Recent Advances in Synthetic Drugs and Natural Actives Interacting with OAT3
Abstract
:1. Introduction
2. OAT3 and Synthetic Drug–Drug Interactions
3. OAT3 and Herb–Drug Interactions (HDIs)
4. Natural Bioactive Inhibitors of OAT3
4.1. Phenolic Acids
4.2. Flavonoids
4.3. Alkaloids
4.4. Anthraquinones
4.5. Phenols
4.6. Phenylpropanoids
4.7. Terpenes
4.8. Phenanthrenoids
4.9. Others
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Muller, F.; Fromm, M.F. Transporter-mediated drug-drug interactions. Pharmacogenomics 2011, 12, 1017–1037. [Google Scholar] [CrossRef]
- Burckhardt, G. Drug transport by Organic Anion Transporters (OATs). Pharmacol. Ther. 2012, 136, 106–130. [Google Scholar] [CrossRef] [PubMed]
- Ivanyuk, A.; Livio, F.; Biollaz, J.; Buclin, T. Renal Drug Transporters and Drug Interactions. Clin. Pharm. 2017, 56, 825–892. [Google Scholar] [CrossRef]
- Nigam, S.K. What do drug transporters really do? Nat. Rev. Drug Discov. 2015, 14, 29–44. [Google Scholar] [CrossRef] [Green Version]
- International Transporter, C.; Giacomini, K.M.; Huang, S.M.; Tweedie, D.J.; Benet, L.Z.; Brouwer, K.L.; Chu, X.; Dahlin, A.; Evers, R.; Fischer, V.; et al. Membrane transporters in drug development. Nat. Rev. Drug Discov. 2010, 9, 215–236. [Google Scholar] [CrossRef]
- Nigam, S.K. The SLC22 Transporter Family: A Paradigm for the Impact of Drug Transporters on Metabolic Pathways, Signaling, and Disease. Annu. Rev. Pharmacol. Toxicol. 2018, 58, 663–687. [Google Scholar] [CrossRef] [PubMed]
- Zou, L.; Matsson, P.; Stecula, A.; Ngo, H.X.; Zur, A.A.; Giacomini, K.M. Drug Metabolites Potently Inhibit Renal Organic Anion Transporters, OAT1 and OAT3. J. Pharm. Sci. 2021, 110, 347–353. [Google Scholar] [CrossRef] [PubMed]
- Sweet, D.H.; Miller, D.S.; Pritchard, J.B.; Fujiwara, Y.; Beier, D.R.; Nigam, S.K. Impaired organic anion transport in kidney and choroid plexus of organic anion transporter 3 (Oat3 (Slc22a8)) knockout mice. J. Biol. Chem. 2002, 277, 26934–26943. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hosoya, K.; Tachikawa, M. Roles of organic anion/cation transporters at the blood-brain and blood-cerebrospinal fluid barriers involving uremic toxins. Clin. Exp. Nephrol. 2011, 15, 478–485. [Google Scholar] [CrossRef]
- Nigam, S.K.; Bush, K.T.; Martovetsky, G.; Ahn, S.Y.; Liu, H.C.; Richard, E.; Bhatnagar, V.; Wu, W. The organic anion transporter (OAT) family: A systems biology perspective. Physiol. Rev. 2015, 95, 83–123. [Google Scholar] [CrossRef]
- Bush, K.T.; Wu, W.; Lun, C.; Nigam, S.K. The drug transporter OAT3 (SLC22A8) and endogenous metabolite communication via the gut-liver-kidney axis. J. Biol. Chem. 2017, 292, 15789–15803. [Google Scholar] [CrossRef] [Green Version]
- He, L.; Vasiliou, K.; Nebert, D.W. Analysis and update of the human solute carrier (SLC) gene superfamily. Hum. Genom. 2009, 3, 195–206. [Google Scholar] [CrossRef] [Green Version]
- Burckhardt, G.; Burckhardt, B.C. In vitro and in vivo evidence of the importance of organic anion transporters (OATs) in drug therapy. In Drug Transporters; Handbook of Experimental Pharmacology; Springer: Berlin/Heidelberg, Germany, 2011; pp. 29–104. [Google Scholar] [CrossRef]
- Otani, N.; Ouchi, M.; Hayashi, K.; Jutabha, P.; Anzai, N. Roles of organic anion transporters (OATs) in renal proximal tubules and their localization. Anat. Sci. Int. 2017, 92, 200–206. [Google Scholar] [CrossRef]
- Hosoya, K.; Makihara, A.; Tsujikawa, Y.; Yoneyama, D.; Mori, S.; Terasaki, T.; Akanuma, S.; Tomi, M.; Tachikawa, M. Roles of inner blood-retinal barrier organic anion transporter 3 in the vitreous/retina-to-blood efflux transport of p-aminohippuric acid, benzylpenicillin, and 6-mercaptopurine. J. Pharmacol. Exp. Ther. 2009, 329, 87–93. [Google Scholar] [CrossRef] [Green Version]
- Mor, A.L.; Kaminski, T.W.; Karbowska, M.; Pawlak, D. New insight into organic anion transporters from the perspective of potentially important interactions and drugs toxicity. J. Physiol. Pharmacol. 2018, 69, 307–324. [Google Scholar] [CrossRef]
- Astorga, B.; Wunz, T.M.; Morales, M.; Wright, S.H.; Pelis, R.M. Differences in the substrate binding regions of renal organic anion transporters 1 (OAT1) and 3 (OAT3). Am. J. Physiol. Renal Physiol. 2011, 301, F378–F386. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bischoff, A.; Bucher, M.; Gekle, M.; Sauvant, C. PAH clearance after renal ischemia and reperfusion is a function of impaired expression of basolateral Oat1 and Oat3. Physiol. Rep. 2014, 2, e00243. [Google Scholar] [CrossRef] [PubMed]
