Conjugated Polymeric Materials in Biological Imaging and Cancer Therapy
Abstract
:1. Introduction
2. Results
2.1. Bioimaging
2.1.1. Multicolor Imaging
2.1.2. Near-Infrared Imaging
2.1.3. Two-Photon Imaging (TPFI)
2.1.4. Super-Resolution Imaging
2.1.5. Photoacoustic Imaging (PAI)
2.1.6. Raman Imaging
2.1.7. Future Directions for Bioimaging
2.2. Tumor Diagnosis and Treatment
2.2.1. Photodynamic Therapy (PDT)
2.2.2. Photothermal Therapy (PTT)
2.2.3. Synergistic Therapy
2.2.4. Future Directions for Therapeutics
3. Conclusions and Outlook
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Pak, Y.L.; Wang, Y.; Xu, Q. Conjugated polymer based fluorescent probes for metal ions. Coord. Chem. Rev. 2021, 433, 213745. [Google Scholar] [CrossRef]
- Rasheed, T.; Nabeel, F.; Rizwan, K.; Bilal, M.; Hussain, T.; Shehzad, S.A. Conjugated supramolecular architectures as state-of-the-art materials in detection and remedial measures of nitro based compounds: A review. TrAC,Trend Anal. Chem. 2020, 129, 115958. [Google Scholar] [CrossRef]
- Liu, Y.; Meng, S.; Qin, J.; Zhang, R.; He, N.; Jiang, Y.; Chen, H.; Li, N.; Zhao, Y. A fluorescence biosensor based on double-stranded DNA and a cationic conjugated polymer coupled with exonuclease III for acrylamide detection. Int. J. Biol. Macromol. 2022, 219, 346–352. [Google Scholar] [CrossRef] [PubMed]
- Gao, R.; Zhao, W.; Qiu, Q.; Xie, A.; Cheng, S.; Jiao, Y.; Pan, X.; Dong, W. Fluorescent conjugated microporous polymer (CMP) derived sensor array for multiple Organic/Inorganic contaminants detection. Sens. Actuators B 2020, 320, 128448. [Google Scholar] [CrossRef]
- Zhang, J.; Zhao, L.; Dong, L.; Nie, X.; Cheng, Y. Integration of T7 exonuclease-triggered amplification and cationic conjugated polymer biosensing for highly sensitive detection of microRNA. Talanta 2018, 190, 475–479. [Google Scholar] [CrossRef]
- Paloni, J.M.; Dong, X.H.; Olsen, B.D. Protein-Polymer Block Copolymer Thin Films for Highly Sensitive Detection of Small Proteins in Biological Fluids. ACS Sens 2019, 4, 2869–2878. [Google Scholar] [CrossRef] [PubMed]
- Xie, C.; Zhou, W.; Zeng, Z.; Fan, Q.; Pu, K. Grafted semiconducting polymer amphiphiles for multimodal optical imaging and combination phototherapy. Chem. Sci. 2020, 11, 10553–10570. [Google Scholar] [CrossRef]
- Li, M.; Xie, D.; Tang, X.; Yang, C.; Shen, Y.; Zhou, H.; Deng, W.; Liu, J.; Cai, S.; Bai, L.; et al. Phototherapy Facilitates Tumor Recruitment and Activation of Natural Killer T cells for Potent Cancer Immunotherapy. Nano Lett. 2021, 21, 6304–6313. [Google Scholar] [CrossRef] [PubMed]
- Ciriello, G.; Miller, M.L.; Aksoy, B.A.; Senbabaoglu, Y.; Schultz, N.; Sander, C. Emerging landscape of oncogenic signatures across human cancers. Nat. Genet. 2013, 45, 1127–1133. [Google Scholar] [CrossRef] [Green Version]
- Watson, P.A.; Arora, V.K.; Sawyers, C.L. Emerging mechanisms of resistance to androgen receptor inhibitors in prostate cancer. Nat. Rev. Cancer. 2015, 15, 701–711. [Google Scholar] [CrossRef] [Green Version]
- Lennon, A.M.; Buchanan, A.H.; Kinde, I.; Warren, A.; Honushefsky, A.; Cohain, A.T.; Ledbetter, D.H.; Sanfilippo, F.; Sheridan, K.; Rosica, D.; et al. Feasibility of blood testing combined with PET-CT to screen for cancer and guide intervention. Science 2020, 369, eabb9601. [Google Scholar] [CrossRef] [PubMed]
- Husain, S.R.; Han, J.; Au, P.; Shannon, K.; Puri, R.K. Gene therapy for cancer: Regulatory considerations for approval. Cancer. Gene. Ther. 2015, 22, 554–563. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Patel, S.J.; Sanjana, N.E.; Kishton, R.J.; Eidizadeh, A.; Vodnala, S.K.; Cam, M.; Gartner, J.J.; Jia, L.; Steinberg, S.M.; Yamamoto, T.N.; et al. Identification of essential genes for cancer immunotherapy. Nature 2017, 548, 537–542. [Google Scholar] [CrossRef] [Green Version]
