Dietary Fiber from Soybean (Glycine max) Husk as Fat and Phosphate Replacer in Frankfurter Sausage: Effect on the Nutritional, Physicochemical and Nutraceutical Quality
Abstract
:1. Introduction
2. Results and Discussion
2.1. Characterization of SHDF
2.1.1. Neutral Sugars
2.1.2. Mineral Content
2.2. Characterization of Frankfurter Sausages with Addition of SHDF
Nutritional and Mineral Composition
2.3. Physicochemical Analysis of Sausages
2.3.1. pH and Titratable Acidity
2.3.2. Weight Loss
2.3.3. Color
2.3.4. Water-Holding Capacity (WHC) and Hardness
2.4. Total Polyphenols and Antioxidant Activity
2.4.1. Total Polyphenols
2.4.2. Antioxidant Capacity
3. Materials and Methods
3.1. Plant Material
3.2. Dietary Fiber Extraction
3.3. Dietary Fiber Characterization
3.3.1. Neutral Sugars
3.3.2. Mineral Content
3.4. Preparation of Frankfurter Sausages with Addition of SHDF
3.5. Chemical Composition of Sausage
3.5.1. Proximate Composition
3.5.2. Mineral Content
3.6. Physicochemical Analysis of Sausage
3.6.1. pH
3.6.2. Titratable Acidity
3.6.3. Weight Loss (WL)
3.6.4. Color
3.6.5. Hardness
3.6.6. Water-Holding Capacity (WHC)
3.7. Nutraceutical Analyses
3.7.1. Total Phenols
3.7.2. Antioxidant Capacity
3.8. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Ruiz-Capillas, C.; Herrero, A.M. Novel Strategies for the Development of Healthier Meat and Meat Products and Determination of Their Quality Characteristics. Foods 2021, 10, 2578. [Google Scholar] [CrossRef]
- Moloney, A.P.; Teagasc, D. The fat content of meat and meat products. In Meat Processing—Improving Quality; Kerry, J., Ledward, J., Kerry, D., Eds.; Wood Head Publishing Ltd.: Cambridge, UK, 2002; pp. 137–153. [Google Scholar] [CrossRef]
- Long, N.H.B.S.; Gál, R.; Buňka, F. Use of phosphates in meat products: A review. Afr. J. Biotechnol. 2011, 10, 19874–19882. [Google Scholar] [CrossRef]
- Thangavelu, K.P.; Kerry, J.P.; Tiwari, B.K.; McDonnell, C.K. Novel processing technologies and ingredient strategies for the reduction of phosphate additives in processed meat. Trends Food Sci. Technol. 2019, 94, 43–53. [Google Scholar] [CrossRef]
- Ritz, E.; Hahn, K.; Kettelerm, M.; Kuhlmann, M.; Mann, J. Phosphate additives in food—A health risk. Dtsch. Ärzteblatt Int. 2012, 109, 49–55. [Google Scholar] [CrossRef]
- Kurek, M.; Wyrwisz, J. The application of dietary fiber in bread products. J. Food Process. Technol. 2015, 6, 447. [Google Scholar] [CrossRef]
- Leclere, L.; Cutsem, P.V.; Michiels, C. Anti-cancer activities of pH- or heat-modified pectin. Front. Pharmacol. 2015, 4, 128. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brouns, F.; Theuwissen, E.; Adam, A.; Bell, M.; Berger, A.; Mensink, R.P. Cholesterol-lowering properties of different pectin types in mildly hyper-cholesterolemic men and women. Eur. J. Clin. Nutr. 2012, 66, 591–599. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adam, C.L.; Thomson, L.M.; Williams, P.A.; Ross, A.W. Soluble Fermentable Dietary Fibre (Pectin) Decreases Caloric Intake, Adiposity and Lipidaemia in High-Fat Diet-Induced Obese Rats. PLoS ONE 2015, 10, e0140392. [Google Scholar] [CrossRef] [Green Version]
