Comparison of Chemical Compositions and Antioxidant Activity of Essential Oils from Litsea Cubeba, Cinnamon, Anise, and Eucalyptus
Abstract
:1. Introduction
2. Results
2.1. Chemical Compositions of Essential Oils
2.2. The Antioxidant Activity of Essential Oils
2.2.1. Effect of EOs on DPPH Radical Scavenging Rates
2.2.2. Effect of EOs on Fe2+ Chelating Ability
2.2.3. Effect of EOs on Hydroxyl Radical Scavenging Rates
2.2.4. Effects of EOs on the Inhibition of Yolk Lipid Peroxidation
3. Discussion
4. Materials and Methods
4.1. Chemicals and Reagents
4.2. Essential Oils
4.3. Gas Chromatography-Mass Spectrometry (GC-MS) Analysis
4.4. Antioxidant Activity
4.4.1. Experimental Design
4.4.2. DPPH Radical Scavenging Ability Assay
4.4.3. Fe2+ Chelating Ability Assay
4.4.4. Hydroxyl Radical Scavenging Ability Assay
4.4.5. Yolk Lipid Peroxidation Inhibition Assay
5. Statistical Analysis
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Zahra, K.F.; Lefter, R.; Ali, A.; Abdellah, E.C.; Trus, C.; Ciobica, A.; Timofte, D. The Involvement of the Oxidative Stress Status in Cancer Pathology: A Double View on the Role of the Antioxidants. Oxid. Med. Cell Longev. 2021, 2021, 9965916. [Google Scholar] [CrossRef]
- Li, G.; Xiang, S.; Pan, Y.; Long, X.; Cheng, Y.; Han, L.; Zhao, X. Effects of Cold-Pressing and Hydrodistillation on the Active Non-volatile Components in Lemon Essential Oil and the Effects of the Resulting Oils on Aging-Related Oxidative Stress in Mice. Front. Nutr. 2021, 8, 689094. [Google Scholar] [CrossRef]
- Gonzalez-Mas, M.C.; Rambla, J.L.; Lopez-Gresa, M.P.; Blazquez, M.A.; Granell, A. Volatile Compounds in Citrus Essential Oils: A Comprehensive Review. Front. Plant Sci. 2019, 10, 12. [Google Scholar] [CrossRef]
- Zeng, Z.; Zhang, S.; Wang, H.; Piao, X. Essential oil and aromatic plants as feed additives in non-ruminant nutrition: A review. J. Anim. Sci. Biotechnol. 2015, 6, 7. [Google Scholar] [CrossRef] [Green Version]
- Diaz-Sanchez, S.; D’Souza, D.; Biswas, D.; Hanning, I. Botanical alternatives to antibiotics for use in organic poultry production. Poult. Sci. 2015, 94, 1419–1430. [Google Scholar] [CrossRef]
- Bączek, K.B.; Kosakowska, O.; Przybył, J.L.; Pióro-Jabrucka, E.; Costa, R.; Mondello, L.; Gniewosz, M.; Synowiec, A.; Węglarz, Z. Antibacterial and antioxidant activity of essential oils and extracts from costmary (Tanacetum balsamita L.) and tansy (Tanacetum vulgare L.). Ind. Crops Prod. 2017, 102, 154–163. [Google Scholar] [CrossRef]
- Falowo, A.B.; Mukumbo, F.E.; Idamokoro, E.M.; Afolayan, A.J.; Muchenje, V. Phytochemical Constituents and Antioxidant Activity of Sweet Basil (Ocimum basilicum L.) Essential Oil on Ground Beef from Boran and Nguni Cattle. Int. J. Food Sci. 2019, 2019, 2628747. [Google Scholar] [CrossRef] [Green Version]
- Younis, N.S.; Abduldaium, M.S.; Mohamed, M.E. Protective Effect of Geraniol on Oxidative, Inflammatory and Apoptotic Alterations in Isoproterenol-Induced Cardiotoxicity: Role of the Keap1/Nrf2/HO-1 and PI3K/Akt/mTOR Pathways. Antioxidants 2020, 9, 977. [Google Scholar] [CrossRef]
