Two Novel Neutral Cyclometalated Iridium(III) Complexes Based on 10,11,12,13-Tetrahydrodibenzo[a,c]phenazine for Efficient Red Electroluminescence
Abstract
:1. Introduction
2. Results
2.1. Structural Characterization
2.2. Photophysical Properties
2.3. Cyclic Voltammograms and TGA Analysis
2.4. Electroluminescent Devices
3. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Zhang, Y.M.; Wang, Y.F.; Song, J.; Qu, J.L.; Li, B.H.; Zhu, W.G.; Wong, W.Y. Near-infrared emitting materials via harvesting triplet excitons: Molecular design, properties, and application in organic light emitting diodes. Adv. Opt. Mater. 2018, 6, 1800466. [Google Scholar] [CrossRef]
- Chen, B.; Liu, B.Q.; Zeng, J.J.; Nie, H.; Xiong, Y.; Zou, J.H.; Ning, H.L.; Wang, Z.M.; Zhan, Z.J.; Tang, B.Z. Efficient bipolar blue AIEgens for high-performance nondoped blue OLEDs and hybrid white OLEDs. Adv. Funct. Mater. 2018, 8, 1803369. [Google Scholar] [CrossRef]
- Sarma, M.; Chen, L.M.; Chen, Y.S.; Wong, K.T. Exciplexes in OLEDs: Principles and promises. Mater. Sci. Eng. R Rep. 2022, 8, 100689. [Google Scholar] [CrossRef]
- Chen, W.C.; Zhu, Z.L.; Lee, C.S. Orangic light-emitting diodes based on lmidazole semic-onductors. Adv. Opt. Mater. 2018, 6, 1800258. [Google Scholar] [CrossRef]
- Swayamprabha, S.S.; Dubey, D.K.; Shahnawaz; Yadav, R.A.K.; Nagar, M.R.; Sharma, A.; Tung, F.C.; Jou, J.H. Approaches for long lifetime organic light emitting diodes. Adv. Sci. 2022, 8, 2002254. [Google Scholar] [CrossRef]
- Huang, L.; Park, C.D.; Fleetham, T.; Li, J. Platinum (II) azaterbenzoporphyrins for near-infrared organic light emitting diodes. Appl. Phys. Rev. 2016, 109, 233302. [Google Scholar]
- Liu, W.; Liu, Z.M.; Yan, J.K.; Wang, L.; Xu, H.X.; Wang, H. A quinoxaline-based charge-transfer compound for efficient deep-red organic light emitting diodes. Dyes. Pigment. 2021, 191, 109305. [Google Scholar] [CrossRef]
- Liu, X.Y.; Zhang, Y.L.; Fei, X.Y.; Liao, L.S.; Fan, J. 9′-Bicarbazole: New molecular skeleton for organic light-emitting diodes. Chem. Eur. J. 2018, 25, 1806314. [Google Scholar] [CrossRef]
- Kim, K.H.; Yoo, S.J.; Kim, J.J. Boosting triplet harvest by reducing nonradiative transition of exciplex toward fluorescent organic light-emitting diodes with 100% internal quantum efficiency. Chem. Mater. 2016, 28, 1936. [Google Scholar] [CrossRef]
- Kitzmann, W.R.; Heinze, K. Charge-Transfer and Spin-Flip States: Thriving as Complements. Angew. Chem. Int. Ed. 2023, 62, e202213207. [Google Scholar] [CrossRef]
- Nyenhuis, M.; Schönrath, I.; Kamzeeva, P.N.; Zatsepin, T.S.; Müller, J.; Doltsinis, N.; Aralov, A.V. Benzothiazole-substituted 1,3-diaza-2-oxophenoxazine as a luminescent nucleobase surrogate for silver(i)-mediated base pairing. Dalton Trans. 2022, 51, 13386–13395. [Google Scholar] [CrossRef]
