A Study of the Chemical Composition, Acute and Subacute Toxicity of Bulgarian Tanacetum parthenium Essential Oil
Abstract
:1. Introduction
2. Results and Discussion
2.1. GC-MS Analysis of T. parthenium EO
2.2. Toxicology Results
2.2.1. Evaluation of Acute Toxicity (LD50)
2.2.2. Subacute Toxicity—Hematological and Serum Biochemical Results
2.2.3. Subacute Toxicity—Histological Results
3. Materials and Methods
3.1. Plant Materials
3.2. Chemicals and Reagents
3.3. Isolation of the Essential Oil
3.4. Chromatographic Condition
3.5. Toxicology
3.5.1. Acute Toxicity Study of T. parthenium EO to Determine LD50
3.5.2. Subacute Toxicity Study—Hematological and Serum Biochemical Evaluations
3.5.3. Subacute Toxicity Study—Histological Evaluation
3.5.4. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Akpulat, H.A.; Tepe, B.; Sokmen, A.; Daferera, D.; Polissiou, M. Composition of the Essential Oils of Tanacetum argyrophyllum (C. Koch) Tvzel. Var. Argyrophyllum and Tanacetum parthenium (L.) Schultz Bip. (Asteraceae) from Turkey. Biochem. Syst. Ecol. 2005, 33, 511–516. [Google Scholar] [CrossRef]
- Pareek, A.; Suthar, M.; Rathore, G.; Bansal, V. Feverfew (Tanacetum parthenium L.): A Systematic Review. Pharmacogn. Rev. 2011, 5, 103. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Council of Europe. European Pharmacopoeia; Council of Europe: Strasburg, France, 2019; pp. 1436–1437. [Google Scholar]
- Ernst, E.; Pittler, M. The Efficacy and Safety of Feverfew (Tanacetum parthenium L.): An Update of a Systematic Review. Public Health Nutr. 2000, 3, 509–514. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sharopov, F.S.; Setzer, W.N.; Isupov, S.J. Composition and Bioactivity of the Essential Oil of Tanacetum parthenium from a Wild Population Growing in Tajikistan. Am. J. Essent. Oils Nat. Prod. 2015, 2, 32–34. [Google Scholar]
- Mahood, H.E.; Abbas, M.K.; Zahid, N.A. Micropropagation of Feverfew (Tanacetum parthenium) and Quantification of Parthenolide Content in Its Micropropagated and Conventionally Grown Plants. Horticulturae 2022, 8, 50. [Google Scholar] [CrossRef]
- Armijos, C.; Cota, I.; González, S. Traditional Medicine Applied by the Saraguro Yachakkuna: A Preliminary Approach to the Use of Sacred and Psychoactive Plant Species in the Southern Region of Ecuador. J. Ethnobiol. Ethnomed. 2014, 10, 26. [Google Scholar] [CrossRef] [Green Version]
- Träder, J.-M. Mutterkraut als prophylaktische Phytotherapie bei Migräne. ZFA-Z. Für Allg. 2007, 83, 238–241. [Google Scholar] [CrossRef]
- Pfaffenrath, V.; Diener, H.; Fischer, M.; Friede, M.; Henneicke-von Zepelin, H. The Efficacy and Safety of Tanacetum parthenium (Feverfew) in Migraine Prophylaxis—A Double-Blind, Multicentre, Randomized Placebo-Controlled Dose-Response Study. Cephalalgia 2002, 22, 523–532. [Google Scholar] [CrossRef]
- Palevitch, D.; Earon, G.; Carasso, R. Feverfew (Tanacetum parthenium) as a Prophylactic Treatment for Migraine: A Double-Blind Placebo-Controlled Study. Phytother. Res. 1997, 11, 508–511. [Google Scholar] [CrossRef]
- Vogler, B.; Pittler, M.; Ernst, E. Feverfew as a Preventive Treatment for Migraine: A Systematic Review. Cephalalgia 1998, 18, 704–708. [Google Scholar] [CrossRef]