- Albrecht, E.; Waldenberger, M.; Krumsiek, J.; Evans, A.M.; Jeratsch, U.; Breier, M.; Adamski, J.; Koenig, W.; Zeilinger, S.; Fuchs, C.; et al. Metabolite profiling reveals new insights into the regulation of serum urate in humans. Metabolomics 2014, 10, 141–151. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, L.; Wang, B.; Ma, L.; Fu, P. Traditional Chinese herbs and natural products in hyperuricemia-induced chronic kidney disease. Front. Pharmacol. 2022, 13, 971032. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, H.; Fan, Y.; Yu, Z.; You, G. Regulation of organic anion transporters: Role in physiology, pathophysiology, and drug elimination. Pharmacol. Ther. 2021, 217, 107647. [Google Scholar] [CrossRef]
- Saito, H. Pathophysiological regulation of renal SLC22A organic ion transporters in acute kidney injury: Pharmacological and toxicological implications. Pharmacol. Ther. 2010, 125, 79–91. [Google Scholar] [CrossRef] [Green Version]
- Chung, S.; Kim, G.H. Urate Transporters in the Kidney: What Clinicians Need to Know. Electrolyte Blood Press. 2021, 19, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Sweet, D.H. Renal organic anion transporters (SLC22 family): Expression, regulation, roles in toxicity, and impact on injury and disease. AAPS J. 2013, 15, 53–69. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Voigt, N.; Ort, K.; Sossalla, S. Drug-drug interactions you should know! Dtsch. Med. Wochenschr. 2019, 144, 264–275. [Google Scholar] [CrossRef]
- Parvez, M.K.; Rishi, V. Herb-Drug Interactions and Hepatotoxicity. Curr. Drug Metab. 2019, 20, 275–282. [Google Scholar] [CrossRef] [PubMed]
- Huo, X.; Liu, K. Renal organic anion transporters in drug-drug interactions and diseases. Eur. J. Pharm. Sci. 2018, 112, 8–19. [Google Scholar] [CrossRef]
- Yuan, H.; Feng, B.; Yu, Y.; Chupka, J.; Zheng, J.Y.; Heath, T.G.; Bond, B.R. Renal organic anion transporter-mediated drug-drug interaction between gemcabene and quinapril. J. Pharmacol. Exp. Ther. 2009, 330, 191–197. [Google Scholar] [CrossRef] [Green Version]
- Ni, Y.; Duan, Z.; Zhou, D.; Liu, S.; Wan, H.; Gui, C.; Zhang, H. Identification of Structural Features for the Inhibition of OAT3-Mediated Uptake of Enalaprilat by Selected Drugs and Flavonoids. Front. Pharmacol. 2020, 11, 802. [Google Scholar] [CrossRef]
- Nigam, S.K.; Wu, W.; Bush, K.T.; Hoenig, M.P.; Blantz, R.C.; Bhatnagar, V. Handling of Drugs, Metabolites, and Uremic Toxins by Kidney Proximal Tubule Drug Transporters. Clin. J. Am. Soc. Nephrol. 2015, 10, 2039–2049. [Google Scholar] [CrossRef] [Green Version]
- Wu, W.; Jamshidi, N.; Eraly, S.A.; Liu, H.C.; Bush, K.T.; Palsson, B.O.; Nigam, S.K. Multispecific drug transporter Slc22a8 (Oat3) regulates multiple metabolic and signaling pathways. Drug Metab. Dispos. 2013, 41, 1825–1834. [Google Scholar] [CrossRef] [Green Version]
- Zamek-Gliszczynski, M.J.; Chu, X.; Polli, J.W.; Paine, M.F.; Galetin, A. Understanding the transport properties of metabolites: Case studies and considerations for drug development. Drug Metab. Dispos. 2014, 42, 650–664. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matsson, P.; Fenu, L.A.; Lundquist, P.; Wisniewski, J.R.; Kansy, M.; Artursson, P. Quantifying the impact of transporters on cellular drug permeability. Trends Pharmacol. Sci. 2015, 36, 255–262. [Google Scholar] [CrossRef] [Green Version]
- Hagos, Y.; Wolff, N.A. Assessment of the role of renal organic anion transporters in drug-induced nephrotoxicity. Toxins 2010, 2, 2055–2082. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, Y.; Huo, X.; Wang, C.; Meng, Q.; Liu, Z.; Sun, H.; Tan, A.; Ma, X.; Peng, J.; Liu, K. Organic anion transporters also mediate the drug-drug interaction between imipenem and cilastatin. Asian J. Pharm. Sci. 2020, 15, 252–263. [Google Scholar] [CrossRef] [PubMed]
- Huo, X.; Meng, Q.; Wang, C.; Wu, J.; Wang, C.; Zhu, Y.; Ma, X.; Sun, H.; Liu, K. Protective effect of cilastatin against diclofenac-induced nephrotoxicity through interaction with diclofenac acyl glucuronide via organic anion transporters. Br. J. Pharmacol. 2020, 177, 1933–1948. [Google Scholar] [CrossRef] [PubMed]
