Reduction of Beta Cyclodextrin by Curd Washing in Low-Cholesterol Manchego Cheese
Abstract
:1. Introduction
2. Results and Discussion
2.1. Gross Composition
2.2. Lipid Characteristics
2.3. Flavor Characteristics
3. Materials and Methods
3.1. Chemicals
3.2. Manchego Manufacture
3.3. Gross Composition
3.4. Beta Cyclodextrin Analysis
3.5. Lipid Extraction
3.6. Determination of Cholesterol
3.7. Fatty Acids and Triglycerides Analysis
3.8. Phospholipid Analysis
3.9. Analysis of Volatile Compounds
3.10. Short-Chain Free Fatty Acids
3.11. Sensory Analysis
3.12. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Feeney, W.; Laminchahanw, P.; Sheehan, J. The cheese matrix: Understanding the impact of cheese structure on aspects of cardiovascular health—A food science and a human nutrition perspective. Int. J. Dairy Technol. 2021, 4, 656–670. [Google Scholar] [CrossRef]
- Alonso, L. Derivados lácteos sin colesterol utilizando beta ciclodextrina. Technifood 2013, 85, 121–123. [Google Scholar]
- Hariharan, K.; Soma Kurien, K.; Venkat Rao, S. Effect of supplementation of milk fat with peanut oil on blood lipids and lipoproteins in infants. Int. J. Food Sci. Nutr. 1995, 46, 309–317. [Google Scholar] [CrossRef]
- Krause, A.J.; Lopetcharat, K.; Drake, M.A. Identification of the characteristics that drive consumer liking of butter. J. Dairy Sci. 2007, 90, 2091–2102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arul, J.; Boudreau, A.; Makhlouf, J.; Tardif, R.; Bellavia. T. Fractionation of anhydrous milk fat by short path destillation. J. Am. Oil Chem. Soc. 1988, 65, 1642–1646. [Google Scholar] [CrossRef]
- Arul, J.; Boudreau, A.; Makhlouf, J.; Tardif, R.; Bellavia, T. Distribution of cholesterol in milk fat fractions. J. Dairy Res. 1988, 55, 361–371. [Google Scholar] [CrossRef] [Green Version]
- Micich, T.J. Behaviours of polymers supported digitonin with cholesterol in the absence and presence of butter oil. J. Agric. Food Chem. 1990, 38, 1839–1843. [Google Scholar] [CrossRef]
- Micich, T.J.; Foglia, T.A.; Holsinger, V.H. In vitro studies on saponin-vitamin complexation. J. Agric. Food Chem. 1992, 40, 1321–1325. [Google Scholar] [CrossRef]
- Gilliland, S.E.; Nelson, C.R.; Maxwell, C. Assimilation of cholesterol by Lactobacillus acidophilus. Appl. Environ. Microbiol. 1985, 49, 377–389. [Google Scholar] [CrossRef] [Green Version]
- Walkek, K.W.; Gilliland, S.E. Relationships among bile tolerance, bile salt deconjugation, and assimilation of cholesterol by Lactobacills acidophilus. J. Dairy Sci. 1993, 76, 956–961. [Google Scholar] [CrossRef]
- Gonzalez-Hierro, M.T.; Ruiz-Sala, P.; Alonso, L.; Santamaria, G. Extraction of ewe’s milk cream with supercritical carbon dioxide. Z. Lebens. Unters. Forsch. 1995, 200, 297–300. [Google Scholar] [CrossRef] [PubMed]
- Sangbin, L.; Mi-Kyung, J.; Hae-Soo, K. Cholesterol removal from milk fat by supercritical carbon dioxide extraction in coupled with adsorption. Korean J. Food Sci. Technol. 1998, 30, 574–580. [Google Scholar]
- Tian, B.; Xiao, D.; Hei, T.; Ping, R.; Hua, S.; Liu, J. The application and prospects of cyclodextrin inclusion complexes and polymers in the food industry: A review. Polym. Int. 2020, 69, 597–603. [Google Scholar] [CrossRef]
- Gonzalez, A.; Carpena, M.; García Oliveira, P.; Mejuto, J.; Prieto, M.; Simal, J. Main Applications of Cyclodextrins in the Food Industry as the Compounds of Choice to Form Host–Guest Complexes. Int. J. Mol. Sci. 2021, 22, 1339–1348. [Google Scholar] [CrossRef] [PubMed]
- Alonso, L.; Calvo, M.V.; Fontecha, J. A scale-up process for the manufacture of reduced-cholesterol butter using beta-cyclodextrin. J. Food Process Eng. 2019, 42, e13009. [Google Scholar] [CrossRef]
- Cheirsilp, B.; Rakmai, J. Inclusion complex formation of cyclodextrin with its guest and their applications. Biol. Eng. Med. 2016, 2, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Lukás Kolaric, L.; Simko, P. Application of β-cyclodextrin in the production of low-cholesterol milk and dairy products. Trends Food Sci. Technol. 2022, 119, 13–22. [Google Scholar] [CrossRef]