- Younis, N.S.; Mohamed, M.E. Protective effects of myrrh essential oil on isoproterenol-induced myocardial infarction in rats through antioxidant, anti-inflammatory, Nrf2/HO-1 and apoptotic pathways. J. Ethnopharmacol. 2021, 270, 113793. [Google Scholar] [CrossRef]
- Elbaz, A.M.; Ashmawy, E.S.; Salama, A.A.; Abdel-Moneim, A.E.; Badri, F.B.; Thabet, H.A. Effects of garlic and lemon essential oils on performance, digestibility, plasma metabolite, and intestinal health in broilers under environmental heat stress. BMC Vet. Res. 2022, 18, 430. [Google Scholar] [CrossRef]
- Simitzis, P.E. Enrichment of Animal Diets with Essential Oils-A Great Perspective on Improving Animal Performance and Quality Characteristics of the Derived Products. Medicines 2017, 4, 35. [Google Scholar] [CrossRef] [Green Version]
- Thielmann, J.; Muranyi, P. Review on the chemical composition of Litsea cubebaessential oils and the bioactivity of its major constituents citral and limonene. J. Essent. Oil Res. 2019, 31, 361–378. [Google Scholar] [CrossRef]
- Abd El-Hack, M.E.; Alagawany, M.; Abdel-Moneim, A.E.; Mohammed, N.G.; Khafaga, A.F.; Bin-Jumah, M.; Othman, S.I.; Allam, A.A.; Elnesr, S.S. Cinnamon (Cinnamomum zeylanicum) Oil as a Potential Alternative to Antibiotics in Poultry. Antibiotics 2020, 9, 210. [Google Scholar] [CrossRef]
- Adnan, M. Bioactive potential of essential oil extracted from the leaves of Eucalyptus globulus (Myrtaceae). J. Pharmacogn. Phytochem. 2019, 8, 213–216. [Google Scholar]
- Koriem, K.M.M.; Fadl, N.N.; El-Zayat, S.R.; Hosny, E.N.; Abbas El-Shamy, K.; Arbid, M.S.; Morsy, F.A.; El-Azma, M.H. Geranium oil and anise oil inhibit brain cerebral cortex and hippocampus inflammation in depressed animal model. Nutr. Food Sci. 2020, 51, 439–456. [Google Scholar] [CrossRef]
- Zhuang, S.; Yu, R.; Zhong, J.; Liu, P.; Liu, Z. Rhein from Rheum rhabarbarum Inhibits Hydrogen-Peroxide-Induced Oxidative Stress in Intestinal Epithelial Cells Partly through PI3K/Akt-Mediated Nrf2/HO-1 Pathways. J. Agric. Food Chem. 2019, 67, 2519–2529. [Google Scholar] [CrossRef]
- Pisoschi, A.M.; Pop, A. The role of antioxidants in the chemistry of oxidative stress: A review. Eur. J. Med. Chem. 2015, 97, 55–74. [Google Scholar] [CrossRef]
- Chatterjee, S. Oxidative stress, inflammation, and disease. In Oxidative Stress and Biomaterials; Academic Press: Cambridge, MA, USA, 2016; pp. 35–58. [Google Scholar]
- Fancello, F.; Petretto, G.L.; Zara, S.; Sanna, M.L.; Addis, R.; Maldini, M.; Foddai, M.; Rourke, J.P.; Chessa, M.; Pintore, G. Chemical characterization, antioxidant capacity and antimicrobial activity against food related microorganisms of Citrus limon var. pompia leaf essential oil. LWT Food Sci. Technol. 2016, 69, 579–585. [Google Scholar] [CrossRef]
