, Y.; Hao, P.; Li, N. Preparation and Properties of a Novel Rejuvenator-Loaded Fiber for Asphalt Pavement. Constr. Build. Mater. 2022, 324, 126687. [Google Scholar] [CrossRef]
- Xu, S.; Tabakovic, A.; Liu, X.; Palin, D.; Schlangen, E. Optimization of the Calcium Alginate Capsules for Self-Healing Asphalt. Appl. Sci. 2019, 9, 468. [Google Scholar] [CrossRef]
- Tabaković, A.; Post, W.; Cantero, D.; Copuroglu, O.; García, S.J.; Schlangen, E. The Reinforcement and Healing of Asphalt Mastic Mixtures by Rejuvenator Encapsulation in Alginate Compartmented Fibres. Smart Mater. Struct. 2016, 25, 84003. [Google Scholar] [CrossRef]
- Norambuena-Contreras, J.; Liu, Q.T.; Zhang, L.; Wu, S.P.; Yalcin, E.; García, A. Influence of Encapsulated Sunflower Oil on the Mechanical and Self-Healing Properties of Dense-Graded Asphalt Mixtures. Mater. Struct. 2019, 52, 78. [Google Scholar] [CrossRef]
- Zhang, L.; Liu, Q.T.; Wu, S.P.; Wang, Z.F.; Garcia, A. Effects of Self-Healing Capsule on Road Performance of Asphalt Mixture. J. Wuhan Univ. Techonol. 2018, 42, 39–43. [Google Scholar]
- Al-Mansoori, T.; Micaelo, R.; Artamendi, I.; Norambuena-Contreras, J.; García, A. Microcapsules for Self-Healing of Asphalt Mixture without Compromising Mechanical Performance. Constr. Build. Mater. 2017, 155, 1091–1100. [Google Scholar] [CrossRef]
- Al-Mansoori, T.; Norambuena-Contreras, J.; García, A. Effect of Capsule Addition and Healing Temperature on the Self-Healing Potential of Asphalt Mixtures. Mater. Struct. Constr. 2018, 51, 53. [Google Scholar] [CrossRef]
- Al-Mansoori, T.; Norambuena-Contreras, J.; Micaelo, R.; García, A. Self-Healing of Asphalt Mastic by the Action of Polymeric Capsules Containing Rejuvenators. Constr. Build. Mater. 2018, 161, 330–339. [Google Scholar] [CrossRef]
- Norambuena-Contreras, J.; Arteaga-Perez, L.E.; Guadarrama-Lezama, A.Y.; Briones, R.; Vivanco, J.F.; Gonzalez-Torre, I. Microencapsulated Bio-Based Rejuvenators for the Self-Healing of Bituminous Materials. Materials 2020, 13, 1446. [Google Scholar] [CrossRef]
- Shu, B.A.; Wu, S.P.; Dong, L.J.; Wang, Q.; Liu, Q.T. Microfluidic Synthesis of Ca-Alginate Microcapsules for Self-Healing of Bituminous Binder. Materials 2018, 11, 630. [Google Scholar] [CrossRef]
- Shu, B.A.; Wu, S.P.; Dong, L.J.; Li, C.; Kong, D.Z.; Yang, X.; Norambuena-Contreras, J.; Liu, Q.T.; Wang, Q. Synthesis and Properties of Microwave and Crack Responsive Fibers Encapsulating Rejuvenator for Bitumen Self-Healing. Mater. Res. Express 2019, 6, 85306. [Google Scholar] [CrossRef]
- García, Á.; Schlangen, E.; van de Ven, M. Properties of Capsules Containing Rejuvenators for Their Use in Asphalt Concrete. Fuel 2011, 90, 583–591. [Google Scholar] [CrossRef]
- Gao, Y.; Zhang, Y.; Yang, Y.; Zhang, J.; Gu, F. Molecular Dynamics Investigation of Interfacial Adhesion between Oxidised Bitumen and Mineral Surfaces. Appl. Surf. Sci. 2019, 479, 449–462. [Google Scholar] [CrossRef]
- Ren, S.; Liu, X.; Lin, P.; Gao, Y.; Erkens, S. Review on the Diffusive and Interfacial Performance of Bituminous Materials: From a Perspective of Molecular Dynamics Simulation. J. Mol. Liq. 2022, 366, 120363. [Google Scholar] [CrossRef]
- Ma, X.; Wu, J.; Liu, Q.; Ren, W.; Oeser, M. Molecular Dynamics Simulation of the Bitumen-Aggregate System and the Effect of Simulation Details. Constr. Build. Mater. 2021, 285, 122886. [Google Scholar] [CrossRef]