- Narumi, K.; Sato, Y.; Kobayashi, M.; Furugen, A.; Kasashi, K.; Yamada, T.; Teshima, T.; Iseki, K. Effects of proton pump inhibitors and famotidine on elimination of plasma methotrexate: Evaluation of drug-drug interactions mediated by organic anion transporter 3. Biopharm. Drug Dispos. 2017, 38, 501–508. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.H.; Jia, Y.M.; Wang, C.Y.; Meng, Q.; Huo, X.K.; Sun, H.J.; Sun, P.Y.; Yang, X.B.; Ma, X.D.; Peng, J.Y.; et al. Organic anion transporters 1 (OAT1) and OAT3 meditated the protective effect of rhein on methotrexate-induced nephrotoxicity. RSC Adv. 2017, 7, 25461–25468. [Google Scholar] [CrossRef] [Green Version]
- Iwaki, M.; Shimada, H.; Irino, Y.; Take, M.; Egashira, S. Inhibition of Methotrexate Uptake via Organic Anion Transporters OAT1 and OAT3 by Glucuronides of Nonsteroidal Anti-inflammatory Drugs. Biol. Pharm. Bull. 2017, 40, 926–931. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Yuan, W.; Shen, Q.; Wu, Q.; Jiang, Z.; Wu, W.; Zhang, L.; Huang, X. The key role of organic anion transporter 3 in the drug-drug interaction between tranilast and methotrexate. J. Biochem. Mol. Toxicol. 2022, 36, e22983. [Google Scholar] [CrossRef]
- Feng, Y.; Wang, C.; Liu, Q.; Meng, Q.; Huo, X.; Liu, Z.; Sun, P.; Yang, X.; Sun, H.; Qin, J.; et al. Bezafibrate-mizoribine interaction: Involvement of organic anion transporters OAT1 and OAT3 in rats. Eur. J. Pharm. Sci. 2016, 81, 119–128. [Google Scholar] [CrossRef]
- Ye, J.; Liu, Q.; Wang, C.; Meng, Q.; Sun, H.; Peng, J.; Ma, X.; Liu, K. Benzylpenicillin inhibits the renal excretion of acyclovir by OAT1 and OAT3. Pharmacol. Rep. 2013, 65, 505–512. [Google Scholar] [CrossRef]
- Wen, S.; Wang, C.; Duan, Y.; Huo, X.; Meng, Q.; Liu, Z.; Yang, S.; Zhu, Y.; Sun, H.; Ma, X.; et al. OAT1 and OAT3 also mediate the drug-drug interaction between piperacillin and tazobactam. Int. J. Pharm. 2018, 537, 172–182. [Google Scholar] [CrossRef]
- Karlowsky, J.A.; Lob, S.H.; Young, K.; Motyl, M.R.; Sahm, D.F. Activity of imipenem-relebactam against multidrug-resistant Pseudomonas aeruginosa from the United States-SMART 2015–2017. Diagn. Microbiol. Infect. Dis. 2019, 95, 212–215. [Google Scholar] [CrossRef]
- Wu, F.; Zhao, T.; Zhang, Y.; Wang, Y.; Liao, G.; Zhang, B.; Wang, C.; Tian, X.; Feng, L.; Fang, B.; et al. Beneficial herb-drug interaction of rhein in Jinhongtang and Imipenem/Cilastatin mediated by organic anion transporters. J. Ethnopharmacol. 2023, 312, 116449. [Google Scholar] [CrossRef] [PubMed]
- Huo, X.; Meng, Q.; Wang, C.; Zhu, Y.; Liu, Z.; Ma, X.; Ma, X.; Peng, J.; Sun, H.; Liu, K. Cilastatin protects against imipenem-induced nephrotoxicity via inhibition of renal organic anion transporters (OATs). Acta Pharm. Sin. B 2019, 9, 986–996. [Google Scholar] [CrossRef] [PubMed]
- Zou, W.; Shi, B.; Zeng, T.; Zhang, Y.; Huang, B.; Ouyang, B.; Cai, Z.; Liu, M. Drug Transporters in the Kidney: Perspectives on Species Differences, Disease Status, and Molecular Docking. Front. Pharmacol. 2021, 12, 746208. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Han, Y.H.; Putluru, S.P.; Matta, M.K.; Kole, P.; Mandlekar, S.; Furlong, M.T.; Liu, T.; Iyer, R.A.; Marathe, P.; et al. Diclofenac and Its Acyl Glucuronide: Determination of In Vivo Exposure in Human Subjects and Characterization as Human Drug Transporter Substrates In Vitro. Drug Metab. Dispos. 2016, 44, 320–328. [Google Scholar] [CrossRef] [Green Version]
- Brandoni, A.; Torres, A.M. Altered Renal Expression of Relevant Clinical Drug Transporters in Different Models of Acute Uremia in Rats. Role of Urea Levels. Cell Physiol. Biochem. 2015, 36, 907–916. [Google Scholar] [CrossRef]
- Uwai, Y.; Saito, H.; Inui, K. Interaction between methotrexate and nonsteroidal anti-inflammatory drugs in organic anion transporter. Eur. J. Pharmacol. 2000, 409, 31–36. [Google Scholar] [CrossRef]
- El-Sheikh, A.A.; Greupink, R.; Wortelboer, H.M.; van den Heuvel, J.J.; Schreurs, M.; Koenderink, J.B.; Masereeuw, R.; Russel, F.G. Interaction of immunosuppressive drugs with human organic anion transporter (OAT) 1 and OAT3, and multidrug resistance-associated protein (MRP) 2 and MRP4. Transl. Res. 2013, 162, 398–409. [Google Scholar] [CrossRef]