- Kliemann, E.; de Simas, K.N.; Amante, E.R.; Prudêncio, E.S.; Teofilo, R.F.; Ferreira, M.M.C. Optimisation of pectin acid extraction from passion fruit peel (Passiflora edulis flavicarpa) using response surface methodology. Int. J. Food Sci. Technol. 2009, 44, 476–483. [Google Scholar] [CrossRef]
- Yilmaz, I.; Dağlioğlu, O. The effect of replacing fat with oat bran on fatty acid composition and physicochemical properties of meatballs. Meat Sci. 2003, 65, 819–823. [Google Scholar] [CrossRef]
- Balasundram, N.; Sundram, K.; Samman, S. Phenolic compounds in plants and agri-industrial by-products: Antioxidant activity, occurrence, and potential uses. Food Chem. 2006, 99, 191–203. [Google Scholar] [CrossRef]
- Munekata, P.E.S.; Gullón, B.; Pateiro, M.; Tomasevic, I.; Domínguez, R.; Lorenzo, J.M. Natural Antioxidants from Seeds and Their Application in Meat Products. Antioxidants 2020, 9, 815. [Google Scholar] [CrossRef] [PubMed]
- Quirós-Sauceda, A.E.; Palafox-Carlos Sáyago-Ayerdi, S.G.; Ayala-Zavala, J.F.; Bello-Perez, L.A.; Alvarez-Parrilla, E.; de la Rosa, L.A.; González-Córdova, A.F.; González-Aguilar, G.A. Dietary fiber and phenolic compounds as functional ingredients: Interaction and possible effect after ingestion. Food Funct. 2014, 5, 1063–1072. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Zhang, Y.; Peng, Z. Effect of Eggplant Powder on the Physicochemical and Sensory Characteristics of Reduced-Fat Pork Sausages. Foods 2021, 10, 743. [Google Scholar] [CrossRef]
- Monsoor, M.A. Effect of drying methods on the functional properties of soy hull pectin. Carbohydr. Polym. 2005, 61, 362–367. [Google Scholar] [CrossRef]
- Niño-Medina, G.; Muy-Rangel, D.; Urías-Orona, V. Chickpea (Cicer arietinum) and Soybean (Glycine max) Hulls: Byproducts with Potential Use as a Source of High Value-Added Food Products. Waste Biomass Valorization 2017, 8, 1199–1203. [Google Scholar] [CrossRef]
- Tyug, T.S.; Prasad, K.N.; Ismail, A. Antioxidant capacity, phenolics and isoflavones in soybean by-products. Food Chem. 2010, 123, 583–589. [Google Scholar] [CrossRef]
- Henning, S.S.; Tshalibe, P.; Homan, L.C. Physico-chemical properties of reduced-fat beef species sausage with pork back fat replaced by pineapple dietary fibres and water. LWT-Food Sci. Technol. 2016, 74, 92–98. [Google Scholar] [CrossRef]
- Zhao, Y.; Hou, Q.; Zhuang, X.; Wang, Y.; Zhou, G.; Zhang, W. Effect of regenerated cellulose fiber on the physicochemical properties and sensory characteristics of fat-reduced emulsified sausage. LWT-Food Sci. Technol. 2018, 97, 157–163. [Google Scholar] [CrossRef]
- Bis-Souza, C.V.; Ozaki, M.M.; Vidal, V.A.S.; Pollonio, M.A.R.; Penna, A.L.B.; Barretto, A.C.S. Can dietary fiber improve the technological characteristics and sensory acceptance of low-fat Italian type salami? J. Food Sci. Technol. 2020, 57, 1003–1012. [Google Scholar] [CrossRef]
