Photocatalytic Activity of the Blends Based on TiO2 Nanoparticles and Reduced Graphene Oxide for Degradation of Acetaminophen
Abstract
:1. Introduction
2. Results and Discussion
2.1. Optical Properties of TiO2/RGO Blends
2.2. Photocatalytic Properties of the TiO2/RGO Blends
2.3. Kinetic of the AC Photodegradation in the Presence of the TiO2/RGO Blends
2.4. The Vibrational Properties of the TiO2/RGO Blend after AC Photodegradation
2.5. The Stability of the TiO2/RGO Blends
3. Materials and Methods
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Alvarez-Munoz, D.; Llorca, M.; Blasco, J.; Barcelo, D. Marine Ecotoxicology, Current Knowledge and Future Issues, Chapter 1. Contaminants in the Marine Environment, 1st ed.; Blasco, J., Chapman, P.M., Campana, O., Hampel, M., Eds.; Elsevier: Amsterdam, The Netherlands; Academic Press: Cambridge, MA, USA, 2016. [Google Scholar]
- Haag, G.; Diener, H.C.; May, A.; Meyer, C.; Mark, H.; Straube, A.; Wessely, P.; Evers, S. Self-medication of migraine and tension type headache summary of the evidence based recommendation of the Deutsche Migraine und Kopbschmerzgesellschaft (DMKG), the Deutsch Gesellschaft fur Neurologie (DGN), the Osterreichische Kopfschmerzgesellschaft (OKSG) and the Schweizerische Kopfwegesellschaft (SKG). J. Headache Pain 2011, 12, 201–207. [Google Scholar] [CrossRef] [Green Version]
- Hochberg, M.C.; Altman, R.D.; April, K.T.; Benkhalti, M.; Guyatt, G.; McGowan, J.; Towheed, T.; Welch, V.; Wells, G.; Tugwell, P. Amerian College of Rheumatology 2012 recommendation for the use of non-pharmacology and pharmacologic therapies in osteoarthritis of the hand, hip and knee. Arthritis Care Res. (Hoboken) 2012, 64, 465–474. [Google Scholar] [CrossRef] [Green Version]
- Tan, S.H.S.; Hong, C.C.; Saha, S.; Murphy, D.; Hui, J.H. Medications on COVID-19 patients: Summarizing the current literature from on orthopedic perspective. Int. Orthop. 2020, 44, 1599–1603. [Google Scholar] [CrossRef] [PubMed]
- Perrotd, D.A.; Pira, T.; Goodenough, B.; Champion, G.D. Efficacy and safety of acetaminophen vs. ibuprofen for treating chil-dren’s pain or fever: A meta-analysis. Arch. Pediatr. Adolesc. Med. 2004, 158, 521–526. [Google Scholar] [CrossRef]
- Lee, C.M.; Ab Aziz, N.A.B.; Palaniandy, P.; Amr, S.S.A. Performance of natural sunlight on paracetamol removal from synthetic pharmaceutical wastewater using heterogenous TiO2 photocatalyst. Desalination Water Treat. 2017, 78, 341–349. [Google Scholar] [CrossRef] [Green Version]
- Li, C.J.; Yang, W.T.; Chou, C.Y.; Liou, S.Y.H. Hollow mesoporous TiO2 microspheres for enhanced photocatalytic degradation of acetaminophen in water. Chemosphere 2016, 152, 490–495. [Google Scholar] [CrossRef]
- Lozano-Morales, S.A.; Morales, G.; Zavala, M.A.L.; Arce-Sarria, A.; Machuca-Martinez, F. Photocatalytic treatment of parace-tamol using TiO2 nanotubes, effect of pH. Processes 2019, 7, 319. [Google Scholar] [CrossRef] [Green Version]
- Lourdes, M.; Dalida, P.; Amer, K.M.S.; Su, C.C.; Lu, M.C. Photocatalytic degradation of acetaminophen in modified TiO2 under visible irradiation. Environ. Sci. Pollut. Res. 2014, 21, 1208–1216. [Google Scholar] [CrossRef]
- Benjedim, S.; Castelo-Quiben, J.; Bailon-Garcia, E.; Lotfi, E.M.; Perez-Cadenas, A.F.; Slovak, V.; Kalina, J.; Carrasco-Marin, F. Activated carbon-based colored titania nanoparticles with high visible radiation absorption and excellent photoactivity in the degradation of emerging drugs of wastewater. Carbon 2021, 178, 753–766. [Google Scholar] [CrossRef]