- Lin, L.Y.; Chuang, C.H.; Chen, H.C.; Yang, K.M. Lime (Citrus aurantifolia (Christm.) Swingle) Essential Oils: Volatile Compounds, Antioxidant Capacity, and Hypolipidemic Effect. Foods 2019, 8, 398. [Google Scholar] [CrossRef] [Green Version]
- Deng, W.; Liu, K.; Cao, S.; Sun, J.; Zhong, B.; Chun, J. Chemical Composition, Antimicrobial, Antioxidant, and Antiproliferative Properties of Grapefruit Essential Oil Prepared by Molecular Distillation. Molecules 2020, 25, 217. [Google Scholar] [CrossRef] [Green Version]
- Lin, X.; Cao, S.; Sun, J.; Lu, D.; Zhong, B.; Chun, J. The Chemical Compositions, and Antibacterial and Antioxidant Activities of Four Types of Citrus Essential Oils. Molecules 2021, 26, 3412. [Google Scholar] [CrossRef]
- Bhavaniramya, S.; Vishnupriya, S.; Al-Aboody, M.S.; Vijayakumar, R.; Baskaran, D. Role of essential oils in food safety: Antimicrobial and antioxidant applications. Grain Oil Sci. Technol. 2019, 2, 49–55. [Google Scholar] [CrossRef]
- Amrania, S.E.; Lalamib, A.E.O.; Zoubic, Y.E.; Moukhafia, K.; Bouslamtia, R.; Lairinia, S. Evaluation of antibacterial and antioxidant effects of cinnamon and clove essential oils from Madagascar. Sci. Direct 2019, 13, 762–770. [Google Scholar]
- Singh, G.; Kapoor, I.P.S.; Singh, P.; Heluani, C.S.d.; Catalan, C.A.N. Chemical composition and antioxidant potential of essential oil and oleoresins from anise seeds (Pimpinella anisum L.). Int. J. Essent. Oil Ther. 2008, 2, 122–130. [Google Scholar]
- Li, Y.; Liu, S.; Zhao, C.; Zhang, Z.; Nie, D.; Tang, W.; Li, Y. The Chemical Composition and Antibacterial and Antioxidant Activities of Five Citrus Essential Oils. Molecules 2022, 27, 7044. [Google Scholar] [CrossRef]
- Wei, A.; Shibamoto, T. Antioxidant/lipoxygenase inhibitory activities and chemical compositions of selected essential oils. J. Agric. Food Chem. 2010, 58, 7218–7225. [Google Scholar] [CrossRef]
- Li, H.; Chu, X.; Li, D.; Zeng, Z.H.; Peng, X.X. Construction and immune protection evaluation of recombinant polyvalent OmpAs derived from genetically divergent ompA by DNA shuffling. Fish Shellfish Immunol. 2016, 49, 230–236. [Google Scholar] [CrossRef]
- She, Q.H.; Li, W.S.; Jiang, Y.Y.; Wu, Y.C.; Zhou, Y.H.; Zhang, L. Chemical composition, antimicrobial activity and antioxidant activity of Litsea cubeba essential oils in different months. Nat. Prod. Res. 2020, 34, 3285–3288. [Google Scholar] [CrossRef]
- Dhifi, W.; Bellili, S.; Jazi, S.; Bahloul, N.; Mnif, W. Essential Oils’ Chemical Characterization and Investigation of Some Biological Activities: A Critical Review. Medicines 2016, 3, 25. [Google Scholar] [CrossRef] [Green Version]
- Peng, B.; Bai, R.F.; Li, P.; Han, X.Y.; Wang, H.; Zhu, C.C.; Zeng, Z.P.; Chai, X.Y. Two new glycosides from Dryopteris fragrans with anti-inflammatory activities. J. Asian Nat. Prod. Res. 2016, 18, 59–64. [Google Scholar] [CrossRef]