- Powell, M.J.; Sebranek, J.G.; Prusa, K.J.; Tarté, R. Evaluation of citrus fiber as a natural replacer of sodium phosphate in alternatively-cured all-pork Bologna sausage. Meat Sci. 2019, 157, 107883. [Google Scholar] [CrossRef] [PubMed]
- Câmara, A.K.F.I.; Vidal, V.A.S.; Santos, M.; Bernardinelli, O.D.; Sabadini, E.; Pollonio, M.A.R. Reducing phosphate in emulsified meat products by adding chia (Salvia hispanica L.) mucilage in powder or gel format: A clean label technological strategy. Meat Sci. 2020, 163, 108085. [Google Scholar] [CrossRef] [PubMed]
- Magalhaes, I.M.C.; de Souza Paglarini, C.; Vidal, V.A.S.; Pollonio, M.A.R. Bamboo Fiber Improves the Functional Properties of Reduced Salt and Phosphate-Free Bologna Sausage. J. Food Process. Preserv. 2020, 44, e14929. [Google Scholar] [CrossRef]
- Ayala-Soto, F.E.; Serna-Saldívar, S.O. Architecture, Structure and Chemistry of Plant Cell Walls and Their Constituents. In Science and Technology of Fibers in Food Systems, 1st ed.; Welti-Chanes, J., Serna Saldívar, S.O., Campanella, S.H., Tejada-Ortigoza, V., Eds.; Springer Nature Switzerland AG: Cham, Switzerland, 2020; pp. 3–14. [Google Scholar]
- Sharma, B.R.; Naresh, L.; Dhuldhoya, N.C.; Merchant, S.C.; Merchant, U.C. An Overview on Pectins. Times Food Process. J. 2006, 23, 44–51. [Google Scholar]
- Middelbos, I.S.; Fahey, G.C. Soybean carbohydrates. In Soybeans: Chemistry, Production, Processing, and Utilization, 1st ed.; Johnson, L.A., White, P.J., Galloway, R., Eds.; AOCS Press: Urbana, IL, USA, 2008; pp. 269–296. [Google Scholar]
- Shen, M.; Ge, Y.; Kang, Z.; Quan, Z.; Wang, J.; Xiao, J.; Wang, W.; Cao, L. Yield and Physicochemical Properties of Soluble Dietary Fiber Extracted from Untreated and Steam Explosion-Treated Black Soybean Hull. J. Chem. 2019, 2019, 9736479. [Google Scholar] [CrossRef]
- Han, L.; Song, H.; Fu, L.; Li, J.; Yang, L.; Liu, H. Effect of extraction method on the chemical profiles and bioactivities of soybean hull polysaccharides. Food Sci. Nutr. 2021, 9, 5928–5938. [Google Scholar] [CrossRef]
- Lavudi, H.N.; Suthari, S. Application of Legume Seed Galactomannan Polysaccharides. In Sustainable Agriculture Reviews 45; Springer: Berlin/Heidelberg, Germany, 2020; pp. 97–113. [Google Scholar] [CrossRef]
- Sharma, P.; Sharma, S.; Ramakrishna, G.; Srivastava, H.; Gaikwad, K. A Comprehensive Review on Leguminous Galactomannans: Structural Analysis, Functional Properties, Biosynthesis Process and Industrial Applications. Crit. Rev. Food Sci. Nutr. 2020, 62, 443–465. [Google Scholar] [CrossRef]
- Guardiola-Márquez, C.E.; Santana-Gálvez, J.; Jacobo-Velázquez, D.A. Association of dietary fiber to food components. In Science and Technology of Fibers in Food Systems, 1st ed.; Welti-Chanes, J., Serna Saldívar, S.O., Campanella, S.H., Tejada-Ortigoza, V., Eds.; Springer Nature Switzerland AG: Cham, Switzerland, 2020; pp. 3–14. [Google Scholar]
- Yuliarti, O.; Chong, S.; Goh, K. Physicochemical properties of pectin from green jelly leaf (Cyclea barbata Miers). Int. J. Biol. Macromol. 2017, 103, 1146–1154. [Google Scholar] [CrossRef]