- Vaiano, V.; Sacco, O.; Matarangolo, M. Photocatalytic degradation of paracetamol under UV irradiation using TiO2-graphite composites. Catal. Today 2018, 315, 230–236. [Google Scholar] [CrossRef]
- Tao, H.; Liang, X.; Zhang, Q.; Cheng, C.T. Enhanced photoactivity of graphene/titanium dioxide nanotubes for removal of aceta-minophen. Appl. Surf. Sci. 2015, 324, 258–264. [Google Scholar] [CrossRef]
- Zhang, H.; Lv, X.; Li, Y.; Wang, Y.; Li, J. P25-graphene composite as a high performance photocatalyst. ACS Nano 2010, 4, 380–386. [Google Scholar] [CrossRef]
- Khavar, A.H.C.; Moussavi, G.; Mahjoub, A.R. The preparation of TiO2@rGO nanocomposite efficiently activated with UVA/LED and H2O2 for high rate oxidation of acetaminophen: Catalyst characterization and acetaminophen degradation and mineralization. Appl. Surf. Sci. 2018, 440, 963–973. [Google Scholar] [CrossRef]
- Bell, N.J.; Ng, Y.H.; Du, A.; Coster, H.; Smith, S.C.; Amal, R. Understanding the enhancement in photoelectrochemical properties of photocatalytically prepared TiO2-reduced graphene oxide composite. J. Phys. Chem. C 2011, 115, 6004–6009. [Google Scholar] [CrossRef]
- Zhang, G.; Sun, Y.; Zhang, C.; Yu, Z. Decomposition of acetaminophen in water by a gas phase dielectric barrier discharge plasma combined with TiO2-rGO nanocomposite: Mechanism and degradation pathway. J. Hazardous Mater. 2017, 323, 719–729. [Google Scholar] [CrossRef]
- Zhang, Q.; Bao, N.; Wang, X.; Hu, X.; Miao, X.; Chaker, M.; Ma, D. Advanced fabrication of chemically bonded graphene /TiO2 continuous fibers with enhanced broadband photocatalytic properties and involved mechanisms exploration. Sci. Rep. 2016, 6, 38066. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nourbakhsh, A.; Abbaspour, S.; Masood, M.; Mirsattari, S.N.; Vahedi, A.; Mackenzie, K.J.D. Photocatalytic properties of meso-porous TiO2 nanocomposites modified with carbon nanotubes and cooper. Ceram. Int. 2016, 42, 11901–11906. [Google Scholar] [CrossRef]
- Martins, P.M.; Ferreira, C.G.; Silva, A.R.; Magalhaes, B.; Alves, M.M.; Pereira, L.; Marques, P.A.A.P.; Melle-Franco, M.; Lancer-os-Mendez, S. TiO2/graphene and TiO2/graphene oxide nanocomposites for photocatalytic applications: A computer modeling and experimental study. Compos. Part B 2016, 145, 39–46. [Google Scholar] [CrossRef] [Green Version]
- Ahmad, M.M.; Mushtaq, S.; Al Qahtani, H.S.; Sedky, A.; Alam, M.W. Investigation of TiO2 nanoparticles synthesized by sol-gel method for effectual photodegradation, oxidation and reduction reaction. Crystals 2021, 11, 1456. [Google Scholar] [CrossRef]
- Perera, S.D.; Mariano, R.G.; Vu, K.; Nour, N.; Seitz, O.; Chabal, Y.; Balkus, K.J., Jr. Hydrothermal synthesis of graphene -TiO2 nanotube composites with enhanced photocatalytic activity. ACS Catal. 2012, 2, 949–956. [Google Scholar] [CrossRef]
- Li, Y.; Yan, J.; Su, Q.; Xie, E.; Lan, W. Preparation of graphene—TiO2 nanotubes/nanofibers composites as an enhanced visible light photocatalyst using a hybrid synthetic strategy. Mater Sci. Semicond. Process 2014, 27, 695–701. [Google Scholar] [CrossRef]
- Haldorai, Y.; Rengaraj, A.; Kwak, C.H.; Huh, Y.S.; Han, Y.-F. Fabrication of nanoTiO2@graphene composite: Reusable photocatalyst for hydrogen production, degradation of organic and inorganic pollutants. Synth. Met. 2014, 198, 10–18. [Google Scholar] [CrossRef]