- Li, Y.; Tan, B.; Cen, Z.; Fu, Y.; Zhu, X.; He, H.; Kong, D.; Wu, H. The variation in essential oils composition, phenolic acids and flavonoids is correlated with changes in antioxidant activity during Cinnamomum loureirii bark growth. Arab. J. Chem. 2021, 14, 3249. [Google Scholar] [CrossRef]
- Tohidi, B.; Rahimmalek, M.; Arzani, A. Essential oil composition, total phenolic, flavonoid contents, and antioxidant activity of Thymus species collected from different regions of Iran. Food Chem. 2017, 220, 153–161. [Google Scholar] [CrossRef]
- Zhang, Q.A.; Fan, X.H.; Zhang, Z.Q.; Li, T.; Zhu, C.P.; Zhang, X.R.; Song, W. Extraction, antioxidant capacity and identification of Semen Astragali Complanati (Astragalus complanatus R. Br.) phenolics. Food Chem. 2013, 141, 1295–1300. [Google Scholar] [CrossRef]
- Mechergui, K.; Coelho, J.A.; Serra, M.C.; Lamine, S.B.; Boukhchina, S.; Khouja, M.L. Essential oils of Origanum vulgare L. subsp. glandulosum (Desf.) Ietswaart from Tunisia: Chemical composition and antioxidant activity. J. Sci. Food Agric. 2010, 90, 1745–1749. [Google Scholar] [CrossRef]
- Liu, Y.; Sun, L.Y.; Zhu, Z.J.; Lin, W.; Qu, W.; Zeng, Z.G. Measles Virus Infection in Pediatric Liver Transplantation Recipients. Transplant. Proc. 2015, 47, 2715–2718. [Google Scholar] [CrossRef]
- Adefegha, S.A.; Olasehinde, T.A.; Oboh, G. Essential Oil Composition, Antioxidant, Antidiabetic and Antihypertensive Properties of Two Afromomum Species. J. Oleo Sci. 2017, 66, 51–63. [Google Scholar] [CrossRef] [Green Version]
- Gulcin, I. Antioxidants and antioxidant methods: An updated overview. Arch. Toxicol. 2020, 94, 651–715. [Google Scholar] [CrossRef] [Green Version]
- Ma, Y.-L.; Zhu, D.-Y.; Thakur, K.; Wang, C.-H.; Wang, H.; Ren, Y.-F.; Zhang, J.-G.; Wei, Z.-J. Antioxidant and antibacterial evaluation of polysaccharides sequentially extracted from onion (Allium cepa L.). Int. J. Biol. Macromol. 2018, 111, 92–101. [Google Scholar] [CrossRef]
- Ray, A.; Jena, S.; Dash, B.; Kar, B.; Halder, T.; Chatterjee, T.; Ghosh, B.; Panda, P.C.; Nayak, S.; Mahapatra, N. Chemical diversity, antioxidant and antimicrobial activities of the essential oils from Indian populations of Hedychium coronarium Koen. Ind. Crops Prod. 2018, 112, 353–362. [Google Scholar] [CrossRef]
- Ciesla, L.; Kryszen, J.; Stochmal, A.; Oleszek, W.; Waksmundzka-Hajnos, M. Approach to develop a standardized TLC-DPPH* test for assessing free radical scavenging properties of selected phenolic compounds. J. Pharm. Biomed. Anal. 2012, 70, 126–135. [Google Scholar] [CrossRef]
- Susanne, H.; Erich, F.E. Transition metal ion-catalyzed oxygen activation during pathogenic processes. FEBS Lett. 1999, 443, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Formisano, C.; Oliviero, F.; Rigano, D.; Saab, A.M.; Senatore, F. Chemical composition of essential oils and in vitro antioxidant properties of extracts and essential oils of Calamintha origanifolia and Micromeria myrtifolia, two Lamiaceae from the Lebanon flora. Ind. Crops Prod. 2014, 62, 405–411. [Google Scholar] [CrossRef]