- Alonso, L.; Fox, P.F.; Calvo, M.V.; Fontecha, J. Effect of beta-cyclodextrin on the reduction of cholesterol in ewes’s milk Manchego cheese. Molecules 2018, 23, 1789–1801. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- van den Berg, G.; Meijer, W.C.; Düsterhöft, E.M.; Smit, G. Gouda and related cheeses. In Cheese: Chemistry, Physics and Microbiology; McSweeney, P.L.H., Cogan, T.M., Fox, P.F., Guinee, T.P., Eds.; Academic Press: London, UK, 2004; Volume 2, pp. 103–140. [Google Scholar] [CrossRef]
- Lee, M.R.; Johnson, M.E.; Govindasamy-Lucey, S.; Jaeggi, J.J.; Lucey, J.A. Effect of different curd-washing methods on the insoluble Ca content and rheological properties of Colby cheese during ripening. J. Dairy Sci. 2011, 94, 2692–2700. [Google Scholar] [CrossRef]
- Hou, J.; Hannon, J.A.; McSweeney, P.L.H.; Beresford, T.P.; Guinee, T.P. Effect of curd washing on composition, lactose metabolism, pH, and the growth of non-starter lactic acid bacteria in full-fat Cheddar cheese. Int. Dairy J. 2012, 25, 21–28. [Google Scholar] [CrossRef]
- Hou, J.; Hannon, J.A.; McSweeney, P.L.H.; Beresford, T.P.; Guinee, T.P. Effect of curd washing on cheese proteolysis, texture, volatile compounds, and sensory grading in full-fat Cheddar cheese. Int. Dairy J. 2014, 34, 190–198. [Google Scholar] [CrossRef]
- Ibrahim, A.H.; Soryal, K.A. Effect of using cross linked β-cyclodextrin on physicochemical properties of Domiati goat’s cheese. J. Food Dairy Sci. 2014, 5, 581–600. [Google Scholar] [CrossRef]
- Smit, G.; Verheul; Kranenburg, V.; Ayad, E.; Siezen, R.; Engels, W. Cheese flavor development by enzymatic conversions of peptides and amino acids. Food Res. Int. 2000, 33, 153–160. [Google Scholar] [CrossRef]
- Kwak, H.S.; Jung, C.S.; Seok, J.S.; Ahn, J. Cholesterol removal and flavor development in cheddar cheese. Asian Aust. J. Anim. Sci. 2003, 16, 409–416. [Google Scholar] [CrossRef]
- Kim, H.Y.; Bae, H.Y.; Kwak, H.S. Development of cholesterol-reduced Blue cheese made by crosslinked β-cyclodextrin. Milchwiss 2008, 63, 53–56. [Google Scholar]
- Chen, H.; Schwartz, S.; Spanos, G.A. Fractionation of butter oil by supercrital carbon dioxide. J. Dairy Sci. 1992, 75, 2659–2669. [Google Scholar] [CrossRef]
- Jeon, S.S.; Joo, S.; Ganesan, P.; Kwak, H.S. Comparative study of flavor, texture, and sensory in cream cheese and cholesterol removed cream cheese. Food Sci. Biotechnol. 2012, 21, 159–165. [Google Scholar] [CrossRef]
- Cozzolino, R.; Mantignetti, A.; Gioli, B.; Malotni, L.; Addeo, F.; Picariello, G. SPME GC-MS monitoring of volatile organic compounds to assess tipicity of Pecorino di Carmasciano ewe-milk cheese. Int. J. Dairy Technol. 2021, 74, 383–392. [Google Scholar] [CrossRef]
- Kim, S.Y.; Park, S.Y.; Ahn, J.; Kwak, H.S. Properties of cholesterol reduced block type process cheese made by crosslinked β-CD-cyclodextrin. Korean J. Food Anim. Resour. 2008, 28, 463–469. [Google Scholar] [CrossRef]
- Pereva, S.; Nikolova, V.; Silvia Angelova, S.; Spassov, T.; Dude, T. Water inside β-cyclodextrin cavity: Stability and mechanism of binding. Beilstein J. Org. Chem. 2019, 15, 1592–1600. [Google Scholar] [CrossRef]
- Fernández-García, E.; López-Fandiño, R.; Alonso, L.; Ramos, M. The use of lipolytic and proteolytic enzymes in the manufacture of Manchego cheese type cheese from ovine and bovine milk. J. Dairy Sci. 1994, 77, 2139–2149. [Google Scholar] [CrossRef]
- Alonso, L.; Juárez, M.; Ramos, M.; Martín Alvarez, P.J. Overall composition, nitrogen fraction and fat characteristics of Cabrales cheese during ripening. Eur. Food Res. Tecnol. 1987, 185, 481–486. [Google Scholar] [CrossRef]
- Alonso, L.; Cuesta, P.; Gilliland, S.G. Development of a HPLC method for determining residual beta-cyclodextrin in milk, cream and butter as a novel prebiotic in dairy foods. Chromatographia 2008, 69, 1089–1092. [Google Scholar]
- ISO-IDF ISO 14152; Milk and Milk Products. Extraction Methods for Lipids and Liposoluble Compounds. International Dairy Federation: Brussels, Belgium, 2001; p. 172.