- López-López, I.; Cofrades, S.; Jiménez-Colmenero, F. Low-fat frankfurters enriched with n-3 PUFA and edible seaweed: Effects of olive oil and chilled storage on physicochemical, sensory and microbial characteristics. Meat Sci. 2009, 83, 148–154. [Google Scholar] [CrossRef] [Green Version]
- Vural, H.; Javidipour, I.; Ozbas, O. Effects of interesterified vegetable oils and sugarbeet fiber on the quality of frankfurters. Meat Sci. 2004, 67, 65–72. [Google Scholar] [CrossRef]
- Choi, Y.S.; Jeong, J.Y.; Choi, J.H.; Han, D.J.; Kim, H.Y.; Lee, M.A.; Kim, H.W.; Paik, H.D.; Kim, C.J. Effects of dietary fiber from rice bran on the quality characteristics of emulsion type sausages. Korean J. Food Sci. Anim. Resour. 2008, 28, 14–20. [Google Scholar] [CrossRef]
- Choi, Y.S.; Choi, J.H.; Han, D.J.; Kim, H.Y.; Lee, M.A.; Jeong, J.Y.; Chung, H.J.; Kim, C.J. Effects of replacing pork back fat with vegetable oils and rice bran fiber on the quality of reduced-fat frankfurters. Meat Sci. 2010, 84, 557–563. [Google Scholar] [CrossRef] [PubMed]
- Ordóñez, M.; Jordi, R.; Jaime, I. The relationship between the composition and texture of conventional and low-fat frankfurters. Int. J. Food Sci. Technol. 2001, 36, 749–758. [Google Scholar] [CrossRef]
- Méndez-Zamora, G.; García-Macías, J.A.; Santellano-Estrada, E.; Chávez-Martínez, A.; Durán-Meléndez, L.A.; Silva-Vázquez, R.; Quintero-Ramos, A. Fat reduction in the formulation of frankfurter sausages using inulin and pectin. Food Sci. Technol. 2015, 35, 25–31. [Google Scholar] [CrossRef] [Green Version]
- Campagnol, P.C.B.; Dos Santos, B.A.; Wagner, R.; Terra, N.N.; Pollonio, M.A.R. The effect of soy Fiber addition on the quality of fermented sausages at low-fat content. J. Food Qual. 2013, 36, 41–50. [Google Scholar] [CrossRef]
- Fernández-Ginés, J.M.; Fernández-López, J.; Sayas-Barberá, E.; Pérez-Alvarez, J.A. Meat products as functional foods: A review. J. Food Sci. 2005, 70, 37–43. [Google Scholar] [CrossRef]
- Ruiz-Sánchez, E.; Bañuelos-Barrera, Y.; Bañuelos-Barrera, P.; Álvarez-Aguirre, A.; Valles-Verdín, M.M.; Domínguez-Cháves, C.J. Porcentaje de grasa corporal en escolares y su asociación con el estilo de vida y macronutrientes [Body fat percentage in school students and its association with lifestyle and macronutrients]. Rev. Cuid. 2015, 6, 1022–1028. [Google Scholar] [CrossRef] [Green Version]
- Yilmaz, I.; Geçgel, U. Effect of inulin addition on physico-chemical and sensory characteristics of meatballs. J. Food Sci. Technol. 2009, 46, 473–476. [Google Scholar]
- Mehta, N.; Ahlawat, S.S.; DPSharma, D.P.; Dabur, R.S. Novel trends in development of dietary fiber rich meat products—A critical review. J. Food Sci. Technol. 2015, 52, 633–647. [Google Scholar] [CrossRef] [Green Version]
- Huang, S.C.; Tsai, Y.F.; Chen, C.M. Effects of Wheat Fiber, Oat Fiber, and Inulin on Sensory and Physico-chemical Properties of Chinese-style Sausages. Asian-Australas. J. Anim. Sci. 2011, 24, 875–880. [Google Scholar] [CrossRef]