- Singh, G.; Kapoor, I.P.S.; Singh, P.; de Heluani, C.S.; de Lampasona, M.P.; Catalan, C.A.N. Chemistry and Antioxidant Properties of Essential Oil and Oleoresins Extracted from the Seeds of Tomer (Zanthoxylum armatum DC). Int. J. Food Prop. 2013, 16, 288–300. [Google Scholar] [CrossRef] [Green Version]
- Zhang, P.; Yuan, S. Production of hydroxyl radicals from abiotic oxidation of pyrite by oxygen under circumneutral conditions in the presence of low-molecular-weight organic acids. Geochim. Cosmochim. Acta 2017, 218, 153–166. [Google Scholar] [CrossRef]
- Wang, Y.; Jiang, F.; Cheng, H.; Tan, X.; Liu, Y.; Wei, C.; Song, E. Astragaloside IV Protects against Oxidative Stress in Calf Small Intestine Epithelial Cells via NFE2L2-Antioxidant Response Element Signaling. Int. J. Mol. Sci. 2019, 20, 6131. [Google Scholar] [CrossRef] [Green Version]
- Al-Menhali, A.S.; Banu, S.; Angelova, P.R.; Barcaru, A.; Horvatovich, P.; Abramov, A.Y.; Jaganjac, M. Lipid peroxidation is involved in calcium dependent upregulation of mitochondrial metabolism in skeletal muscle. Biochim. Biophys. Acta Gen. Subj. 2020, 1864, 129487. [Google Scholar] [CrossRef]
- Zeng, Z.; Wang, H.; Shang, F.; Zhou, L.; Little, P.J.; Quirion, R.; Zheng, W. Lithium ions attenuate serum-deprivation-induced apoptosis in PC12 cells through regulation of the Akt/FoxO1 signaling pathways. Psychopharmacology 2016, 233, 785–794. [Google Scholar] [CrossRef]
- Alizadeh Behbahani, B.; Falah, F.; Lavi Arab, F.; Vasiee, M.; Tabatabaee Yazdi, F. Chemical Composition and Antioxidant, Antimicrobial, and Antiproliferative Activities of Cinnamomum zeylanicum Bark Essential Oil. Evid. Based Complement Alternat. Med. 2020, 2020, 5190603. [Google Scholar] [CrossRef]
- Han, X.; Liu, Z.; Jo, M.C.; Zhang, K.; Li, Y.; Zeng, Z.; Li, N.; Zu, Y.; Qin, L. CRISPR-Cas9 delivery to hard-to-transfect cells via membrane deformation. Sci. Adv. 2015, 1, e1500454. [Google Scholar] [CrossRef] [Green Version]
- Bi, S.F.; Zhu, G.Q.; Wu, J.; Li, Z.K.; Lv, Y.Z.; Fang, L. Chemical composition and antioxidant activities of the essential oil from Nandina domestica fruits. Nat. Prod. Res. 2016, 30, 362–365. [Google Scholar] [CrossRef]
- Chen, Z.; Mei, X.; Jin, Y.; Kim, E.H.; Yang, Z.; Tu, Y. Optimisation of supercritical carbon dioxide extraction of essential oil of flowers of tea (Camellia sinensis L.) plants and its antioxidative activity. J. Sci. Food Agric. 2014, 94, 316–321. [Google Scholar] [CrossRef]
- Oboh, G.; Akinbola, I.A.; Ademosun, A.O.; Sanni, D.M.; Odubanjo, O.V.; Olasehinde, T.A.; Oyeleye, S.I. Essential Oil from Clove Bud (Eugenia aromatica Kuntze) Inhibit Key Enzymes Relevant to the Management of Type-2 Diabetes and Some Pro-oxidant Induced Lipid Peroxidation in Rats Pancreas in vitro. J. Oleo Sci. 2015, 64, 775–782. [Google Scholar] [CrossRef] [Green Version]