- Zhou, Y.; Wang, J.; Zhang, D.; Liu, J.; Wu, Q.; Chen, J.; Tan, P.; Xing, B.; Han, Y.; Zhang, P.; et al. Mechanism of drug-induced liver injury and hepatoprotective effects of natural drugs. Chin. Med. 2021, 16, 135. [Google Scholar] [CrossRef] [PubMed]
- Yang, B.; Xin, M.; Liang, S.; Xu, X.; Cai, T.; Dong, L.; Wang, C.; Wang, M.; Cui, Y.; Song, X.; et al. New insight into the management of renal excretion and hyperuricemia: Potential therapeutic strategies with natural bioactive compounds. Front. Pharmacol. 2022, 13, 1026246. [Google Scholar] [CrossRef]
- Endou, H. Recent advances in molecular mechanisms of nephrotoxicity. Toxicol. Lett. 1998, 102–103, 29–33. [Google Scholar] [CrossRef]
- Agbabiaka, T.B.; Spencer, N.H.; Khanom, S.; Goodman, C. Prevalence of drug-herb and drug-supplement interactions in older adults: A cross-sectional survey. Br. J. Gen. Pract. 2018, 68, e711–e717. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fan, Y.; Huang, G. Preparation, Structural Analysis and Antioxidant Activity of Polysaccharides and Their Derivatives from Pueraria lobata. Chem. Biodivers. 2023, 20, e202201253. [Google Scholar] [CrossRef]
- Liu, Q.; Wang, C.; Meng, Q.; Huo, X.; Sun, H.; Peng, J.; Ma, X.; Sun, P.; Liu, K. MDR1 and OAT1/OAT3 mediate the drug-drug interaction between puerarin and methotrexate. Pharm. Res. 2014, 31, 1120–1132. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Qi, H.; Li, J.; Xu, Y.; Zhang, H. Transmembrane transport of steviol glucuronide and its potential interaction with selected drugs and natural compounds. Food Chem. Toxicol. 2015, 86, 217–224. [Google Scholar] [CrossRef]
- Zhou, D.; Xu, Y.; Wang, Y.; Li, J.; Gui, C.; Zhang, H. Interaction of Organic Anion Transporter 3-Mediated Uptake of Steviol Acyl Glucuronide, a Major Metabolite of Rebaudioside A, with Selected Drugs. J. Agric. Food Chem. 2020, 68, 1579–1587. [Google Scholar] [CrossRef]
- Huo, X.; Meng, Q.; Wang, C.; Wu, J.; Zhu, Y.; Sun, P.; Ma, X.; Sun, H.; Liu, K. Targeting renal OATs to develop renal protective agent from traditional Chinese medicines: Protective effect of Apigenin against Imipenem-induced nephrotoxicity. Phytother. Res. 2020, 34, 2998–3010. [Google Scholar] [CrossRef]
- Lu, H.; Lu, Z.; Li, X.; Li, G.; Qiao, Y.; Borris, R.P.; Zhang, Y. Interactions of 172 plant extracts with human organic anion transporter 1 (SLC22A6) and 3 (SLC22A8): A study on herb-drug interactions. PeerJ 2017, 5, e3333. [Google Scholar] [CrossRef] [Green Version]
- Ma, L.; Zhao, L.; Hu, H.; Qin, Y.; Bian, Y.; Jiang, H.; Zhou, H.; Yu, L.; Zeng, S. Interaction of five anthraquinones from rhubarb with human organic anion transporter 1 (SLC22A6) and 3 (SLC22A8) and drug-drug interaction in rats. J. Ethnopharmacol. 2014, 153, 864–871. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Zhou, D.; Wang, Y.; Li, J.; Wang, M.; Lu, J.; Zhang, H. CYP2C8-mediated interaction between repaglinide and steviol acyl glucuronide: In vitro investigations using rat and human matrices and in vivo pharmacokinetic evaluation in rats. Food Chem. Toxicol. 2016, 94, 138–147. [Google Scholar] [CrossRef]
- Bao, Y.Y.; Zhou, S.H.; Fan, J.; Wang, Q.Y. Anticancer mechanism of apigenin and the implications of GLUT-1 expression in head and neck cancers. Future Oncol. 2013, 9, 1353–1364. [Google Scholar] [CrossRef] [PubMed]
- van Herwerden, E.F.; Sussmuth, R.D. Sources for Leads: Natural Products and Libraries. Handb. Exp. Pharmacol. 2016, 232, 91–123. [Google Scholar] [CrossRef] [PubMed]
- Najmi, A.; Javed, S.A.; Al Bratty, M.; Alhazmi, H.A. Modern Approaches in the Discovery and Development of Plant-Based Natural Products and Their Analogues as Potential Therapeutic Agents. Molecules 2022, 27, 349. [Google Scholar] [CrossRef]
- Parvez, M.M.; Shin, H.J.; Jung, J.A.; Shin, J.G. Evaluation of para-Aminosalicylic Acid as a Substrate of Multiple Solute Carrier Uptake Transporters and Possible Drug Interactions with Nonsteroidal Anti-inflammatory Drugs In Vitro. Antimicrob. Agents Chemother. 2017, 61, e02392-16. [Google Scholar] [CrossRef] [Green Version]
- Xiao, S.Q.; Wang, W.; Liu, Y. Research Progress on Extraction and Separation of Active Components from Loquat Leaves. Separations 2023, 10, 126. [Google Scholar] [CrossRef]
- Hagos, F.T.; Daood, M.J.; Ocque, J.A.; Nolin, T.D.; Bayir, H.; Poloyac, S.M.; Kochanek, P.M.; Clark, R.S.; Empey, P.E. Probenecid, an organic anion transporter 1 and 3 inhibitor, increases plasma and brain exposure of N-acetylcysteine. Xenobiotica 2017, 47, 346–353. [Google Scholar] [CrossRef] [Green Version]