- Recinella, L.; Chiavaroli, A.; di Giacomo, V.; Antolini, M.D.; Acquaviva, A.; Leone, S.; Brunetti, L.; Menghini, L.; Ak, G.; Zengin, G.; et al. Anti-Inflammatory and Neuromodulatory Effects Induced by Tanacetum parthenium Water Extract: Results from In Silico, In Vitro and Ex Vivo Studies. Molecules 2020, 26, 22. [Google Scholar] [CrossRef]
- Mathema, V.B.; Koh, Y.-S.; Thakuri, B.C.; Sillanpää, M. Parthenolide, a Sesquiterpene Lactone, Expresses Multiple Anti-Cancer and Anti-Inflammatory Activities. Inflammation 2012, 35, 560–565. [Google Scholar] [CrossRef] [PubMed]
- Sohma, I.; Fujiwara, Y.; Sugita, Y.; Yoshioka, A.; Shirakawa, M.; Moon, J.-H.; Takiguchi, S.; Miyata, H.; Yamasaki, M.; Mori, M.; et al. Parthenolide, An NF-ΚB Inhibitor, Suppresses Tumor Growth and Enhances Response to Chemotherapy in Gastric Cancer. Cancer Genom. Proteom. 2011, 8, 39–47. [Google Scholar]
- Guzman, M.L.; Rossi, R.M.; Karnischky, L.; Li, X.; Peterson, D.R.; Howard, D.S.; Jordan, C.T. The Sesquiterpene Lactone Parthenolide Induces Apoptosis of Human Acute Myelogenous Leukemia Stem and Progenitor Cells. Blood 2005, 105, 4163–4169. [Google Scholar] [CrossRef] [Green Version]
- Sun, J.; Zhang, C.; Bao, Y.-L.; Wu, Y.; Chen, Z.-L.; Yu, C.-L.; Huang, Y.-X.; Sun, Y.; Zheng, L.-H.; Wang, X.; et al. Parthenolide-Induced Apoptosis, Autophagy and Suppression of Proliferation in HepG2 Cells. Asian Pac. J. Cancer Prev. 2014, 15, 4897–4902. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.; Chen, F.; Wang, X.; Kim, H.-J.; He, G.; Haley-Zitlin, V.; Huang, G. Antioxidant Constituents in Feverfew (Tanacetum parthenium) Extract and Their Chromatographic Quantification. Food Chem. 2006, 96, 220–227. [Google Scholar] [CrossRef]
- Williams, C. The Flavonoids of Tanacetum parthenium and T. vulgare and Their Anti-Inflammatory Properties. Phytochemistry 1999, 51, 417–423. [Google Scholar] [CrossRef] [PubMed]
- Williams, C.A.; Hoult, J.R.S.; Harborne, J.B.; Greenham, J.; Eagles, J. A Biologically Active Lipophilic Flavonol from Tanacetum parthenium. Phytochemistry 1995, 38, 267–270. [Google Scholar] [CrossRef]
- Nikolova, M.; Dzhurmanski, A. Evaluation of Free Radical Scavenging Capacity of Extracts from Cultivated Plants. Biotechnol. Biotechnol. Equip. 2009, 23, 109–111. [Google Scholar] [CrossRef]
- Hanganu, D.; Benedec, D.; Vlase, L.; Popica, I.; Bele, C.; Raita, O.; Gheldiu, A.-M.; Valentin, C. Polyphenolic Content and Antioxidant Activity of Chrysanthemum parthenium Extract. Farmacia 2016, 64, 498–501. [Google Scholar]
- Polatoglu, K.; Demirci, F.; Demirci, B.; Gören, N.; Baser, K.H.C. Antibacterial Activity and the Variation of Tanacetum parthenium (L.) Schultz Bip. Essential Oils from Turkey. J. Oleo Sci. 2010, 59, 177–184. [Google Scholar] [CrossRef] [Green Version]
- Rezaei, F.; Jamei, R.; Heidari, R. Evaluation of the Phytochemical and Antioxidant Potential of Aerial Parts of Iranian Tanacetum Parthenium. Pharm. Sci. 2017, 23, 136–142. [Google Scholar] [CrossRef] [Green Version]
- Shafaghat, A.; Ghorban-Dadras, O.; Mohammadhosseini, M.; Akhavan, M.; Shafaghatlonbar, M.; Panahi, A. A Comparative Study on Chemical Composition and Antimicrobial Activity of Essential Oils from Tanacetum parthenium (L.) Schultz. Bip. and Tanacetum punctatum (Desr.) Grierson. Leaves from Iran. J. Essent. Oil Bear. Plants 2017, 20, 1143–1150. [Google Scholar] [CrossRef]