- Chattopadhyay, K.; Xavier, K.A.M.; Balange, A.; Layana, P.; Nayak, B.B. Chitosan gel addition in pre-emulsified fish mince—Effect on quality parameters of sausages under refrigerated storage. LWT-Food Sci. Technol. 2019, 110, 283–291. [Google Scholar] [CrossRef]
- Álvarez, D.; Castillo, M.; Xiong, Y.L.; Payne, F.A. Prediction of beef meat emulsion quality with apparent light backscatter extinction. Food Res. Int. 2010, 43, 1260–1266. [Google Scholar] [CrossRef]
- Herrera-Balandrano, D.D.; Báez-González, J.G.; Carvajal-Millán, E.; Méndez-Zamora, G.; Urías-Orona, V.; Amaya-Guerra, C.A.; Niño-Medina, G. Feruloylated Arabinoxylans from Nixtamalized Maize Bran Byproduct: A Functional Ingredient in Frankfurter Sausages. Molecules 2019, 24, 2056. [Google Scholar] [CrossRef] [Green Version]
- He, Y.; Wang, B.; Wen, L.; Wang, F.; Yu, H.; Cchen, D.; Su, X.; Zhang, C. Effects of dietary fiber on human health. Food Sci. Hum. Wellness 2022, 11, 1–10. [Google Scholar] [CrossRef]
- Cardoso, C.; Mendes, R.; Pedro, S.; Nunes, M.L. Quality changes during storage of fish sausages containing dietary fiber. J. Aquat. Food Prod. Technol. 2008, 17, 73–95. [Google Scholar] [CrossRef]
- Schmiele, M.; Mascarenhas, M.C.C.N.; Barretto, A.C.S.; Pollonio, M.A.R. Dietary fiber as fat substitute in emulsified and cooked meat model system. LWT-Food Sci. Technol. 2015, 61, 105–111. [Google Scholar] [CrossRef]
- Kim, H.W.; Lee, Y.J.; Kim, Y.H.B. Efficacy of pectin and insoluble fiber extracted from soy hulls as a functional non-meat ingredient. LWT-Food Sci. Technol. 2015, 64, 1071–1077. [Google Scholar] [CrossRef]
- Hamdani, A.M.; Wani, I.A.; Bhat, N.A. Sources, structure, properties and health benefits of plant gums: A review. Int. J. Biol. Macromol. 2019, 135, 46–61. [Google Scholar] [CrossRef]
- Cengiz, E.; Gokoglu, N. Effects of fat reduction and fat replacer addition on some quality characteristics of frankfurter-type sausages. Int. J. Food Sci. Technol. 2007, 42, 366–372. [Google Scholar] [CrossRef]
- Cierach, M.; Modzelewska-Kapituła, M.; Szaciło, K. The influence of carrageenan on the properties of low-fat frankfurters. Meat Sci. 2009, 82, 295–299. [Google Scholar] [CrossRef]
- García-García, E.; Totosaus, A. Low-fat sodium-reduced sausages: Effect of the interaction between locust bean gum, potato starch and κ-carrageenan by a mixture design approach. Meat Sci. 2008, 78, 406–413. [Google Scholar] [CrossRef]
- Candogan, K.; Kolsarici, N. The effects of carrageenan and pectin on some quality characteristics of low-fat beef frankfurters. Meat Sci. 2003, 64, 199–206. [Google Scholar] [CrossRef] [PubMed]
- Erçelebi, E.A.; Ibanoğlu, E. Rheological properties of whey protein isolate stabilized emulsions with pectin and guar gum. Eur. Food Res. Technol. 2009, 229, 281–286. [Google Scholar] [CrossRef]
- Vivar-Vera, M.A.; Pérez-Silva, A.; Ruiz-López, I.I.; Hernández-Cázares, A.S.; Solano-Barrera, S.; Ruiz-Espinosa, H.; Bernardino-Nicanor, A.; González-Cruz, L. Chemical, physical and sensory properties of Vienna sausages formulated with a starfruit dietary fiber concentrate. J. Food Sci. Technol. 2018, 55, 3303–3313. [Google Scholar] [CrossRef]