- Chen, L.F.; Zhang, S.T.; Li, H.; Chen, R.F.; Jin, L.; Yuan, K.; Li, H.H.; Yang, B.; Huang, W. Breaking the efficiency limit of fluorescent OLEDs by hybridized local and charge-transfer host materials. J. Phys. Chem. Lett. 2018, 9, 5240. [Google Scholar] [CrossRef]
- Darmawan, N.; Sambri, L.; Daniliuc, C.G.; Cola, L.D. Blue-emitting bolaamphiphilic zwitterionic iridium (III) complex. Dalton. T. 2019, 48, 3664. [Google Scholar] [CrossRef]
- Kreidt, E.; Leis, W.; Seitz, M. Direct solid-phase synthesis of molecular heterooligonuclear lanthanoid-complexes. Nat. Commun. 2020, 11, 1346. [Google Scholar] [CrossRef] [Green Version]
- Soellner, J.; Strassner, T. Diaryl-1,2,3-triazolylidene platinum(II) complexes. Chem. Eur. J. 2018, 24, 1705738. [Google Scholar] [CrossRef]
- Voute, A.; Gatti, F.; Møller, K.B.; Henriksen, N.E. Femtochemistry of bimolecular reactions from weakly bound complexes: Computational study of the H + H′OD → H′OH + D or HOD + H′ exchange reactions. Phys. Chem. Chem. Phys. 2021, 23, 27207–27226. [Google Scholar] [CrossRef]
- Winter, A.; Schubert, U.S. Metal-Terpyridine Complexes in Catalytic Application—A Spotlight on the Last Decade. ChemCatChem 2020, 12, 2890–2941. [Google Scholar] [CrossRef]
- Ou, C.J.; Qiu, Y.C.; Cao, C.H.; Zhang, H.; Qin, J.; Tu, Z.L.; Shi, J.; Wu, Z.G. Modulating the peripheral large steric hindrance of iridium complexes for achieving narrowband emission and pure red OLEDs with an EQE up to 32.0%. Inorg. Chem. Front. 2023, 10, 1018. [Google Scholar] [CrossRef]
- Klementyeva, S.V.; Sukhikh, T.S.; Abramov, P.A.; Poddel’sky, A.I. Low-Coordinate Mixed Ligand NacNac Complexes of Rare Earth Metals. Molecules 2023, 28, 1994. [Google Scholar] [CrossRef]
- Li, M.Q.; Yu, J.T.; Liu, D.H.; Tan, S.; Cao, X.Q.; Cao, L.Q.; Tan, Y.N.; Cao, J.M.; Tan, H.; Wang, Y.F.; et al. Enhancing the efficiency of near-infrared iridium (III) complexes-based OLEDs by auxiliary ligand functionalization. Synthetic. Metals 2021, 281, 116917. [Google Scholar] [CrossRef]
- Jing, Y.M.; Wang, F.Z.; Zheng, Y.X.; Zuo, J.L. Efficient deep red electroluminescence of iridium (III) complexes with 2,3-diphenylquinoxaline derivatives and tetraphenylimidodiphosphinate. J. Mater. Chem. C 2017, 5, 3714. [Google Scholar] [CrossRef]
- Mao, M.X.; Li, F.L.; Shen, Y.; Liu, Q.M.; Xing, S.; Luo, X.F.; Tu, Z.L.; Wu, X.J.; Zheng, Y.X. Simple synthesis of red iridium(III) complexes with sulfur-contained four-membered ancillary ligands for OLEDs. Molecules 2021, 26, 2599. [Google Scholar] [CrossRef] [PubMed]
- Su, N.; Yang, H.Q.; Shen, C.Z.; Yan, Z.P.; Chen, Z.X.; Zheng, Y.X. Rapid room temperature synthesis of red iridium(III) complexes with Ir-S-P-S structures for efficient OLEDs. J. Mater. Chem. C 2019, 7, 6972. [Google Scholar] [CrossRef]