- Xu, F.; Li, Z.; Zheng, J.; Gee Cheung, F.S.; Chan, T.; Zhu, L.; Zhuge, H.; Zhou, F. The inhibitory effects of the bioactive components isolated from Scutellaria baicalensis on the cellular uptake mediated by the essential solute carrier transporters. J. Pharm. Sci. 2013, 102, 4205–4211. [Google Scholar] [CrossRef]
- Uwai, Y.; Ozeki, Y.; Isaka, T.; Honjo, H.; Iwamoto, K. Inhibitory effect of caffeic acid on human organic anion transporters hOAT1 and hOAT3: A novel candidate for food-drug interaction. Drug Metab. Pharm. 2011, 26, 486–493. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Sweet, D.H. Interaction of Natural Dietary and Herbal Anionic Compounds and Flavonoids with Human Organic Anion Transporters 1 (SLC22A6), 3 (SLC22A8), and 4 (SLC22A11). Evid. Based Complement. Altern. Med. 2013, 2013, 612527. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, C.; Wang, X.; Bi, Y.; Yu, H.; Wei, J.; Zhang, Y.; Han, L.; Zhang, Y. Potent Inhibitors of Organic Anion Transporters 1 and 3 From Natural Compounds and Their Protective Effect on Aristolochic Acid Nephropathy. Toxicol. Sci. 2020, 175, 279–291. [Google Scholar] [CrossRef]
- Zheng, J.; Chan, T.; Zhu, L.; Yan, X.; Cao, Z.; Wang, Y.; Zhou, F. The inhibitory effects of camptothecin (CPT) and its derivatives on the substrate uptakes mediated by human solute carrier transporters (SLCs). Xenobiotica 2016, 46, 831–840. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Han, L.; Li, G.; Peng, W.; Gao, X.; Klaassen, C.D.; Fan, G.; Zhang, Y. From the Cover: Identification of Natural Products as Inhibitors of Human Organic Anion Transporters (OAT1 and OAT3) and Their Protective Effect on Mercury-Induced Toxicity. Toxicol. Sci. 2018, 161, 321–334. [Google Scholar] [CrossRef] [PubMed]
- Kawasaki, T.; Kondo, M.; Hiramatsu, R.; Nabekura, T. (-)-Epigallocatechin-3-gallate Inhibits Human and Rat Renal Organic Anion Transporters. ACS Omega 2021, 6, 4347–4354. [Google Scholar] [CrossRef]
- Li, Z.; Wang, K.; Zheng, J.; Cheung, F.S.; Chan, T.; Zhu, L.; Zhou, F. Interactions of the active components of Punica granatum (pomegranate) with the essential renal and hepatic human Solute Carrier transporters. Pharm. Biol. 2014, 52, 1510–1517. [Google Scholar] [CrossRef]
- Li, X.; Qiao, Y.; Wang, X.; Ma, R.; Li, T.; Zhang, Y.; Borris, R.P. Dihydrophenanthrenes from Juncus effusus as Inhibitors of OAT1 and OAT3. J. Nat. Prod. 2019, 82, 832–839. [Google Scholar] [CrossRef]
- Wang, L.; Sweet, D.H. Active Hydrophilic Components of the Medicinal Herb Salvia miltiorrhiza (Danshen) Potently Inhibit Organic Anion Transporters 1 (Slc22a6) and 3 (Slc22a8). Evid. Based Complement. Alternat. Med. 2012, 2012, 872458. [Google Scholar] [CrossRef] [Green Version]
- Uwai, Y.; Kawasaki, T.; Nabekura, T. Caffeic acid inhibits organic anion transporters OAT1 and OAT3 in rat kidney. Drug Metabol. Drug Interact. 2013, 28, 247–250. [Google Scholar] [CrossRef]
- Shams, T.; Lu, X.; Zhu, L.; Zhou, F. The inhibitory effects of five alkaloids on the substrate transport mediated through human organic anion and cation transporters. Xenobiotica 2018, 48, 197–205. [Google Scholar] [CrossRef]
Victim Drug | Perpetrator Drug | Model | IC50 (μM) | Effects | Reference |
---|---|---|---|---|---|
Imipenem | Cilastatin | Intravenous with cilastatin and imipenem 45 mg/kg in rats | - | AUC0→∞ ↑, T1/2β ↑, CLp ↓, CLR ↓ | [35] |
Diclofenac | Cilastatin | hOAT3-HEK293 cells | 411 | - | [36] |
Diclofenac-induced acute kidney injury in mice | - | AUC0–12h ↑, CLp ↓, t1/2 ↑ | [36] | ||
Diclofenac acyl glucuronide | Cilastatin | hOAT3-HEK293 cells | 813 | - | [36] |
Diclofenac-induced acute kidney injury in mice | - | AUC0–12h ↑, t1/2 ↑ | [36] | ||
MTX | Proton pump inhibitors | hOAT3-HEK293 cells | 0.4–5.5 | - | [37] |
Rhein | hOAT3-HEK293 cells | 0.77 | - | [38] | |
Intravenous with MTX 5 mg/kg and/or rhein 1 mg/kg in rats | - | Cmax ↑, AUC ↑, t1/2β ↑, CLP ↓ | [38] | ||
Diclofenac-Glu | hOAT3-HEK293 cells | 3.17 | - | [39] | |
R-Ibuprofen-Glu | hOAT3-HEK293 cells | 60.1 | - | [39] | |
S-Ibuprofen-Glu | hOAT3-HEK293 cells | 57.0 | - | [39] | |
R-Flurbiprofen-Glu | hOAT3-HEK293 cells | 19.4 | - | [39] | |