- Izadi, Z.; Esna-Ashari, M.; Piri, K.; Davoodi, P. Chemical Composition and Antimicrobial Activity of Feverfew (Tanacetum parthenium) Essential Oil. Int. J. Agric. Biol. 2010, 12, 1560–8530. [Google Scholar]
- Izadi, Z.; Aghaalikhani, M.; Esna-Ashari, M.; Davoodi, P. Determining Chemical Composition and Antimicrobial Activity of Feverfew (Tanacetum parthenium L.) Essential Oil on Some Microbial Strains. Zahedan J. Res. Med. Sci. 2013, 15, 8–13. [Google Scholar]
- Mohsenzadeh, F.; Chehregani, A.; Amiri, H. Chemical Composition, Antibacterial Activity and Cytotoxicity of Essential Oils of Tanacetum parthenium in Different Developmental Stages. Pharm. Biol. 2011, 49, 920–926. [Google Scholar] [CrossRef] [PubMed]
- Dajić Stevanović, Z.P.; Nastovski, T.L.; Ristić, M.S.; Radanović, D.S. Variability of Essential Oil Composition of Cultivated Feverfew (Tanacetum parthenium (L.) Schultz Bip.) Populations. J. Essent. Oil Res. 2009, 21, 292–294. [Google Scholar] [CrossRef]
- Rateb, M.E.M.; El-Gendy, A.-N.A.M.; El-Hawary, S.S.; El, A.M. Phytochemical and Biological Investigation of Tanacetum parthenium (L.) Cultivated in Egypt. J. Med. Plants Res. 2007, 1, 18–26. [Google Scholar]
- Vaverkova, S.; Birosova, L.; Luptak, P.; BrazdoviCova, B. Content of Essential Oil Obtained from Flowerheads in Selected Species of Tanacetum L. Genus and Identification of Selected Components. Herba Pol. 2008, 54, 22–29. [Google Scholar]
- Mirjalili, M.H.; Salehi, P.; Sonboli, A.; Mohammadi Vala, M. Essential Oil Composition of Feverfew (Tanacetum parthenium) in Wild and Cultivated Populations from Iran. Chem. Nat. Compd. 2007, 43, 218–220. [Google Scholar] [CrossRef]
- Shahhoseini, R.; Azizi, M.; Asili, J.; Moshtaghi, N.; Samiei, L. Comprehensive Assessment of Phytochemical Potential of Tanacetum parthenium (L.): Phenolic Compounds, Antioxidant Activity, Essential Oil and Parthenolide. J. Essent. Oil Bear. Plants 2019, 22, 614–629. [Google Scholar] [CrossRef]
- Hendriks, H.; Bos, R.; Woerdenbag, H.J. The Essential Oil Of Tanacetum parthenium (L.) Schultz-Bip. Flavour Fragr. J. 1996, 11, 367–371. [Google Scholar] [CrossRef]
- Haziri, A.; Govori-Oda, S.; Ismaili, M.; Faiku, F.; Haziri, I. Essential Oil of Tanacetum parthenium (L.) from East Part of Kosova. Am. J. Biochem. Biotechnol. 2009, 5, 226–228. [Google Scholar] [CrossRef]
- Barra, A. Factors Affecting Chemical Variability of Essential Oils: A Review of Recent Developments. Nat. Prod. Commun. 2009, 4, 1934578X0900400. [Google Scholar] [CrossRef] [Green Version]
- Hamidpour, R.; Hamidpour, S.; Hamidpour, M.; Shahlari, M. Camphor (Cinnamomum camphora), a Traditional Remedy with the History of Treating Several Diseases. Int. J. Case Rep. Images 2013, 4, 86. [Google Scholar] [CrossRef] [Green Version]
- Zuccarini, P. Camphor: Risks and Benefits of a Widely Used Natural Product. J. Appl. Sci. Environ. Manag. 2010, 13, 69–74. [Google Scholar] [CrossRef] [Green Version]
- Zielińska-Błajet, M.; Feder-Kubis, J. Monoterpenes and Their Derivatives—Recent Development in Biological and Medical Applications. Int. J. Mol. Sci. 2020, 21, 7078. [Google Scholar] [CrossRef]