- Valenzuela-Melendres, M.; Torrentera-Olivera, N.G.; Gonzalez-Aguilar, G.; Villegas-Ochoa, M.; Cumplido-Barbeitia, L.G.; Camou, J.P. Use of Avocado and Tomato Paste as Ingredients to Improve Nutritional Quality of Pork Frankfurter. J. Food Res. 2014, 3, 132–143. [Google Scholar] [CrossRef] [Green Version]
- Isaza Maya, Y.; Restrepo Molina, D.; López Vargas, J.; Ochoa González, O.; González, J.G. Capacidad antioxidante, a los 10 días de almacenamiento, de sistemas modelo de salchicha tipo frankfurt adicionadas con extracto de cereza (prunus avium L). Rev. Fac. Ing. Univ. Cent. Venez. 2012, 27, 21–29. [Google Scholar]
- Park, J.H.; Kang, S.N.; Shin, D.; ICHur, I.C.; Kim, I.S.; Jin, S.K. Antioxidant Activities of Achyranthes japonica Nakai Extract and Its Application to the Pork Sausages. Asian-Australas. J. Anim. Sci. 2013, 26, 287–294. [Google Scholar] [CrossRef]
- Viuda-Martos, M.; Ruiz-Navajas, Y.; Fernández-López, J.; Pérez-Álvarez, J.A. Effect of adding citrus waste water, thyme and oregano essential oil on the chemical, physical and sensory characteristics of a bologna sausage. Innov. Food Sci. Emerg. Technol. 2009, 10, 655–660. [Google Scholar] [CrossRef]
- Urias-Orona, V.; Huerta-Oros, J.; Carvajal-Millán, E.; Lizardi-Mendoza, J.; Rascón-Chu, A.; Gardea, A.A. Component Analysis and Free Radicals Scavenging Activity of Cicer arietinum L. Husk Pectin. Molecules 2010, 15, 6948–6955. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Niño-Medina, G.; Muy-Rangel, D.; Garza-Juárez, A.J.; Vázquez-Rodríguez, J.A.; Méndez-Zamora, G.; Urías-Orona, V. Composición nutricional, compuestos fenólicos y capacidad antioxidante de cascarilla de garbanzo (Cicer arietinum). Arch. Latinoam. Nutr. 2017, 67, 68–73. [Google Scholar]
- Association of Official Analytical Chemist International (AOAC). Official Methods of Analysis of AOAC International 1998, 16th ed.; 4th revision; AOAC International: Gaithersburg, MD, USA, 2006. [Google Scholar]
- Dzudie, T.; Scher, J.; Tchiégang, C.; Hardy, J. Effect of fat sources on the physico-chemical nutritional and textural properties of beef sausages. J. Food Technol. 2005, 3, 220–225. [Google Scholar]
- Hur, S.J.; Lee, S.Y.; Lee, S.J. Effects of biopolymers encapsulations on the lipid digestibility of emulsion-type sausages using a simulated human gastrointestinal digestion model. Food Bioprocess Technol. 2014, 7, 2198–2206. [Google Scholar] [CrossRef]
- López-Contreras, J.J.; Zavala-García, F.; Urías-Orona, V.; Martínez-Ávila, G.C.G.; Rojas, R.; Niño-Medina, G. Chromatic, Phenolic and Antioxidant Properties of Sorghum bicolor Genotypes. Not. Bot. Horti Agrobot. Cluj-Napoca 2015, 43, 366–370. [Google Scholar] [CrossRef] [Green Version]
- Minitab 17 Statistical Software, Computer software; Minitab, Inc.: State College, PA, USA, 2010. Available online: https://www.minitab.com(accessed on 19 June 2023).