- Zhang, Z.; Xiao, F.; Guo, Y.; Wang, S.; Liu, Y. One-pot self-assembled three-dimensional TiO2-graphene hydrogel with improved adsorption capacities and photocatalytic and electrochemical activities. ACS Appl. Mater. Interfaces 2013, 5, 2227–2233. [Google Scholar] [CrossRef]
- Tang, B.; Chen, H.; Peng, H.; Wang, Z.; Huang, W. Graphene modified TiO2 composite photocatalysts: Mechanism, progress and perspective. Nanomaterials 2018, 8, 105. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saleh, T.S.; Badawi, A.K.; Salama, R.S.; Mostafa, M.M.M. Design and Development of Novel Composites Containing Nickel Ferrites Supported on Activated Carbon Derived from Agricultural Wastes and Its Application in Water Remediation. Materials 2023, 16, 2170. [Google Scholar] [CrossRef]
- Ohsaka, T.; Izumi, F.; Fujiki, Y. Raman spectrum of anatase, TiO2. J. Raman Spectrosc. 1978, 7, 321–324. [Google Scholar] [CrossRef]
- Nicola, J.H.; Brunharoto, C.A.; Abramovich, M.; da Silva, C.E.T.C. Second order Raman spectrum of rutile TiO2. J. Raman Spectrosc. 1979, 8, 32–34. [Google Scholar] [CrossRef]
- Eigler, S.; Dotzer, C.; Hirsch, A. Visualization of defect densities in reduced graphene oxide. Carbon 2012, 50, 3666–3673. [Google Scholar] [CrossRef]
- Rubio, J.; Oteo, J.L.; Villegas, M.; Duran, P. Characterization and sintering behaviour of submicrometre titanium dioxide spherical particles obtained by gas-phase hydrolysis of titanium tetrabutoxide. J. Mater. Sci. 1997, 32, 643–652. [Google Scholar] [CrossRef]
- Wang, D.; Li, X.; Chen, J.; Tao, X. Enhanced photoelectrocatalytic activity of reduced graphene oxide/TiO2 composite films for dye degradation. Chem. Eng. J. 2012, 547–554. [Google Scholar] [CrossRef]
- Srivastava, A.; Kumar, V.; Verma, A.; Kumar, R.; Gupta, M. Kinetic, mechanism and quantum chemical investigation of Ru(III) catalysis redox reaction of paracetamol by NDS in acidic medium. J. Int. Comp. Sci. 2019, 9, 806–830. [Google Scholar]
- Ogunnirau, K.O.; Tella, A.C.; Alensela, M.; Yakubu, M.T. Synthesis, physical properties, anti-microbial potentials of some anti-biotics complexed with transition metals and their effects on alkaline phosphate activities of selected rat tissues. Afr. J. Biotechnol. 2007, 6, 1202–1208. [Google Scholar]
- Moctezuma, E.; Leyva, E.; Aguilar, C.A.; Luna, R.A.; Montalvo, C. Photocatalytic degradation of paracetamol: Intermediates and total reaction mechanism. J. Hazard. Mater. 2012, 243, 130–138. [Google Scholar] [CrossRef] [PubMed]
- Teoh, W.Y.; Scott, J.A.; Amal, R. Progress in heterogeneous photocatalysis: From classical radical chemistry to engineering na-nomaterials and solar reactors. J. Phys. Chem. Lett. 2012, 3, 629–639. [Google Scholar] [CrossRef] [PubMed]
- Alhava, O.; Ghaderi, E. Photocatalytic reduction of graphene oxide nanosheets on TiO2 thin film for photoinactivation of bac-teria in solar light irradiation. J. Phys. Chem. C 2009, 113, 20214–20220. [Google Scholar] [CrossRef]
- Ng, Y.H.; Zope, I.S.; Dasari, A.; Tan, K.H. Correlating the Performance of a Fire-Retardant Coating across Different Scales of Testing. Polymers 2020, 12, 2271. [Google Scholar] [CrossRef]
- Prokhorov, K.A.; Aleksandrova, D.A.; Sagitova, E.A.; Nikolaeva, G.Y.; Vlasova, T.V.; Pashinin, P.P.; Jones, C.A.; Shilton, S.J. Raman spectroscopy evaluation of polyvinylchloride structure. J. Phys. Conf. Ser. 2016, 691, 012001. [Google Scholar] [CrossRef] [Green Version]