- Chen, W.; Vermaak, I.; Viljoen, A. Camphor—A Fumigant during the Black Death and a Coveted Fragrant Wood in Ancient Egypt and Babylon—A Review. Molecules 2013, 18, 5434–5454. [Google Scholar] [CrossRef] [Green Version]
- Gavliakova, S.; Dolak, T.; Licha, H.; Krizova, S.; Plevkova, J. Cineole, Thymol and Camphor Nasal Challenges and Their Effect on Nasal Symptoms and Cough in an Animal Model. Acta Med. Martiniana 2013, 13, 5–13. [Google Scholar] [CrossRef] [Green Version]
- Taoufik, F.; Hamdouch, A.; Zine, S.; Chebli, B.; El Hadek, M.; Idrissi, L.M.H. Essential Oil Content, Chemical Composition, Antioxidant Activity and Antiviral Potential against COVID-19 of Four Aromatic and Medicinal Plants from South of Morocco. Arab. J. Med. Aromat. Plants 2022, 8, 77–93. [Google Scholar] [CrossRef]
- Malabadi, R.B.; Kolkar, K.P.; Meti, N.T.; Chalannavar, R.K. Camphor Tree, Cinnamomum camphora (L.); Ethnobotany and Pharmacological Updates. Biomedicine 2021, 41, 181–184. [Google Scholar] [CrossRef]
- Malabadi, R.B.; Kolkar, K.P.; Meti, N.T.; Chalannavar, R.K. An Age Old Botanical Weapon for Herbal Therapy: Camphor Tree, Cinnamomum camphora. Int. J. Innov. Sci. Res 2021, 3, 1518–1523. [Google Scholar]
- Hachlafi, N.E.; Aanniz, T.; Menyiy, N.E.; Baaboua, A.E.; Omari, N.E.; Balahbib, A.; Shariati, M.A.; Zengin, G.; Fikri-Benbrahim, K.; Bouyahya, A. In Vitro and in Vivo Biological Investigations of Camphene and Its Mechanism Insights: A Review. Food Rev. Int. 2021, 39, 1799–1826. [Google Scholar] [CrossRef]
- Tiwari, M.; Kakkar, P. Plant Derived Antioxidants—Geraniol and Camphene Protect Rat Alveolar Macrophages against t-BHP Induced Oxidative Stress. Toxicol. In Vitro 2009, 23, 295–301. [Google Scholar] [CrossRef] [PubMed]
- Boyd, E.M.; Sheppard, P. Nutmeg Oil and Camphene as Inhaled Expectorants. Arch. Otolaryngol.-Head Neck Surg. 1970, 92, 372–378. [Google Scholar] [CrossRef] [PubMed]
- Thakre, A.D.; Mulange, S.V.; Kodgire, S.S.; Zore, G.B.; Karuppayil, S.M. Effects of Cinnamaldehyde, Ocimene, Camphene, Curcumin and Farnesene on Candida albicans. Adv. Microbiol. 2016, 6, 627–643. [Google Scholar] [CrossRef] [Green Version]
- Quintans-Júnior, L.; Moreira, J.C.F.; Pasquali, M.A.B.; Rabie, S.M.S.; Pires, A.S.; Schröder, R.; Rabelo, T.K.; Santos, J.P.A.; Lima, P.S.S.; Cavalcanti, S.C.H.; et al. Antinociceptive Activity and Redox Profile of the Monoterpenes (+)-Camphene, p-Cymene, and Geranyl Acetate in Experimental Models. ISRN Toxicol. 2013, 2013, 459530. [Google Scholar] [CrossRef] [Green Version]
- De Weerdt, C.J.; Bootsma, H.P.R.; Hendriks, H. Herbal Medicines in Migraine Prevention. Phytomedicine 1996, 3, 225–230. [Google Scholar] [CrossRef]
- Wani, H.; Shah, S.A.; Banday, J.A. Chemical Composition and Antioxidant Activity of the Leaf Essential Oil of Artemisia absinthium Growing Wild in Kashmir, India. J. Phytopharm. 2014, 3, 90–94. [Google Scholar] [CrossRef]
- Shivappa, P.; Shetty, P.; Kumari, S.; Krishna, B. Evaluation of Acute and Sub Acute Toxicity of the Leaf Extract of Tanacetum parthenium (Asteraceae) and Synthetic Parthenolide. World J. Pharm. Pharm. Sci 2016, 5, 703–713. [Google Scholar] [CrossRef]