Neutral Sugar | Composition (%) |
---|---|
Manose | 52.22 ± 4.70 |
Galactose | 20.37 ± 4.23 |
Arabinose | 15.40 ± 2.11 |
Xylose | 4.44 ± 0.81 |
Rhamnose | 3.39 ± 1.31 |
Glucose | 3.13 ± 0.55 |
Fucose | 1.04 ± 0.26 |
Minor Elements (mg/kg) | Major Elements (mg/kg) | ||
---|---|---|---|
Fe | 1353.68 ± 44.41 | Na | 3183.43 ± 89.67 |
Mn | 18.49 ± 0.29 | K | 3695.37 ± 23.70 |
Zn | 66.88 ± 1.57 | Ca | 8435.02 ± 38.00 |
Cu | 8.77 ± 0.11 | Mg | 935.93 ± 19.48 |
Component (%) | Treatment | ||
---|---|---|---|
CT | T1 | T2 | |
Moisture | 64.69 ± 0.34 b | 65.79 ± 0.63 ab | 66.66 ± 1.03 a |
Ash | 1.82 ± 0.04 b | 1.92 ± 0.07 b | 2.17 ± 0.09 a |
Protein | 15.81 ± 0.30 a | 15.56 ± 0.30 a | 15.61 ± 0.70 a |
Fat | 12.85 ± 0.30 a | 11.74 ± 0.41 b | 11.28 ± 0.45 b |
Total carbohydrates | 5.11 ± 0.80 b | 5.84 ± 1.05 a | 5.51 ± 0.90 a |
Total dietary fiber | 2.51 ± 0.02 b | 3.49 ± 0.32 a | 3.61 ± 0.34 a |
Soluble fiber | 0.28 ± 0.05 b | 0.85 ± 0.06 a | 1.25 ± 0.08 a |
Insoluble fiber | 2.22 ± 0.21 a | 2.64 ± 0.39 a | 2.35 ± 0.25 a |
Treatment | Minor Elements (mg/kg) | Major Elements (mg/kg) | ||||||
---|---|---|---|---|---|---|---|---|
Fe | Mn | Zn | Cu | Na | K | Ca | Mg | |
CT | 9.50 ± 0.66 a | 0.41 ± 0.02 a | 4.30 ± 0.22 a | 0.44 ± 0.25 a | 2207.60 ± 83.10 a | 386.40 ± 15.50 a | 173.77 ± 1.42 b | 55.70 ± 0.05 a |
T1 | 10.73 ± 0.10 a | 0.43 ± 0.04 a | 4.55 ± 0.16 a | 0.24 ± 0.02 a | 1690.20 ± 40.8 b | 395.37 ± 13.85 a | 184.31 ± 0.06 a | 52.80 ± 5.26 a |
T2 | 10.01 ± 0.15 a | 0.67 ± 0.22 a | 4.88 ± 0.06 a | 0.28 ± 0.08 a | 1484.00 ± 51.40 b | 365.32 ± 1.40 a | 192.19 ± 3.08 a | 54.11 ± 0.26 a |
Treatments | pH | Titratable Acidity (%) |
---|---|---|
CT | 6.65 ± 0.01 a | 0.092 ± 0.01 a |
T1 | 6.37 ± 0.04 b | 0.105 ± 0.01 a |
T2 | 6.24 ± 0.02 c | 0.108 ± 0.02 a |
Treatment | Weight Loss (%) | |
---|---|---|
Storage Day | ||
D1 | D7 | |
CT | 0.33 ± 0.11 a | 2.06 ± 0.48 a |
T1 | 0.55 ± 0.11 a | 0.78 ± 0.13 b |
T2 | 0.49 ± 0.49 a | 0.55 ± 0.23 b |
Storage Day | Parameters | Treatments | ||
---|---|---|---|---|
CT | T1 | T2 | ||
D0 | L* | 58.90 ± 0.52 a | 58.00 ± 0.50 a | 57.70 ± 0.88 a |
a* | 15.86 ± 0.20 a | 15.13 ± 0.25 b | 14.23 ± 0.37 c | |
b* | 33.03 ± 0.37 a | 31.53 ± 0.56 b | 29.20 ± 0.43 c | |
Color view | ||||
D7 | L* | 59.10 ± 0.32 a | 58.43 ± 0.37 a | 58.23 ± 0.46 a |
a* | 15.80 ± 0.10 a | 14.60 ± 0.43 b | 13.46 ± 0.49 c | |
b* | 31.70 ± 0.47 a | 29.36 ± 1.36 ab | 27.90 ± 1.17 b | |
Color view |
Treatment | WHC (%) | Hardness (N) | ||
---|---|---|---|---|
Storage Day | Storage Day | |||
D0 | D7 | D0 | D7 | |
CT | 64.21 ± 1.43 aA | 59.31 ± 0.08 bB | 37.73 ± 2.35 aB | 48.66 ± 2.69 aA |