S-Flurbiprofen-Glu | hOAT3-HEK293 cells | 31.7 | - | [39] | |
R-Naproxen-Glu | hOAT3-HEK293 cells | 129 | - | [39] | |
S-Naproxen-Glu | hOAT3-HEK293 cells | 51.4 | - | [39] | |
Tranilast | Oral administration of MTX 5 mg/kg and tranilast 10 mg/kg in rats | - | Cmax ↑, AUC0–24h ↑, CLz/f ↓, Vz/f ↓ | [40] | |
Enalaprilat | Benzbromarone | hOAT3-HEK293 cells | 0.14 | - | [29] |
Glimepiride | hOAT3-HEK293 cells | 0.37 | - | [29] | |
Febuxostat | hOAT3-HEK293 cells | 0.41 | - | [29] | |
Verinurad | hOAT3-HEK293 cells | 0.80 | - | [29] | |
Lesinurad | hOAT3-HEK293 cells | 0.80 | - | [29] | |
Telmisartan | hOAT3-HEK293 cells | 0.86 | - | [29] | |
Valsartan | hOAT3-HEK293 cells | 0.90 | - | [29] | |
Sulfinpyrazone | hOAT3-HEK293 cells | 0.95 | - | [29] | |
Repaglinide | hOAT3-HEK293 cells | 2.10 | - | [29] | |
Gemfibrozil | hOAT3-HEK293 cells | 3.50 | - | [29] | |
Enalaprilat | Probenecid | hOAT3-HEK293 cells | 5.12 | - | [29] |
Diclofenac sodium | hOAT3-HEK293 cells | 6.13 | [29] | ||
Quinaprilat | Gemcabene | hOAT3-HEK293 cells rOat3-HEK293 cell | 35 48 | - | [28] |
Oral administration of quinapril 3 mg/kg and gemcabene (30 mg/kg reduced to 10 mg/kg at day 3) in rats | - | AUC0–24h ↑, CLR ↓ | [28] | ||
Gemcabene acylglucuronide | hOAT3-HEK293 cells rOat3-HEK293 cell | 197 133 | - | [28] | |
Oral administration of quinapril 3 mg/kg and gemcabene (30 mg/kg reduced to 10 mg/kg at day 3) in rats | - | AUC0–24h ↑, CLR ↓ | [28] | ||
Bezafibrate | Mizoribine | Oral administration/intravenous with bezafibrate 20 mg/kg and/or mizoribine 15 mg/kg in rats | - | AUC ↑; t1/2β ↑, CLR ↓ | [41] |
Acyclovir | Benzylpenicillin | Intravenous with acyclovir 30 mg/kg and benzylpenicillin 30 mg/kg in rats | - | CLR ↓, t1/2β ↑ | [42] |
Tazobactam | Piperacillin | Intravenous with tazobactam 26.25 mg/kg and piperacillin 210 mg/kg in rats | - | CLp ↓, CLR ↓, AUC ↑, t1/2β ↑, and km ↑ | [43] |
Drug | Herb | Indications for Herb | Model | IC50 (μM) | Effects | Reference |
---|---|---|---|---|---|---|
MTX | Puerarin | Hypertension, hyperlipidemia | hOAT3-HEK293 cells; | 27.9 | - | [57] |
Oral administration of MTX 5 mg/kg and PUR 50 mg/kg in rats | - | Cmax ↑ AUC ↑, t1/2β ↑; CLp ↓ | ||||
Telmisartan | Steviol glucuronide | Hyperglycemia, hypertension, diabetes, inflammation | hOAT3-HEK293 cells | 2.92 | - | [58] |
Diclofenac | Steviol glucuronide | hOAT3-HEK293 cells | 8.01 | - | [58] | |
Mulberrin | Steviol glucuronide | hOAT3-HEK293 cells | 9.97 | - | [58] | |
Probenecid | Steviol acyl glucuronide | Hypertension, diabetes, inflammation | hOAT3-HEK293 cells rOat3-HEK293 cells | 4.9 2.3 | - | [59] |
Oral administration of rebaudioside A 15 mg/kg and probenecid 20 mg/kg/glimepiride 5 mg/kg in rats | - | Cmax ↑, AUC6–8h ↑ | [59] | |||
Glimepiride | Steviol acyl glucuronide | Hyperglycemia, hypertension, diabetes, inflammation | hOAT3-HEK293 cells rOat3-HEK293 cells | 0.81 0.77 | - - | [59] |
Oral administration of rebaudioside A 15 mg/kg and probenecid 20 mg/kg/glimepiride 5 mg/kg in rats | - | Cmax ↑; AUC6–8h ↑ | [59] | |||
Imipenem | Apigenin | Viral infections, inflammation | hOAT3-HEK293 cells; Intravenous with imipenem 200 mg/kg and apigenin 10 mg/kg in rabbits | 2.29 | - | [60] |
- | AUC0–6h ↑, CLp ↓, CLr ↓ | [60] | ||||
Enalaprilat | Galangin | Hyperlipidemia, atherosclerosis, diarrhea | hOAT3-HEK293 cells | 0.030 | - | [29] |
Chrysin | Hyperlipidemia, diabetes, hypertension | hOAT3-HEK293 cells | 0.044 | - | [29] | |
Kaempferol | Atherosclerosis, diabetes, inflammation | hOAT3-HEK293 cells | 0.088 | - | [29] | |
Oroxylin A | Inflammation | hOAT3-HEK293 cells | 0.22 | - | [29] | |
Wogonin | Inflammation | hOAT3-HEK293 cells | 0.24 | - | [29] | |
Apigenin | Viral infections, inflammation | hOAT3-HEK293 cells | 0.33 | - | [29] | |
Luteolin | Cardiovascular disease, hyperuricemia | hOAT3-HEK293 cells | 0.66 | - | [29] | |
Gossypetin | Atherosclerosis | hOAT3-HEK293 cells | 0.71 | - | [29] | |
Quercetin | Hypertension, hyperlipidemia | hOAT3-HEK293 cells | 0.75 | - | [29] | |
Enalaprilat | Mulberrin | Liver Fibrosis | hOAT3-HEK293 cells | 1.22 | - | [29] |
Eriodictyol | Inflammatory | hOAT3-HEK293 cells | 1.48 | - | [29] | |
Fisetin | Liver cancer, inflammation | hOAT3-HEK293 cells | 3.82 | - | [29] | |
Daidzein | Hypertension, ischemic cerebrovascular disease, hyperlipidemia | hOAT3-HEK293 cells | 5.80 | - | [29] | |