- Li, R.; Leng, Z.; Yang, J.; Lu, G.; Huang, M.; Lan, J.; Zhang, H.; Bai, Y.; Dong, Z. Innovative Application of Waste Polyethylene Terephthalate (PET) Derived Additive as an Antistripping Agent for Asphalt Mixture: Experimental Investigation and Molecular Dynamics Simulation. Fuel 2021, 300, 121015. [Google Scholar] [CrossRef]
- Cui, B.; Gu, X.; Wang, H.; Hu, D. Numerical and Experimental Evaluation of Adhesion Properties of Asphalt-Aggregate Interfaces Using Molecular Dynamics Simulation and Atomic Force Microscopy. Road Mater. Pavement Des. 2021, 23, 1564–1584. [Google Scholar] [CrossRef]
- Wang, P.; Dong, Z.J.; Tan, Y.Q.; Liu, Z.Y. Research on the Formation Mechanism of Bee-like Structures in Asphalt Binders Based on Molecular Simulations. China J. Highw. Transp. 2016, 29, 9–16. [Google Scholar] [CrossRef]
- Zhu, J.Y. Molecular Dynamic Simulation of Self-Healing Behavior of Asphalt Binder. J. Build. Mater. 2018, 21, 433–439. [Google Scholar]
- Zhang, L.Q.; Greenfield, M.L. Molecular Orientation in Model Asphalts Using Molecular Simulation. Energy Fuels 2007, 21, 1102–1111. [Google Scholar] [CrossRef]
- Zhang, L.; Greenfield, M.L. Relaxation Time, Diffusion, and Viscosity Analysis of Model Asphalt Systems Using Molecular Simulation. J. Chem. Phys. 2007, 127, 194502. [Google Scholar] [CrossRef] [PubMed]
- Li, D.D.; Greenfield, M.L. Chemical Compositions of Improved Model Asphalt Systems for Molecular Simulations. Fuel 2014, 115, 347–356. [Google Scholar] [CrossRef]
- Hansen, J.S.; Lemarchand, C.A.; Nielsen, E.; Dyre, J.C.; Schrøder, T. Four-Component United-Atom Model of Bitumen. J. Chem. Phys. 2013, 138, 94508. [Google Scholar] [CrossRef]
- Sun, D.Q.; Sun, G.Q.; Zhu, X.Y.; Ye, F.Y.; Xu, J.Y. Intrinsic Temperature Sensitive Self-Healing Character of Asphalt Binders Based on Molecular Dynamics Simulations. Fuel 2018, 211, 609–620. [Google Scholar] [CrossRef]
- Guo, F.C.; Zhang, J.P.; Pei, J.Z.; Zhou, B.C.; Hu, Z. Study on the Mechanical Properties of Rubber Asphalt by Molecular Dynamics Simulation. J. Mol. Model. 2019, 25, 365. [Google Scholar] [CrossRef] [PubMed]
- Xu, Z.; Wang, Y.; Cao, J.; Chai, J.; Cao, C.; Si, Z.; Li, Y. Adhesion between Asphalt Molecules and Acid Aggregates under Extreme Temperature: A ReaxFF Reactive Molecular Dynamics Study. Constr. Build. Mater. 2021, 285, 122882. [Google Scholar] [CrossRef]
- Wang, H.N.; Ding, H.Y.; Feng, P.N.; Shao, L.L.; Qu, X.; You, Z.P. Advances on Molecular Simulation Technique in Asphalt Mixture. J. Traffic Transp. Eng. 2020, 20, 1–14. [Google Scholar]
- Liang, B.; Lan, F.; Zheng, J.L. Research and Development of Relationship between Aging Mechanism and Fatigue Properties of Asphalt. Mater. Reports 2021, 35, 09083–09096. [Google Scholar]
- Wang, Y.H.; Zhao, K.C.; Glover, C.; Chen, L.; Wen, Y.; Chong, D.; Hu, C.C. Effects of Aging on the Properties of Asphalt at the Nanoscale. Constr. Build. Mater. 2015, 80, 244–254. [Google Scholar] [CrossRef]
- Pan, J.; Tarefder, R.A. Investigation of Asphalt Aging Behaviour due to Oxidation Using Molecular Dynamics Simulation. Mol. Simul. 2016, 42, 667–678. [Google Scholar] [CrossRef]
- Xu, G.J.; Wang, H. Molecular Dynamics Study of Oxidative Aging Effect on Asphalt Binder Properties. Fuel 2017, 188, 1–10. [Google Scholar] [CrossRef]
- Zhang, H.; Huang, M.; Hong, J.; Lai, F.; Gao, Y. Molecular Dynamics Study on Improvement Effect of bis(2-Hydroxyethyl) Terephthalate on Adhesive Properties of Asphalt-Aggregate Interface. Fuel 2021, 285, 119175. [Google Scholar] [CrossRef]
Shell Material | Asphalt Binder | Wadhesion (mJ/m2) | Wcohesive (mJ/m2) | S (mJ/m2) |