- Alonso, L.; Lozada, L.; Fontecha, J.; Juarez, M. Determination of cholesterol in milk fat by gas chromatography with direct injection and sample saponification. Chromatographia 1995, 41, 23–25. [Google Scholar] [CrossRef]
- Alonso, L.; Fontecha, J.; Lozada, L.; Fraga, M.J.; Juárez, M. Fatty acid composition of caprine milk: Major, branched-chain and trans fatty acids. J. Dairy Sci. 1999, 82, 878–884. [Google Scholar] [CrossRef] [PubMed]
- Alonso, L. Capillary gas chromatography of some triglycerides in cheese using programmed temperature injection. Chromatographia 1993, 35, 9–12. [Google Scholar] [CrossRef] [Green Version]
- Castro-Gómez, M.; Rodriguez Alcalá, L.M.; Calvo, M.V.; Romero, J.; Mendiola, J.A.; Ibáñez, E.; Fontecha, J. Total milk fat extraction and quantification of polar and neutral lipids of cow, goat, and ewe milk using a pressurized liquid system and chromatographic techniques. J. Dairy Sci. 2014, 97, 6719–6728. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alonso, L.; Fontecha, J.; Juárez, M. Development of a headspace gas chromatographic mass spectrometric method for determining methyl-ketones and secondary alcohols in blue cheese. J. Chromatogr. Sci. 1999, 37, 108–112. [Google Scholar] [CrossRef] [Green Version]
Parameter | WCC | WEC |
---|---|---|
Fat (%) | 32.51 ± 1.18 a | 31.53 ± 1.13 a |
Moisture (%) | 37.15 ± 1.93 a | 36.46 ± 1.70 a |
Protein (%) | 25.10 ± 1.16 a | 24.96 ± 1.05 a |
SN (% as protein) | 5.79 ± 0.32 b | 6.01 ± 0.35 b |
NPN (% as protein) | 3.95 ± 0.24 b | 4.22 ± 0.41 b |
pH | 4.85 ± 0.25 a | 5.30 ± 0.21 a |
Cholesterol (mg/100 g fat) | 191.71 ± 0.19 a | 1.12 ± 0.14 a |
Cholesterol removal (% fat) | - | 98.45 ± 5.12 b |
Remaining β-CD (%) | - | 0.15 ± 0.11 b |
Fatty Acid | WCC | WEC |
---|---|---|
C4:0 | 2.18 ± 0.22 a | 2.16 ± 0.24 a |
C6:0 | 1.68 ± 0.08 a | 1.67 ± 0.05 a |
C8:0 | 1.66 ± 0.07 a | 1.64 ± 0.06 a |
C10:0 | 4.95 ± 0.18 a | 4.91 ± 0.16 a |
C10:1 | 0.25 ± 0.05 a | 0.24 ± 0.05 a |
C12:0 | 3.14 ± 0.16 a | 3.11 ± 0.14 a |
C14:0 | 9.21 ± 0.92 a | 9.14 ± 0.42 a |
C14:1 | 0.88 ± 0.08 a | 0.89 ± 0.04 a |
C15:0 | 0.25 ± 0.04 a | 0.23 ± 0.07 a |
C16:0 | 27.41 ± 1.13 a | 27.21 ± 1.11 a |
C16:1 | 0.77 ± 0.15 a | 0.71 ± 0.13 a |
C17:0 | 0.58 ± 0.09 a | 0.52 ± 0.05 a |
C18:0 | 13.59 ± 0.65 a | 13.56 ± 0.39 a |
C18:1t | 2.65 ± 0.26 a | 2.78 ± 0.14 a |
C18.1c | 22.93 ± 1.06 a | 22.78 ± 1.21 a |
C18:2 | 3.26 ± 0.31 a | 3.26 ± 0.18 a |
C18:3 | 0.40 ± 0.06 a | 0.39 ± 0.03 a |
C18.2 (c9t11) | 0.97 ± 0.08 a | 0.97 ± 0.05 a |
Triglyceride | WCC | WEC |
---|---|---|
C24 | 0.32 ± 0.08 a | 0.31 ± 0.06 a |
C26 | 0.80 ± 0.05 a | 0.77 ± 0.08 a |
C28 | 1.44 ± 0.13 a | 1.42 ± 0.17 a |