Taxifolin | Cardiovascular disease, inflammatory | hOAT3-HEK293 cells | 7.02 | - | [29] | |
Apigetrin | Oxidative stress | hOAT3-HEK293 cells | 7.80 | - | [29] | |
Isoquercetin | Tumor, hypertension, hyperlipidemia, inflammation | hOAT3-HEK293 cells | 11.71 | - | [29] | |
Wogonoside | Inflammatory | hOAT3-HEK293 cells | 11.73 | - | [29] | |
Myricetin | Diabetes, cardiovascular disease | hOAT3-HEK293 cells | 22.58 | - | [29] | |
FS | Juncus effusus | Oedema, urinary discomfort | Oral administration of Juncus effusus extract 100 mg/kg and furosemide 10 mg/kg in rats | - | AUC0–t ↑ | [61] |
Rhubarb | Hepatitis, abdominal pain, constipation | Oral administration of rhubarb extract 5 g crude drug/kg/day and furosemide 10 mg/kg for 7 days in rats | - | AUC0–t ↑ | [62] |
Category | Natural Active Compound | Source | Model | OAT3 Activity | Reference |
---|---|---|---|---|---|
Phenolic acids | Caffeic acid | - | rOat3-HEK293 cells (17.5 nM [3H]-Estrone sulfate as substrate) | IC50 = 5.4 μM | [71] |
Intravenous with caffeic acid at 5 mg/kg (25 mg/kg phenolsul fonphthalein as substrate) in rats | phenolsul fonphthalein CLr ↓ | ||||
Flavonoids | Baicalein | Scutellaria Baicalensis | hOAT3-HEK293 cells (300 nM [3H]-Estrone sulfate as substrate) | IC50 = 2.4 μM | [72] |
Baicalin | Scutellaria Baicalensis | hOAT3-HEK293 cells (300 nM [3H]-Estrone sulfate as substrate) | IC50 = 13.0 μM | [72] | |
Wogonin | Scutellaria Baicalensis | hOAT3-HEK293 cells (300 nM [3H]-Estrone sulfate as substrate) | IC50 = 1.3 μM | [72] | |
Wogonin | Leaves of Nelumbo nucifera Gaertn. | hOAT3-HEK293 cells (10 μM 6-CF as substrate) | IC50 = 2.35 μM | [73] | |
AAN model mice induced by AAI: intravenous with 5 mg/kg AAI and 100 mg/kg wogonin | AAI AUC0–2h ↑, Cmax ↑ CL/F ↓ | ||||
Eugenin | Drynaria fortunei (Kunze) J. Sm. | hOAT3-HEK293 cells (10 μM 6-CF as substrate) | IC50 = 10.77 μM | [73] | |
Calycosin | - | hOAT3-HEK293 cells (10 μM 6-CF as substrate) | IC50 = 11.44 μM | [73] | |
Flavonoids | Oroxylin A | Nelumbo nucifera Gaertn. | hOAT3-HEK293 cells (10 μM 6-CF as substrate) | IC50 = 1.68 μM | [73] |
Luteolin | Eclipta prostrata L. | hOAT3-HEK293 cells (10 μM 6-CF as substrate) | IC50 = 4.20 μM | [73] | |
Quercetol | Eclipta prostrata L. | hOAT3-HEK293 cells (10 μM 6-CF as substrate) | IC50 = 7.27 μM | [73] | |
3,5,7,4′-Tetra-O-methyl-kaempferol | Epimedium brevicornu Maxim. | hOAT3-HEK293 cells (10 μM 6-CF as substrate) | IC50 = 14.77 μM | [73] | |
Viscidulin III | Nelumbo nucifera Gaertn. | hOAT3-HEK293 cells (10 μM 6-CF as substrate) | IC50 = 1.51 μM | [73] | |
Scullcapflavone II | Eclipta prostrata L. | hOAT3-HEK293 cells (10 μM 6-CF as substrate) | IC50 = 6.70 μM | [73] | |
Alkaloids | Camptothecin | Camptotheca acuminate Decne. | hOAT3-HEK293 cells (300 nM [3H]-Estrone sulfate as substrate) | IC50 = 3.5 μM | [74] |
10-hydroxycamptothecin | Camptotheca acuminate Decne. | hOAT3-HEK293 cells (300 nM [3H]-Estrone sulfate as substrate) | IC50 = 4.6 μM | [74] | |
10-methoxycamptothecin | Camptotheca acuminate Decne. | hOAT3-HEK293 cells (300 nM [3H]-Estrone sulfate as substrate) | IC50 = 4.8 μM | [74] | |
9-nitrocamptothecin | Camptotheca acuminate Decne. | hOAT3-HEK293 cells (300 nM [3H]-Estrone sulfate as substrate) | IC50 = 2.8 μM | [74] | |
Tryptanthrin | - | hOAT3-HEK293 cells (300 nM [3H]-Estrone sulfate as substrate) | IC50 = 0.93 μM | [70] | |
Anthraquinone | Rhein | Rhubarb | hOAT3-HEK293 cells (ranging from 0.5 μM to 200 μM Fluo as substrate) | IC50 = 0.08 μM | [62] |
Emodin | Rhubarb | hOAT3-HEK293 cells (ranging from 0.5 μM to 200 μM Fluo as substrate) | IC50 = 1.22 μM | [62] | |
Aloe-modin | Rhubarb | hOAT3-HEK293 cells (ranging from 0.5 μM to 200 μM Fluo as substrate) | IC50 = 5.37 μM | [62] | |
Obtusifolin | Semen cassiae Semen cassiae | hOAT3-HEK293 cells (5 μM 6-CF as substrate) | IC50 = 1.71 μM | [75] | |
Aurantio-obtusin | hOAT3-HEK293 cells (5 μM 6-CF as substrate) | IC50 = 1.23 μM | [75] | ||
Anthraquinone | Emodin | Semen cassiae | hOAT3-HEK293 cells (5 μM 6-CF as substrate) | IC50 = 2.06 μM | [75] |
1,2,7-trihydroxy-8-methoxy-6-methy1-9,10-anthraquinone | Semen cassiae | hOAT3-HEK293 cells (5 μM 6-CF as substrate) | IC50 = 3.44 μM | [75] | |
Chrysophanol | Semen cassiae | hOAT3-HEK293 cells (5 μM 6-CF as substrate) | IC50 = 6.20 μM | [75] | |