- Niu, Z.G.; Yan, L.P.; Wu, L.; Chen, G.Y.; Sun, W.; Liang, X.; Zheng, Y.X.; Li, G.N.; Zuo, J.L. Iridium(III) complexes adopting thienylpyridine derivatives for yellow-to-deep red OLEDs with low efficiency roll-off. Dyes. Pigments 2019, 162, 863. [Google Scholar] [CrossRef]
- Jiang, Y.L.; Zhou, L.; Cui, R.Z.; Li, Y.N.; Zhao, X.S.; Zhang, H.J. Highly efficient pure red organic light-emitting devices based on tris(1-phenyl-isoquinoline) iridium (III) with another wide gap iridium (III) complex as sensitizer. Dyes. Pigments 2016, 128, 26. [Google Scholar] [CrossRef]
- Ding, Y.; Liu, D.; Li, J.Y.; Li, H.T.; Ma, H.Y.; Li, D.L.; Niu, R. Saturated red phosphorescent iridium(III) complexes containing phenylquinoline ligands for efficient organic light-emitting diodes. Dyes. Pigments 2020, 179, 108405. [Google Scholar] [CrossRef]
- Guo, S.; Ma, Y.; Liu, S.J.; Yu, Q.; Xu, A.Q.; Han, J.M.; Wei, L.W.; Zhao, Q.; Huang, W. A phosphorescent Ir(III) complex with formamide for the luminescence determination of low-level water content in organic solvents. J. Mater. Chem. C 2016, 4, 6110. [Google Scholar] [CrossRef]
- Lu, Z.; Lu, Q.Q.; Yang, Y.Z.; Jiang, Z.Z.; Zeng, Q.; Zhou, W.Q.; Jun, L.; Gong, Y.Y.; Liu, Y.L.; Miao, Y.Q.; et al. Solution-processed high-performance orange-red organic light-emitting diode(OLED) based on ionic phosphorescent iridium(III) complex. J. Organomet. Chem. 2022, 967, 122333. [Google Scholar] [CrossRef]
- Guo, C.X.; Guo, S.; Liu, Q.Q.; Jiang, Z.Z.; Yang, Y.Z.; Zhou, W.Q.; Zeng, Q.; Liang, J.; Miao, Y.Q.; Liu, Y.L. Solution-processed yellow organic light-emitting diodes based on two new ionic Ir (III) complexes. Molecules 2022, 27, 2840. [Google Scholar] [CrossRef]
- Tao, P.; Li, W.L.; Zhang, J.; Guo, S.; Zhao, Q.; Wang, H.; Wei, B.; Liu, S.J.; Zhou, X.H.; Yu, Q.; et al. Facile synthesis of highly efficient lepidine-based phosphorescent iridium (III) complexes for yellow and white organic light-emitting diodes. Adv. Funct. Mater. 2016, 26, 881. [Google Scholar] [CrossRef]
- Tao, P.; Zheng, X.K.; Wei, X.Z.; Lau, M.T.; Lee, Y.K.; Li, Z.K.; Guo, Z.L.; Zhao, F.Q.; Liu, X.; Liu, S.J.; et al. Chlorinated yellow phosphorescent cyclometalated neutral iridophosphors featuring broad emission bandwidths for white electroluminescence. Mater. Today. Energy 2021, 21, 100773. [Google Scholar] [CrossRef]
- Chen, D.C.; Wang, Z.H.; Wang, D.; Wu, Y.C.; Lo, C.C.; Lien, A.; Cao, Y.; Su, S.-J. Efficient exciplex organic light-emitting diodes with a bipolar acceptor. Org. Electron. 2015, 25, 7. [Google Scholar] [CrossRef]