---|---|---|---|---|
Calcium alginate | Unaged | −114.18 | −80.26 | 42.19 |
Titanium dioxide | Unaged | −205.82 | −80.26 | 125.56 |
Calcium alginate | Aged | −186.37 | −83.41 | 102.96 |
Titanium dioxide | Aged | −210.87 | −83.41 | 127.46 |
Interface Type | Permeation Depth (Å) | Permeation Degree (Å) | ||||||
---|---|---|---|---|---|---|---|---|
Asp 1 | Res 2 | Aro 3 | Sat 4 | Asp | Res | Aro | Sat | |
Calcium alginate–unaged asphalt binder | 4.9 | 8.3 | 7.8 | 10.4 | 5.5 | 10.4 | 7.9 | 31.6 |
Titanium dioxide–unaged asphalt binder | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Calcium alginate–aged asphalt binder | 6.6 | 11.8 | 12.8 | 11.8 | 13.7 | 14.5 | 18.0 | 33.9 |
Titanium dioxide–aged asphalt binder | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Interface Type | ∆Evalence 1 (kcal/mol) | ∆EvdW 2 (kcal/mol) | ∆Eelec 3 (kcal/mol) | ∆Eadhesion (kcal/mol) | Wadhesion (mJ/m2) |
---|---|---|---|---|---|
Calcium alginate–unaged asphalt binder | 0 | −214.83 | −21.56 | −236.39 | −114.18 |
Titanium dioxide–unaged asphalt binder | 0 | −398.26 | −27.85 | −426.11 | −205.82 |
Calcium alginate–aged asphalt binder | 0 | −204.79 | −181.50 | −386.29 | −186.37 |
Titanium dioxide–aged asphalt binder | 0 | −405.05 | −32.01 | −437.06 | −210.87 |
Chemical Component | Code | Number | Pre-Aging | Post-Aging | ||
---|---|---|---|---|---|---|
Chemical Formula | Molecular Weight (g/mol) | Chemical Formula | Molecular Weight (g/mol) | |||
Asphaltene | a | 2 | C66H81N | 888.4 | C66H67NO7 | 986.3 |
b | 3 | C42H54O | 574.9 | C42H46O5 | 630.8 | |
c | 3 | C51H62S | 707.1 | C51H54O5S | 779.0 | |
Resin | d | 4 | C40H59N | 553.9 | C40H55NO2 | 581.9 |
e | 4 | C36H57N | 503.9 | C36H53NO2 | 531.8 | |
f | 15 | C18H10S2 | 290.4 | C18H10O2S2 | 322.4 | |
g | 4 | C40H60S | 573.0 | C40H56O3S | 616.9 | |
h | 5 | C29H50O | 414.7 | C29H48O2 | 428.7 | |
Aromatic | i | 11 | C35H44 | 464.7 | C35H36O4 | 520.7 |
j | 13 | C30H46 | 406.7 | C30H42O2 | 434.7 | |
Saturate | k | 4 | C35H62 | 482.9 | C35H62 | 482.9 |
l | 4 | C30H62 | 422.8 | C30H62 | 422.8 |
Interface Type | Size (Å3) | Nasphalt 1 | Nshell 2 | Nsum 3 |
---|---|---|---|---|
Calcium alginate-unaged asphalt binder | 37.93 × 37.93 × 122.29 | 5572 | 3720 | 9292 |
Calcium alginate-aged asphalt binder | 37.95 × 37.95 × 124.29 | 5472 | 3720 | 9192 |
Titanium dioxide-unaged asphalt binder | 37.93 × 37.93 × 115.69 | 5572 | 3840 | 9412 |
Titanium dioxide-aged asphalt binder | 37.95 × 37.95 × 115.96 | 5472 | 3840 | 9312 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Sun, B.; Wu, Z.; Wang, L.; Guo, X. Interfacial Adhesion Property of Asphalt Binder with Calcium Alginate Carrier of Asphalt Rejuvenator. Molecules 2023, 28, 4447. https://doi.org/10.3390/molecules28114447
Li Y, Sun B, Wu Z, Wang L, Guo X. Interfacial Adhesion Property of Asphalt Binder with Calcium Alginate Carrier of Asphalt Rejuvenator. Molecules. 2023; 28(11):4447. https://doi.org/10.3390/molecules28114447
Chicago/Turabian StyleLi, Yan, Bowei Sun, Zirui Wu, Lina Wang, and Xiaogang Guo. 2023. "Interfacial Adhesion Property of Asphalt Binder with Calcium Alginate Carrier of Asphalt Rejuvenator" Molecules 28, no. 11: 4447. https://doi.org/10.3390/molecules28114447
APA StyleLi, Y., Sun, B., Wu, Z., Wang, L., & Guo, X. (2023). Interfacial Adhesion Property of Asphalt Binder with Calcium Alginate Carrier of Asphalt Rejuvenator. Molecules, 28(11), 4447. https://doi.org/10.3390/molecules28114447