Chryso-obtusin | Semen cassiae | hOAT3-HEK293 cells (5 μM 6-CF as substrate) | IC50 = 7.46 μM | [75] | |
Phenols | 2-O-methyl-9-dehydroxyeurotinone | Semen cassiae Semen cassiae | hOAT3-HEK293 cells (5 μM 6-CF as substrate) | IC50 = 7.14 μM | [75] |
9-dehydroxyeurotinone | hOAT3-HEK293 cells (5 μM 6-CF as substrate) | IC50 = 7.35 μM | [75] | ||
(−)-epigallocatechin-3-gallate(EGCG) | Green tea | hOAT3-HEK293 cells (5 μM 6-CF as substrate), rOat3 -HEK293 cells (5 μM 6-CF as substrate) | Ki = 162 μM Ki = 56.5 μM | [76] | |
Intravenous with 6-CF 1 mg/kg and EGCG 60 mg/kg in rats | 6-CF AUC0−60min ↑, CLr ↓, BNU ↑ | ||||
2,4,6-Trichloro-3-methoxy-5-methylphenol | - | hOAT3-HEK293 cells (10 μM 6-CF as substrate) | IC50 = 3.93 μM | [73] | |
Phenylpropanoids | Dioscorealide B | Dioscorea septemloba Thunb. | hOAT3-HEK293 cells (10 μM 6-CF as substrate) | IC50 = 7.73 μM | [73] |
Wedelolactone | Eclipta prostrata L. | hOAT3-HEK293 cells (10 μM 6-CF as substrate) | IC50 = 7.09 μM | ||
Terpenes | 3-Oxo-16α-hydroxy-olean-12-en-28β-oic acid | - | hOAT3-HEK293 cells (10 μM 6-CF as substrate) | IC50 = 8.05 μM | [73] |
Ursolic acid | Pomegranate | hOAT3-HEK293 cells (300 nM [3H]-Estrone-3-sulfate as substrate) | IC50 = 18.9 μM | [77] | |
Others | Anchusa azurea (A) | - | hOAT3-HEK293 cells (10 μM 6-CF as substrate) | IC50 = 3.836 µg/mL | [61] |
Anchusa azurea (B) | - | hOAT3-HEK293 cells (10 μM 6-CF as substrate) | IC50 = 0.343 µg/mL | [61] | |
Symphytum asperum (B) | - | hOAT3-HEK293 cells (10 μM 6-CF as substrate) | IC50 = 0.406 µg/mL | [61] | |
Others | Echium russicum(B) | - | hOAT3-HEK293 cells (10 μM 6-CF as substrate) | IC50 = 0.460 µg/mL | [61] |
Juncus effusus (D) | - | hOAT3-HEK293 cells (10 μM 6-CF as substrate) | IC50 = 1.210 µg/mL | [61] | |
Polygonum hydropiper (D) | - | hOAT3-HEK293 cells (10 μM 6-CF as substrate) | IC50 = 1.296 µg/mL | [61] | |
Geranium tuberosum (B) | - | hOAT3-HEK293 cells (10 μM 6-CF as substrate) | IC50 = 1.878 µg/mL | [61] | |
Primula macrocalyx (D) | - | hOAT3-HEK293 cells (10 μM 6-CF as substrate) | IC50 = 2.081 µg/mL | [61] | |
Glycyrrhiza glabra (D) | - | hOAT3-HEK293 cells (10 μM 6-CF as substrate) | IC50 = 2.399 µg/mL | [61] | |
Polygonum hydropiper (D) | - | hOAT3-HEK293 cells (10 μM 6-CF as substrate) | IC50 = 2.966 µg/mL | [61] | |
Juniperus oblonga (LF + FR) (D) | - | hOAT3-HEK293 cells (10 μM 6-CF as substrate) | IC50 = 3.047 µg/mL | [61] | |
Juniperus oblonga (LF + FR) (B) | - | hOAT3-HEK293 cells (10 μM 6-CF as substrate) | IC50 = 1.117 µg/mL | [61] | |
Astracantha microcephala (D) | - | hOAT3-HEK293 cells (10 μM 6-CF as substrate) | IC50 = 4.619 µg/mL | [61] | |
Chaerophyllum bulbosum (H) | - | hOAT3-HEK293 cells (10 μM 6-CF as substrate) | IC50 = 4.791 µg/mL | [61] | |
Phenanthrenoids | 7-carboxy-2- hydroxy-1-methyl-6-vinyl-9,10-dihydrophenanthrene | Juncus effusus. | hOAT3-HEK293 cells (4 μM 6-CF as substrate) | IC50 = 1.3 μM | [78] |
7-carboxy-2- hydroxy-1-methyl-8-vinyl-9,10-dihydrophenanthrene | Juncus effusus. | hOAT3-HEK293 cells (4 μM 6-CF as substrate) | IC50 = 1.1 μM | [78] | |
6-carboxy-2-hydroxy-1-methyl-8- vinyl-9,10-dihydrophenanthrene | Juncus effusus. | hOAT3-HEK293 cells (4 μM 6-CF as substrate) | IC50 = 2.8 μM | [78] | |
7-carboxy-2-hydroxy-1-methyl-5-vinyl-9,10-dihy-drophenanthrene | Juncus effusus. | hOAT3-HEK293 cells (4 μM 6-CF as substrate) | IC50 = 1.1 μM | [78] | |
4,4′-dihydroxy-3,3′-dimethoxybenzophenone | Juncus effusus. | hOAT3-HEK293 cells (4 μM 6-CF as substrate) | IC50 = 2.3 μM | [78] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Y.; Li, H.; Wang, K.; Wang, Y. Recent Advances in Synthetic Drugs and Natural Actives Interacting with OAT3. Molecules 2023, 28, 4740. https://doi.org/10.3390/molecules28124740
Chen Y, Li H, Wang K, Wang Y. Recent Advances in Synthetic Drugs and Natural Actives Interacting with OAT3. Molecules. 2023; 28(12):4740. https://doi.org/10.3390/molecules28124740
Chicago/Turabian StyleChen, Ying, Hongyan Li, Ke Wang, and Yousheng Wang. 2023. "Recent Advances in Synthetic Drugs and Natural Actives Interacting with OAT3" Molecules 28, no. 12: 4740. https://doi.org/10.3390/molecules28124740
APA StyleChen, Y., Li, H., Wang, K., & Wang, Y. (2023). Recent Advances in Synthetic Drugs and Natural Actives Interacting with OAT3. Molecules, 28(12), 4740. https://doi.org/10.3390/molecules28124740