- Enciso-Roca, E.; Aguilar-Felices, E.; Tinco-Jayo, J.; Arroyo-Acevedo, J.; Herrera-Calderon, O.; Aguilar-Carranza, C.; Justil-Guerrero, H. Effects of Acute and Sub-Acute Oral Toxicity Studies of Ethanol Extract of Tanacetum parthenium (L) Sch. Bip. Aerial Parts in Mice and Rats. Annu. Res. Rev. Biol. 2017, 19, 1–10. [Google Scholar] [CrossRef]
- Subha1, D.; Geetha, N. India Evaluation of Acute Toxicity of the Methanolic Extract of Tanacetum parthenium L. in Albino Wistar Rats. J. Sci. Innov. Res. 2017, 6, 113–115. [Google Scholar] [CrossRef]
- Zahorec, R. Ratio of Neutrophil to Lymphocyte Counts—Rapid and Simple Parameter of Systemic Inflammation and Stress in Critically Ill. Bratisl. Lek. Listy 2001, 102, 5–14. [Google Scholar] [PubMed]
- De Jager, C.P.; van Wijk, P.T.; Mathoera, R.B.; de Jongh-Leuvenink, J.; van der Poll, T.; Wever, P.C. Lymphocytopenia and Neutrophil-Lymphocyte Count Ratio Predict Bacteremia Better than Conventional Infection Markers in an Emergency Care Unit. Crit. Care 2010, 14, R192. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Houillier, P.; Froissart, M.; Maruani, G.; Blanchard, A. What Serum Calcium Can Tell Us and What It Can’t. Nephrol. Dial. Transplant. 2006, 21, 29–32. [Google Scholar] [CrossRef] [Green Version]
- Uc, A.; Bishop, W.P.; Sanders, K.D. Camphor Hepatotoxicity. South. Med. J. 2000, 93, 596–598. [Google Scholar] [CrossRef]
- Somade, O.T. Camphor Toxicity: A Review of Recent Findings. Proc. Natl. Acad. Sci. India Sect. B Biol. Sci. 2022, 1–16. [Google Scholar] [CrossRef]
- Zárybnický, T.; Boušová, I.; Ambrož, M.; Skálová, L. Hepatotoxicity of Monoterpenes and Sesquiterpenes. Arch. Toxicol. 2018, 92, 1–13. [Google Scholar] [CrossRef]
- Song, J.-K.; Du, L.-D.; Qiang, G.-F.; Du, G.-H. Camphor. In Natural Small Molecule Drugs from Plants; Springer: Berlin/Heidelberg, Germany, 2018; pp. 205–208. [Google Scholar]
- Al-Fartosi, K.G.; Alomer, D.K.; Al-Muswiec, R.T. Toxopathological Effects of Camphor on Some Organs of Female Rats. Iraq Med. J. 2017, 1, 106–109. [Google Scholar] [CrossRef]
- Desheesh, M.A.; El-Shazly, A.A.M.; El-Deeb, S.T.; El-Banna, R.H. Effects of Camphor on Enzymes, Hormones and Liver Tissues of Male White Mice. Alex. Sci. Exch. J. Int. Q. J. Sci. Agric. Environ. 2017, 38, 521–530. [Google Scholar] [CrossRef]
- Singh, B.K.; Tripathi, M.; Chaudhari, B.P.; Pandey, P.K.; Kakkar, P. Natural Terpenes Prevent Mitochondrial Dysfunction, Oxidative Stress and Release of Apoptotic Proteins during Nimesulide-Hepatotoxicity in Rats. PLoS ONE 2012, 7, e34200. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.; Choi, Y.; Choi, S.; Choi, Y.; Park, T. Dietary Camphene Attenuates Hepatic Steatosis and Insulin Resistance in Mice: Camphene Prevents Hepatic Steatosis. Obesity 2014, 22, 408–417. [Google Scholar] [CrossRef] [PubMed]
- Vinholes, J.; Rudnitskaya, A.; Gonçalves, P.; Martel, F.; Coimbra, M.A.; Rocha, S.M. Hepatoprotection of Sesquiterpenoids: A Quantitative Structure–Activity Relationship (QSAR) Approach. Food Chem. 2014, 146, 78–84. [Google Scholar] [CrossRef]