- Guo, S.; Guo, C.X.; Lu, Z.; Du, L.L.; Gao, M.; Liu, S.J.; Liu, Y.L.; Zhao, Q. A Novel Phosphorescent Iridium (III) Complex Bearing Formamide for Quantitative Fluorine Anion Detection. Crystals 2021, 11, 1190. [Google Scholar] [CrossRef]
- Sun, H.B.; Liu, S.J.; Lin, W.P.; Zhang, K.Y.; Lv, W.; Huang, X.; Huo, F.W.; Yang, H.R.; Jenkins, G.; Zhao, Q.; et al. Smart responsive phosphorescent materials for data recording and security protection. Nat. Commun. 2014, 5, 3601. [Google Scholar] [CrossRef] [Green Version]
- Nonoyama, M. Benzo[h]quinolin-10-yl-N Iridium (III) Complexes. Bull. Chem. Soc. Jpn. 1974, 47, 767. [Google Scholar] [CrossRef] [Green Version]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Petersson, G.A.; Nakatsuji, H.; et al. Gaussian 16, Revision B.01; Gaussian, Inc.: Wallingford, CT, USA, 2016. [Google Scholar]
- Lu, T.; Chen, F. Multiwfn: A multifunctional wavefunction analyzer. Comput. Chem. 2012, 33, 580–592. [Google Scholar] [CrossRef]
Complexes | Emission in CH2Cl2 | Eg [eV] a | Eonsetox [eV] | T1 [eV] b | ||
---|---|---|---|---|---|---|
λem [nm] | Τ [μs] | ΦPL | ||||
Ir1 | 625 | 0.14 | 0.32 | 2.23 | 0.92 | 2.05 |
Ir2 | 620 | 0.13 | 0.35 | 2.23 | 1.05 | 2.08 |
Complex | X % | λλEL/ nm | CIE(x,y) | VON/ V | Lmax/ cd·m−2 | CEmax/ cd·A−1 | PEmax/ lm·W−1 | EQE/ % |
---|---|---|---|---|---|---|---|---|
Ir1 | 4 | 612 | (0.61, 0.37) | 3.5 | 25,970 | 13.47 | 10.35 | 10.08 |
Ir2 | 4 | 591 | (0.51, 0.43) | 3.7 | 13,450 | 15.22 | 12.26 | 7.48 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, Y.; Zhao, H.; Zhou, W.; Zeng, Q.; Zhang, Z.; Jiang, J.; Gong, Y.; Miao, Y.; Guo, S.; Liu, Y. Two Novel Neutral Cyclometalated Iridium(III) Complexes Based on 10,11,12,13-Tetrahydrodibenzo[a,c]phenazine for Efficient Red Electroluminescence. Molecules 2023, 28, 4865. https://doi.org/10.3390/molecules28124865
Yang Y, Zhao H, Zhou W, Zeng Q, Zhang Z, Jiang J, Gong Y, Miao Y, Guo S, Liu Y. Two Novel Neutral Cyclometalated Iridium(III) Complexes Based on 10,11,12,13-Tetrahydrodibenzo[a,c]phenazine for Efficient Red Electroluminescence. Molecules. 2023; 28(12):4865. https://doi.org/10.3390/molecules28124865
Chicago/Turabian StyleYang, Yuzhen, Han Zhao, Weiqiao Zhou, Qin Zeng, Zihao Zhang, Junjie Jiang, Yongyang Gong, Yanqin Miao, Song Guo, and Yuanli Liu. 2023. "Two Novel Neutral Cyclometalated Iridium(III) Complexes Based on 10,11,12,13-Tetrahydrodibenzo[a,c]phenazine for Efficient Red Electroluminescence" Molecules 28, no. 12: 4865. https://doi.org/10.3390/molecules28124865
APA StyleYang, Y., Zhao, H., Zhou, W., Zeng, Q., Zhang, Z., Jiang, J., Gong, Y., Miao, Y., Guo, S., & Liu, Y. (2023). Two Novel Neutral Cyclometalated Iridium(III) Complexes Based on 10,11,12,13-Tetrahydrodibenzo[a,c]phenazine for Efficient Red Electroluminescence. Molecules, 28(12), 4865. https://doi.org/10.3390/molecules28124865