- Qiu, F.; He, G.; Hao, M.; Zhang, G. Enhancing the Mechanical and Electrical Properties of Poly(Vinyl Chloride)-Based Conductive Nanocomposites by Zinc Oxide Nanorods. Materials 2018, 11, 2139. [Google Scholar] [CrossRef] [Green Version]
- Hankett, J.M.; Zhang, C.; Chen, Z. Sum Frequency Generation and Coherent Anti-Stokes Raman Spectroscopic Studies on Plasma-Treated Plasticized Polyvinyl Chloride Films. Langmuir 2012, 28, 4654–4662. [Google Scholar] [CrossRef]
- Ahmad, S.; Almehmadi, M.; Janjuhah, H.T.; Kontakiotis, G.; Abdulaziz, O.; Saeed, K.; Ahmad, H.; Allahyani, M.; Aljuaid, A.; Alsaiari, A.A.; et al. The Effect of Mineral Ions Present in Tap Water on Photodegradation of Organic Pollutants: Future Perspectives. Water 2023, 15, 175. [Google Scholar] [CrossRef]
- Masood, Z.; Ikhlaq, A.; Akram, A.; Qazi, U.Y.; Rizvi, O.S.; Javaid, R.; Alazmi, A.; Madkour, M.; Qi, F. Application of Nanocatalysts in Advanced Oxidation Processes for Wastewater Purification: Challenges and Future Prospects. Catalysts 2022, 12, 741. [Google Scholar] [CrossRef]
- Nila, A.; Baibarac, M. Stimulated Raman scattering and defect-based photoconductivity in mixtures of CdS/TiO2. J. Appl. Phys. 2020, 128, 225704. [Google Scholar] [CrossRef]
- Marcano, D.C.; Kosynkin, D.V.; Berlin, J.M.; Sinitskri, A.; Sun, Z.; Slesarev, A.; Alemany, L.B.; Lu, W.; Tour, M. Improved synthesis of graphene oxide. ACS Nano 2010, 4, 4806–4816. [Google Scholar] [CrossRef] [PubMed]
- Bhran, A.; Shoaib, A.; Elsadeq, D.; El-Gendi, A.; Abdallah, H. Preparation of PVC/PVP composite polymer membranes via phase inversion process for water treatment purposes. Chin. J. Chem. Eng. 2018, 26, 715–722. [Google Scholar] [CrossRef]
- Piella, J.; Bastús, N.G.; Puntes, V. Size-Controlled Synthesis of Sub-10-nanometer Citrate-Stabilized Gold Nanoparticles and Related Optical Properties. Chem. Mater. 2016, 28, 1066–1075. [Google Scholar] [CrossRef]
Sample Name | (min−1) | (min−1) | (min−1) | |||
---|---|---|---|---|---|---|
TiO2 | 0.005 | 0.9979 | ||||
TiO2/RGO 5% | 0.016 | 0.9943 | 0.036 | 0.9959 | 0.0096 | 0.9982 |
TiO2/RGO 10% | 0.040 | 0.9927 | 0.0073 | 0.9899 | 0.0052 | 0.9997 |
TiO2/RGO 20% | 0.0052 | 0.9869 | 0.0161 | 0.9988 | 0.0168 | 0.9990 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Daescu, M.; Chivu, M.; Matei, E.; Negrila, C.; Cramariuc, O.; Baibarac, M. Photocatalytic Activity of the Blends Based on TiO2 Nanoparticles and Reduced Graphene Oxide for Degradation of Acetaminophen. Molecules 2023, 28, 4546. https://doi.org/10.3390/molecules28114546
Daescu M, Chivu M, Matei E, Negrila C, Cramariuc O, Baibarac M. Photocatalytic Activity of the Blends Based on TiO2 Nanoparticles and Reduced Graphene Oxide for Degradation of Acetaminophen. Molecules. 2023; 28(11):4546. https://doi.org/10.3390/molecules28114546
Chicago/Turabian StyleDaescu, Monica, Madalina Chivu, Elena Matei, Catalin Negrila, Oana Cramariuc, and Mihaela Baibarac. 2023. "Photocatalytic Activity of the Blends Based on TiO2 Nanoparticles and Reduced Graphene Oxide for Degradation of Acetaminophen" Molecules 28, no. 11: 4546. https://doi.org/10.3390/molecules28114546
APA StyleDaescu, M., Chivu, M., Matei, E., Negrila, C., Cramariuc, O., & Baibarac, M. (2023). Photocatalytic Activity of the Blends Based on TiO2 Nanoparticles and Reduced Graphene Oxide for Degradation of Acetaminophen. Molecules, 28(11), 4546. https://doi.org/10.3390/molecules28114546