- Arabloei Sani, M.; Yaghmaei, P.; Hajebrahimi, Z.; Hayati Roodbari, N. Therapeutic Effect of P-Cymene on Lipid Profile, Liver Enzyme, and Akt/Mtor Pathway in Streptozotocin-Induced Diabetes Mellitus in Wistar Rats. J. Obes. 2022, 2022, 1015669. [Google Scholar] [CrossRef] [PubMed]
- Gheraissa, N.; Chemsa, A.E.; Cherrada, N.; Erol, E.; Elsharkawy, E.R.; Ghemam-Amara, D.; Zeghoud, S.; Rebiai, A.; Messaoudi, M.; Sawicka, B.; et al. Biochemical Profile and In Vitro Therapeutic Properties of Two Euhalophytes, Halocnemum strobilaceum Pall. and Suaeda fruticosa (L.) Forske., Grown in the Sabkha Ecosystem in the Algerian Sahara. Molecules 2023, 28, 3580. [Google Scholar] [CrossRef] [PubMed]
- Benchikha, N.; Chelalba, I.; Debbeche, H.; Messaoudi, M.; Begaa, S.; Larkem, I.; Amara, D.G.; Rebiai, A.; Simal-Gandara, J.; Sawicka, B.; et al. Lobularia Libyca: Phytochemical Profiling, Antioxidant and Antimicrobial Activity Using In Vitro and In Silico Studies. Molecules 2022, 27, 3744. [Google Scholar] [CrossRef]
- Elshafie, H.S.; De Martino, L.; Formisano, C.; Caputo, L.; De Feo, V.; Camele, I. Chemical Identification of Secondary Metabolites from Rhizospheric Actinomycetes Using LC-MS Analysis: In Silico Antifungal Evaluation and Growth-Promoting Effects. Plants 2023, 12, 1869. [Google Scholar] [CrossRef]
- Amato, G.; Caputo, L.; Francolino, R.; Martino, M.; De Feo, V.; De Martino, L. Origanum heracleoticum Essential Oils: Chemical Composition, Phytotoxic and Alpha-Amylase Inhibitory Activities. Plants 2023, 12, 866. [Google Scholar] [CrossRef]
- Alcala-Orozco, M.; Caballero-Gallardo, K.; Stashenko, E.E.; Olivero-Verbel, J. Repellent and Fumigant Actions of the Essential Oils from Elettaria cardamomum (L.) Maton, Salvia officinalis (L.) Linnaeus, and Lippia origanoides (V.) Kunth Against Tribolium castaneum and Ulomoides dermestoides. J. Essent. Oil Bear. Plants 2019, 22, 18–30. [Google Scholar] [CrossRef]
- Caballero-Gallardo, K.; Fuentes-Lopez, K.; Stashenko, E.E.; Olivero-Verbel, J. Chemical Composition, Repellent Action, and Toxicity of Essential Oils from Lippia Origanoide, Lippia. Alba Chemotypes, and Pogostemon Cablin on Adults of Ulomoides Dermestoides (Coleoptera: Tenebrionidae). Insects 2022, 14, 41. [Google Scholar] [CrossRef]
- Najmi, Z.; Scalia, A.C.; De Giglio, E.; Cometa, S.; Cochis, A.; Colasanto, A.; Locatelli, M.; Coisson, J.D.; Iriti, M.; Vallone, L.; et al. Screening of Different Essential Oils Based on Their Physicochemical and Microbiological Properties to Preserve Red Fruits and Improve Their Shelf Life. Foods 2023, 12, 332. [Google Scholar] [CrossRef] [PubMed]
- Litchfield, J.T.; Wilcoxon, F. A Simplified Method of Evaluating Dose-Effect Experiments. J. Pharmacol. Exp. Ther. 1949, 96, 99–113. [Google Scholar] [PubMed]
No | Compound | Formula | RI | Class Terpene | % of Total |
---|---|---|---|---|---|
1 | Santolina triene | C10H16 | 918 | MH | tr |
2 | Tricyclene | C10H16 | 928 | MH | 0.48 |
3 | α-Thujene | C10H16 | 931 | MH | 0.29 |
4 | α-Pinene | C10H16 | 936 | MH | 1.37 |
5 | 2,4(10)-Thujadiene | C10H14 | 943 | MH | 0.30 |
6 | Camphene | C10H16 | 947 | MH | 9.48 |
7 | Sabinene | C10H16 | 964 | MH | 0.31 |
8 | β-Pinene | C10H16 | 966 | MH | 0.50 |
9 | α-Terpinene | C10H16 | 1000 | MH | 0.10 |
10 | p-Cymene | C10H14 | 1007 | MH | 1.73 |
11 | D-limonene | C10H16 | 1012 | MH | 0.61 |