- Radünz, M.; Mota Camargo, T.; Santos Hackbart, H.C.d.; Inchauspe Correa Alves, P.; Radünz, A.L.; Avila Gandra, E.; da Rosa Zavareze, E. Chemical composition and in vitro antioxidant and antihyperglycemic activities of clove, thyme, oregano, and sweet orange essential oils. LWT 2021, 138, 632. [Google Scholar] [CrossRef]
- Zeng, W.C.; Zhang, Z.; Gao, H.; Jia, L.R.; He, Q. Chemical composition, antioxidant, and antimicrobial activities of essential oil from pine needle (Cedrus deodara). J. Food Sci. 2012, 77, C824–C829. [Google Scholar] [CrossRef]
No. | Retention Indices | Retention Time RT/min | Compounds | Composition (% of Total) | |||
---|---|---|---|---|---|---|---|
LCO | CO | AO | EUC | ||||
1 | 847 | 2.015 | Hydroperoxide, 1-methylhexyl | - | - | - | 0.03 |
2 | 948 | 6.71 | α-Pinene | 1.46 | - | 0.98 | - |
3 | 943 | 7.251 | Camphene | 0.35 | - | - | 0.16 |
4 | 982 | 7.75 | Benzaldehyde | - | 1.06 | - | - |
5 | 897 | 8.075 | Sabinene hydrate | 1.08 | - | - | - |
6 | 943 | 8.194 | β-Pinene | 1.13 | - | - | 3.53 |
7 | 938 | 8.57 | 6-Methyl-5-hepten-2-one | 1.80 | - | - | - |
8 | 958 | 8.695 | β-Myrcene | 0.71 | - | - | 4.58 |
9 | 969 | 9.162 | α-Phellandrene | - | - | 0.48 | 1.97 |
10 | 976 | 9.236 | trans-β-Ocimene | - | - | 0.37 | 0.30 |
11 | 919 | 9.53 | 4-Carene | - | - | - | 5.35 |
12 | 1042 | 9.825 | 1-methyl-3-(1-methylethyl)-benzen | - | - | - | 1.81 |
13 | 1018 | 9.95 | D-Limonene | 12.39 | - | 2.00 | - |
14 | 1059 | 10.092 | 1,8-cineole | - | - | 0.7 | 81.79 |
15 | 998 | 10.818 | Pinene | - | - | - | 0.19 |
16 | 1082 | 12.229 | 3,7-Dimethyl-1,6-octadiene 3-ol | 2.08 | - | 1.41 | - |
17 | 1174 | 13.294 | 3,3,5-Trimer-1,4-hexadiene | 0.26 | - | - | - |
18 | 868 | 13.33 | 1,3-Hexadiene | - | - | - | 0.25 |
19 | 1125 | 13.535 | Citronellal | 2.47 | - | - | - |
20 | 1163 | 13.791 | 1,2,3,6-Tetrahydrobenzaldehyde | 1.32 | - | - | - |
21 | 1181 | 13.793 | Phenylpropyl aldehyde | - | 0.74 | - | - |
22 | 1138 | 14.201 | (1S)-endo)-(-)-borneol | 0.10 | - | - | - |
23 | 1163 | 14.292 | 4,5-Epoxycarene | 2.62 | - | - | - |
24 | 1137 | 14.303 | 4-Terpinenol | - | - | 0.30 | - |
25 | 1172 | 14.746 | Estragole | - | - | 6.60 | - |
26 | 1143 | 14.767 | α-Pinoresinol | 0.78 | - | - | 0.05 |
27 | 1189 | 15.29 | trans-Cinnamaldehyde | - | 0.39 | - | - |
28 | 1174 | 15.891 | β-Citral | 28.71 | - | - | - |
29 | 1158 | 16.18 | 3-Methyl-2-cyclohexen-1-one | 0.13 | - | - | - |
30 | 1171 | 16.256 | 4-Methoxybenzaldehyde | - | - | 1.06 | - |
31 | 1228 | 16.322 | Geraniol | 1.93 | - | - | - |
32 | 1174 | 16.659 | α-Citral | 35.58 | - | - | - |
33 | 1189 | 16.884 | Cinnamaldehyde | - | 83.86 | - | - |
34 | 1031 | 17.086 | 7-Oxabicyclo [4.1.0] heptan-2-one | 0.32 | - | - | - |
35 | 1190 | 17.16 | Anethole | - | - | 78.51 | - |
36 | 1199 | 18.101 | 2,7-Dimethyl-2,7-diol | 0.24 | - | - | - |
37 | 1203 | 18.704 | 2,4,4,7-Tetramethyl-5,7-octadiene 3-ol | 0.21 | - | - | - |
38 | 869 | 18.92 | 6-Hepten-3-ol | 0.39 | - | - | - |
39 | 1221 | 18.961 | α-cobalene | - | 0.57 | - | - |