T1 | 65.28 ± 2.97 aA | 60.45 ± 1.70 bA | 31.99 ± 1.50 aB | 43.43 ± 0.14 aA |
T2 | 70.81 ± 1.67 aA | 68.31 ± 1.76 aA | 29.84 ± 2.87 aA | 35.17 ± 1.14 bA |
Treatment | Polyphenol Content (mg/kg) | |
---|---|---|
Storage Day | ||
D0 | D7 | |
CT | 136.92 ± 5.87 bA | 138.46 ± 3.79 bA |
T1 | 148.63 ± 0.14 aA | 151.49 ± 2.66 aA |
T2 | 155.38 ± 0.92 aA | 160.51 ± 0.25 aA |
Assay | Treatment | Antioxidant Capacity (µmol Trolox/kg) | |
---|---|---|---|
Storage Day | |||
D0 | D7 | ||
DPPH | CT | 73.11 ± 2.55 cA | 64.22 ± 2.54 cB |
T1 | 122.00 ± 9.28 bA | 115.88 ± 0.96 bA | |
T2 | 195.33 ± 7.26 aA | 192.55 ± 6.73 aA | |
ABTS | CT | 784.22 ± 5.09 cA | 785.33 ± 6.66 cA |
T1 | 893.11 ± 10.18 bA | 902.00 ± 8.81 bA | |
T2 | 988.66 ± 13.33 aA | 1009.77 ± 6.93 aA | |
FRAP | CT | 313.26 ± 5.29 aA | 259.04 ± 18.28 cB |
T1 | 319.48 ± 19.65 aA | 322.15 ± 13.10 bA | |
T2 | 377.93 ± 27.51 aA | 392.04 ± 26.34 aA |
Ingredients (%) | Treatments | ||
---|---|---|---|
CT | T1 | T2 | |
Pork meat | 59.7 | 59.7 | 59.7 |
Pork fat | 15 | 14 | 13.5 |
Ice | 22 | 22 | 22 |
Seasonings * | 3 | 3 | 3 |
Curing salt | 0.30 | 0.30 | 0.30 |
Dietary fiber | 0 | 1 | 1.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Araujo-Chapa, A.P.; Urías-Orona, V.; Niño-Medina, G.; Muy-Rangel, D.; de la Garza, A.L.; Castro, H. Dietary Fiber from Soybean (Glycine max) Husk as Fat and Phosphate Replacer in Frankfurter Sausage: Effect on the Nutritional, Physicochemical and Nutraceutical Quality. Molecules 2023, 28, 4997. https://doi.org/10.3390/molecules28134997
Araujo-Chapa AP, Urías-Orona V, Niño-Medina G, Muy-Rangel D, de la Garza AL, Castro H. Dietary Fiber from Soybean (Glycine max) Husk as Fat and Phosphate Replacer in Frankfurter Sausage: Effect on the Nutritional, Physicochemical and Nutraceutical Quality. Molecules. 2023; 28(13):4997. https://doi.org/10.3390/molecules28134997
Chicago/Turabian StyleAraujo-Chapa, Ana P., Vania Urías-Orona, Guillermo Niño-Medina, Dolores Muy-Rangel, Ana Laura de la Garza, and Heriberto Castro. 2023. "Dietary Fiber from Soybean (Glycine max) Husk as Fat and Phosphate Replacer in Frankfurter Sausage: Effect on the Nutritional, Physicochemical and Nutraceutical Quality" Molecules 28, no. 13: 4997. https://doi.org/10.3390/molecules28134997
APA StyleAraujo-Chapa, A. P., Urías-Orona, V., Niño-Medina, G., Muy-Rangel, D., de la Garza, A. L., & Castro, H. (2023). Dietary Fiber from Soybean (Glycine max) Husk as Fat and Phosphate Replacer in Frankfurter Sausage: Effect on the Nutritional, Physicochemical and Nutraceutical Quality. Molecules, 28(13), 4997. https://doi.org/10.3390/molecules28134997