12 | γ-Terpinene | C10H16 | 1038 | MH | 0.37 |
13 | Linalool | C10H18O | 1088 | MO | 0.18 |
14 | α-Cyclocitral | C10H16O | 1093 | MO | 1.07 |
15 | cis-p-Menth-2-en-1-ol | C10H18O | 1110 | MO | 0.16 |
16 | Camphor | C10H16O | 1132 | MO | 45.47 |
17 | Pinocarvone | C10H14O | 1142 | MO | 0.13 |
18 | endo-Borneol | C10H18O | 1153 | MO | 0.65 |
19 | Terpinen-4-ol | C10H18O | 1163 | MO | 0.54 |
20 | Myrtenal | C10H14O | 1177 | MO | 0.11 |
21 | α-Terpineol | C10H18O | 1181 | MO | 0.32 |
22 | cis-Carveol | C10H16O | 1185 | MO | tr |
23 | Piperitol | C10H18O | 1197 | MO | 0.10 |
24 | trans-Chrisantenyl acetate | C12H18O2 | 1225 | MO | 21.65 |
25 | Carvone | C10H14O | 1231 | MO | tr |
26 | cis-Isogeraniol | C10H18O | 1276 | MO | 5.42 |
27 | p-Cymen-7-ol | C10H14O | 1290 | MO | 0.12 |
28 | Carvacrol | C10H14O | 1299 | MO | tr |
29 | Eugenol | C10H12O2 | 1347 | PP | 0.1 |
30 | α-Copaene | C15H24 | 1368 | SH | 0.1 |
31 | Caryophyllene | C15H24 | 1410 | SH | 0.51 |
32 | β-Farnesene | C15H24 | 1458 | SH | 1.26 |
33 | Germacrene D | C15H24 | 1473 | SH | 0.76 |
34 | α-Selinene | C15H24 | 1478 | SH | 0.13 |
35 | Globulol | C15H26O | 1576 | SO | 0.12 |
36 | Humulane-1,6-dien-3-ol | C15H26O | 1616 | SO | 0.14 |
37 | Longipinocarveol, trans | C15H24O | 1628 | SO | tr |
Class terpenes | |||||
Monoterpenes hydrocarbons—MH | 15.54 | ||||
Monoterpenes oxygenated—MO | 75.92 | ||||
Phenylpropanoids—PP | 0.1 | ||||
Sesquiterpene hydrocarbons—SH | 2.76 | ||||
Sesquiterpene oxygenated—SO | 0.26 | ||||
Total identified | 94.58 |
Group | Dose (g/kg BW) | D/T | Dead Rats (%) | Symptoms of Toxicity and Death until 24 h |
---|---|---|---|---|
Gr. I | 1 | 0/6 | 0 | None |
Gr. II | 3 | 0/6 | 0 | None |
Gr. III | 5 | 0/6 | 0 | None |
Gr. IV | 8 | 0/6 | 0 | Hypoactivity |
Gr. V | 10 | 0/6 | 0 | Hypoactivity. No symptoms of toxicity. No mortality. |
Group | Dose (g/kg BW) | D/T | Dead Rats (%) | Toxic Effect Up to 24 h |
---|---|---|---|---|
Gr. VI | 1.0 | 0/6 | 0 | 10 min after application of EO, limbs were stretched forward. Periodic jumps. Drumming with forelimbs. Onset of mild convulsions after 1 h, which disappeared after a further 2 h. Animals were alive until the 24th hour. |
Gr. VII | 1.75 | 3/6 | 50.0 | 5 min after the injection of EO, drumming with the front limbs and increasing convulsions with lying down. Death of 3 animals after 1 h. |
Gr. VIII | 2.0 | 4/6 | 66.8 | 5 min after the injection of EO, light twitching of the limbs, drumming with the front limbs, increasing convulsions with lying down. After 1 h, 4 animals die. |
Gr. IX | 3.0 | 5/6 | 83.3 | 5 min after the injection of the essential oil, slight twitching of the limbs, drumming with the front limbs, increasing convulsions with lying down, making sounds, and breathing difficulties. Death of 5 animals after 1 h. |
Gr. X | 5.0 | 4/6 | 66.8 | Erection of hind limbs and drumming of fore limbs, erection of tail, tonic–clonic seizures, recumbency, and death of 4 rats after 1 h. |
Parameter | n | Control (Mean ± SD) | T. parthenium (Mean ± SD) | p-Value |
---|---|---|---|---|
RBC (×1012/L) | 10 | 7.74 ± 0.47 | 8.22 ±0.42 | p < 0.05 |
MCV (fl) | 10 | 49.20 ± 0.79 | 48.38 ± 0.74 | ns |
HGB (g/L) | 10 | 132.20 ± 11.07 | 139.00 ± 6.24 | ns |