40 | 1424 | 19.094 | 2-methyl-epoxide | - | - | 0.32 | - |
41 | 1398 | 19.284 | β-Elemiene | 0.33 | - | - | - |
42 | 1430 | 19.794 | trans-α-bergamot | - | - | 1.09 | - |
43 | 1494 | 19.925 | Isoeugenol | - | 0.18 | - | - |
44 | 1494 | 19.938 | β-Caryophyllene | 2.37 | - | 0.80 | - |
45 | 1430 | 20.221 | trans-Bergamottin | - | 0.12 | - | - |
46 | 1374 | 20.38 | O-coumaric acid | - | 6.43 | - | - |
47 | 1367 | 20.522 | Cinnamyl acetate | - | 1.46 | - | - |
48 | 1386 | 20.793 | Balsamene | - | 0.19 | - | - |
49 | 1435 | 21.111 | γ-Ylang-ylangolene | - | 0.16 | - | - |
50 | 1431 | 21.536 | 1,5-Dimethyl-8-(1-methylethylidene)- 1,5-cyclododecene | - | - | 0.24 | - |
51 | 1440 | 21.608 | 4,7-Dimethyl-1-(1-methylethyl) | - | 0.4 | - | - |
52 | 1500 | 21.797 | β-Red myrcene | - | 0.38 | 0.2 | - |
53 | 1216 | 21.904 | β-cobalene | - | 0.17 | - | - |
54 | 1430 | 22.183 | 4,8,11,11-Tetramethyl-tricyclo[7.2.0.0(3,8)]undecylene-4-ene | - | 0.16 | - | - |
55 | 1378 | 22.267 | 3-(2-Methoxyphenyl)-2-propenal | - | 1.76 | - | - |
56 | 1564 | 22.924 | trans-Nerolidol | - | 0.34 | 0.24 | - |
57 | 1507 | 23.301 | Graphene oxide | 0.56 | 0.35 | - | - |
58 | 1580 | 24.757 | alpha-Dauerol | - | - | 0.23 | - |
59 | 1572 | 25.133 | 1-(3-Methyl-2-butenyloxy)-4- (1-propenyl)benzene | - | - | 3.47 | - |
60 | 1490 | 30.762 | β-Serinene | - | 0.15 | - | - |
61 | 2192 | 31.513 | trans-Geraniol | 0.10 | - | - | - |
62 | 1281 | 31.632 | Isododecane epoxide | 0.2 | - | - | - |
63 | 1342 | 32.762 | (2Z)-3,7-Dimethyl-2,6-octadienoic acid | 0.22 | - | - | - |
64 | 1454 | 32.892 | 1-(2,2,5α-Trimethylperhydro-1-benzothiophen-1-yl)-2-buten-1-one | 0.16 | - | - | - |
Others | 2.00 | 1.13 | 1.00 | 0.27 | |||
Total | 100 | 100 | 100 | 100 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, S.; Zhao, C.; Cao, Y.; Li, Y.; Zhang, Z.; Nie, D.; Tang, W.; Li, Y. Comparison of Chemical Compositions and Antioxidant Activity of Essential Oils from Litsea Cubeba, Cinnamon, Anise, and Eucalyptus. Molecules 2023, 28, 5051. https://doi.org/10.3390/molecules28135051
Liu S, Zhao C, Cao Y, Li Y, Zhang Z, Nie D, Tang W, Li Y. Comparison of Chemical Compositions and Antioxidant Activity of Essential Oils from Litsea Cubeba, Cinnamon, Anise, and Eucalyptus. Molecules. 2023; 28(13):5051. https://doi.org/10.3390/molecules28135051
Chicago/Turabian StyleLiu, Shutian, Chen Zhao, Yuwei Cao, Yan Li, Zhuo Zhang, Dechao Nie, Weixuan Tang, and Yanling Li. 2023. "Comparison of Chemical Compositions and Antioxidant Activity of Essential Oils from Litsea Cubeba, Cinnamon, Anise, and Eucalyptus" Molecules 28, no. 13: 5051. https://doi.org/10.3390/molecules28135051
APA StyleLiu, S., Zhao, C., Cao, Y., Li, Y., Zhang, Z., Nie, D., Tang, W., & Li, Y. (2023). Comparison of Chemical Compositions and Antioxidant Activity of Essential Oils from Litsea Cubeba, Cinnamon, Anise, and Eucalyptus. Molecules, 28(13), 5051. https://doi.org/10.3390/molecules28135051