C30 | 2.47 ± 0.21 a | 2.50 ± 0.29 a |
C32 | 3.15 ± 0.39 b | 3.01 ± 0.45 b |
C34 | 5.04 ± 0.48 a | 5.09 ± 0.56 a |
C36 | 7.04 ± 0.54 a | 7.18 ± 0.50 a |
C38 | 10.65 ± 1.30 a | 11.01 ± 1.39 a |
C40 | 17.89 ± 1.32 a | 17.15 ± 1.42 a |
C42 | 16.17 ± 1.50 a | 16.21 ± 1.68 a |
C44 | 7.44 ± 0.66 a | 8.89 ± 0.51 a |
C46 | 7.04 ± 0.52 a | 7.16 ± 0.59 a |
C48 | 5.71 ± 0.49 a | 5.30 ± 0.54 a |
C50 | 4.39 ± 0.51 a | 4.55 ± 0.62 a |
C52 | 4.31 ± 0.56 a | 4.24 ± 1.57 a |
C54 | 4.58 ± 0.45 a | 4.60 ± 0.41 a |
Phospholipids | WCC | WEC |
---|---|---|
Total PLs (mg/100 g of fat) | 0.05 ± 0.01 a | 0.09 ± 0.01 a |
PE (% of PL) | 45.72 ± 5.12 a | 40.61 ± 1.53 a |
PI (% of PL) | 2.95 ± 0.30 a | 2.53 ± 1.51 a |
PS (% of PL) | 1.68 ± 0.35 a | 2.10 ± 1.31 a |
PC (% of PL) | 32.04 ± 1.40 a | 29.20 ±1.80 a |
SM (% of PL) | 27.84 ± 3.83 a | 25.62 ± 3.22 a |
Compounds | WCC | WEC |
---|---|---|
Ketones | ||
2 Propanone | 381.05 ± 26.89 a | 369.96 ± 25.32 a |
2 Butanone | 20.16 ± 4.21 a | 21.45 ± 4.69 a |
2,3 Butanodione | 1145.81 ± 56.38 a | 1041.65 ± 59.98 a |
2 Heptanone | 512.18 ± 22.78 a | 496.21 ± 30.21 a |
3 Hydroxy 2 butanone | 248.70 ± 20.09 a | 212.60 ± 24.60 a |
Aldehydes | ||
3 Methyl butanal | 1358. 96 ± 70.32 b | 1452.95 ± 77.80 b |
Hexanal | 13.54 ± 4.09 a | 15.74 ± 4.96 a |
Nonanal | 4.95 ± 1.19 a | 4.21 ± 1.29 a |
Alcohols | ||
2 Propanol | 10.64 ± 3.70 a | 9.65± 3.96 a |
Ethanol | 4385.30 ± 95.79 b | 4456.02 ± 109.10 b |
2 Methyl 1 propanol | 55.66 ± 7.80 a | 58.69 ± 7.02 a |
2 Butanol | 25.69 ± 5.56 a | 23.20 ± 5.04 a |
2 Heptanol | 39.57 ± 6.12 a | 42.54 ± 5.52 a |
SCFA | WCC | WEC |
---|---|---|
Acetic | 133.06 ± 6.19 a | 129.53 ± 8.96 a |
Propionic | 35.36 ± 4.96 a | 38.02 ± 4.90 a |
Butyric | 17.32 ± 3.60 a | 21.16 ± 3.93 a |
Caproic | 3.96 ± 3.12 a | 3.72 ± 3.61 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alonso, L.; Calvo, M.V.; Fontecha, J. Reduction of Beta Cyclodextrin by Curd Washing in Low-Cholesterol Manchego Cheese. Molecules 2023, 28, 4709. https://doi.org/10.3390/molecules28124709
Alonso L, Calvo MV, Fontecha J. Reduction of Beta Cyclodextrin by Curd Washing in Low-Cholesterol Manchego Cheese. Molecules. 2023; 28(12):4709. https://doi.org/10.3390/molecules28124709
Chicago/Turabian StyleAlonso, Leocadio, María V. Calvo, and Javier Fontecha. 2023. "Reduction of Beta Cyclodextrin by Curd Washing in Low-Cholesterol Manchego Cheese" Molecules 28, no. 12: 4709. https://doi.org/10.3390/molecules28124709
APA StyleAlonso, L., Calvo, M. V., & Fontecha, J. (2023). Reduction of Beta Cyclodextrin by Curd Washing in Low-Cholesterol Manchego Cheese. Molecules, 28(12), 4709. https://doi.org/10.3390/molecules28124709