HCT (%) | 10 | 0.39 ± 0.03 | 0.41 ± 0.02 | ns |
WBC (×109/L) | 10 | 4.53 ± 0.6450 | 4.12 ±1.27 | ns |
Neutrophils (%) | 10 | 17.07 ± 2.85 | 30.59 ± 6.72 | p < 0.001 |
Lymphocytes (%) | 10 | 82.55 ± 2.89 | 67.39 ± 6.24 | p < 0.001 |
Basophiles (%) | 10 | 0.52 ± 0.16 | 0.62 ± 0.19 | ns |
Eosinophils (%) | 10 | 0.39 ± 0.17 | 0.67 ± 0.30 | p < 0.05 |
Monocytes (%) | 10 | 0.86 ± 0.12 | 0.79 ± 0.13 | ns |
PLT (×109/L) | 10 | 1110.00 ± 60.75 | 1171.10 ± 164.89 | ns |
Parameter. | n | Control (Mean ± SD) | T. parthenium (Mean ± SD) | p-Value |
---|---|---|---|---|
Glucose (mmol/L) | 10 | 7.85 ± 0.87 | 6.93 ± 0.74 | p < 0.05 |
AST (IU/L) | 10 | 245.90 ± 35.36 | 172.90 ± 23.83 | p < 0.001 |
ALT (IU/L) | 10 | 54.10 ± 7.96 | 43.90 ± 10.50 | ns |
ALP (IU/L) | 10 | 415.43 ± 82.17 | 258.29 ± 45.07 | p < 0.01 |
CK (IU/L) | 10 | 2214.60 ± 339.62 | 2167.10 ± 384.21 | ns |
CK-MB (IU/L) | 10 | 2970.70 ± 581.42 | 2436.70 ± 524.37 | ns |
LDH (IU/lL | 10 | 2635.80 ± 122.86 | 2415.60 ± 357.79 | ns |
Total billirubin (μmol/L) | 10 | 3.98 ± 0.96 | 6.29 ± 1.74 | p < 0.01 |
Total cholesterol (mmol/L) | 10 | 1.70 ± 0.17 | 2.29 ± 0.22 | p < 0.001 |
HDL-cholest. (mmol/L) | 10 | 1.01 ± 0.06 | 1.44 ± 0.07 | p < 0.001 |
LDL-cholest. (mmol/L) | 10 | 0.38 ± 0.04 | 0.35 ± 0.07 | ns |
Triglycerides (mmol/L) | 10 | 0.51 ± 0.12 | 0.79 ± 0.13 | p < 0.001 |
Total protein (g/L) | 10 | 65.90 ± 2.28 | 67.30 ± 4.83 | ns |
Albumin (g/L) | 10 | 30.70 ± 1.16 | 33.80 ± 1.81 | p < 0.001 |
CRP (mg/L) | 10 | 0.76 ± 0.64 | 0.84 ± 0.36 | ns |
Creatinin (μmol/L) | 10 | 30.60 ± 2.99 | 34.30 ± 3.50 | p < 0.05 |
Urea (mmol/L) | 10 | 2.99 ± 0.56 | 2.45 ± 0.82 | ns |
Uric acid (μmol/L) | 10 | 135.50 ± 17.43 | 120.50 ± 30.27 | ns |
Iron (μmol/L) | 10 | 48.68 ± 6.11 | 51.11 ± 6.40 | ns |
Sodium (mmol/L) | 10 | 140.70 ± 0.82 | 141.40 ± 1.51 | ns |
Potassium (mmol/L) | 10 | 5.72 ± 0.60 | 5.96 ± 0.46 | ns |
Total calcium (mmol/L) | 10 | 2.24 ± 0.04 | 2.39 ± 0.06 | p < 0.001 |
Total magnesium (mmol/L) | 10 | 1.05 ± 0.03 | 0.96 ± 0.33 | ns |
Inorganic phosphate (mmol/L) | 10 | 1.78 ± 0.12 | 1.70 ± 0.12 | ns |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lechkova, B.; Karcheva-Bahchevanska, D.; Ivanov, K.; Todorova, V.; Benbassat, N.; Penkova, N.; Atanassova, P.; Peychev, L.; Hrischev, P.; Peychev, Z.; et al. A Study of the Chemical Composition, Acute and Subacute Toxicity of Bulgarian Tanacetum parthenium Essential Oil. Molecules 2023, 28, 4906. https://doi.org/10.3390/molecules28134906
Lechkova B, Karcheva-Bahchevanska D, Ivanov K, Todorova V, Benbassat N, Penkova N, Atanassova P, Peychev L, Hrischev P, Peychev Z, et al. A Study of the Chemical Composition, Acute and Subacute Toxicity of Bulgarian Tanacetum parthenium Essential Oil. Molecules. 2023; 28(13):4906. https://doi.org/10.3390/molecules28134906
Chicago/Turabian StyleLechkova, Borislava, Diana Karcheva-Bahchevanska, Kalin Ivanov, Velislava Todorova, Niko Benbassat, Nadya Penkova, Pepa Atanassova, Lyudmil Peychev, Petar Hrischev, Zhivko Peychev, and et al. 2023. "A Study of the Chemical Composition, Acute and Subacute Toxicity of Bulgarian Tanacetum parthenium Essential Oil" Molecules 28, no. 13: 4906. https://doi.org/10.3390/molecules28134906