- Zou, W. Mechanistic insights into cancer immunity and immunotherapy. Cell. Mol. Immunol. 2018, 15, 419–420. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beck, A.; Goetsch, L.; Dumontet, C.; Corvaia, N. Strategies and challenges for the next generation of antibody-drug conjugates. Nat. Rev. Drug. Discov. 2017, 16, 315–337. [Google Scholar] [CrossRef]
- Fellmann, C.; Gowen, B.G.; Lin, P.C.; Doudna, J.A.; Corn, J.E. Cornerstones of CRISPR-Cas in drug discovery and therapy. Nat. Rev. Drug. Discov. 2017, 16, 89–100. [Google Scholar] [CrossRef] [Green Version]
- Zare, E.N.; Agarwal, T.; Zarepour, A.; Pinelli, F.; Zarrabi, A.; Rossi, F.; Ashrafizadeh, M.; Maleki, A.; Shahbazi, M.-A.; Maiti, T.K.; et al. Electroconductive multi-functional polypyrrole composites for biomedical applications. Appl. Mater. Today. 2021, 24, 101117. [Google Scholar] [CrossRef]
- Zhu, C.; Liu, L.; Yang, Q.; Lv, F.; Wang, S. Water-soluble conjugated polymers for imaging, diagnosis, and therapy. Chem. Rev. 2012, 112, 4687–4735. [Google Scholar] [CrossRef]
- Jiang, H.; Taranekar, P.; Reynolds, J.R.; Schanze, K.S. Conjugated polyelectrolytes: Synthesis, photophysics, and applications. Angew. Chem. Int. Ed. 2009, 48, 4300–4316. [Google Scholar] [CrossRef]
- Zhou, L.; Lv, F.; Liu, L.; Wang, S. Water-Soluble Conjugated Organic Molecules as Optical and Electrochemical Materials for Interdisciplinary Biological Applications. Acc. Chem. Res. 2019, 52, 3211–3222. [Google Scholar] [CrossRef]
- Geng, H.; Yuan, H.; Qiu, L.; Gao, D.; Cheng, Y.; Xing, C. Inhibition and disaggregation of amyloid beta protein fibrils through conjugated polymer-core thermoresponsive micelles. J. Mater. Chem. B. 2020, 8, 10126–10135. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, S.; Kouame, N.A.; Ramos, L.; Remita, S.; Dazzi, A.; Deniset-Besseau, A.; Beaunier, P.; Goubard, F.; Aubert, P.H.; Remita, H. Conducting polymer nanostructures for photocatalysis under visible light. Nat. Mater. 2015, 14, 505–511. [Google Scholar] [CrossRef]
- Sun, P.; Jiang, X.; Sun, B.; Wang, H.; Li, J.; Fan, Q.; Huang, W. Electron-acceptor density adjustments for preparation conjugated polymers with NIR-II absorption and brighter NIR-II fluorescence and 1064 nm active photothermal/gas therapy. Biomaterials 2022, 280, 121319. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Li, Y.; Lu, S.; Zhang, J.; Zhang, C.; Xiong, L. Dual-Performance Optimized Silks from Ultra-Low Dose Polymer Dots Feeding and Its Absorption, Distribution and Excretion in the Silkworms. Adv. Fib. Mater. 2022, 4, 845–858. [Google Scholar] [CrossRef]
- Zare, E.N.; Makvandi, P.; Ashtari, B.; Rossi, F.; Motahari, A.; Perale, G. Progress in Conductive Polyaniline-Based Nanocomposites for Biomedical Applications: A Review. J. Med. Chem. 2020, 63, 1–22. [Google Scholar] [CrossRef] [PubMed]
- Feng, G.; Ding, D.; Liu, B. Fluorescence bioimaging with conjugated polyelectrolytes. Nanoscale 2012, 4, 6150–6165. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Feng, L.; Wang, S. Conjugated Polymer Nanoparticles for Imaging, Cell Activity Regulation, and Therapy. Adv. Funct. Mater. 2019, 29, 1806818.1–1806818.20. [Google Scholar] [CrossRef]
- Hill, E.H.; Zhang, Y.; Evans, D.G.; Whitten, D.G. Enzyme-specific sensors via aggregation of charged p-phenylene ethynylenes. ACS Appl. Mater. Interfaces 2015, 7, 5550–5560. [Google Scholar] [CrossRef]
- Wu, P.; Xu, N.; Tan, C.; Liu, L.; Tan, Y.; Chen, Z.; Jiang, Y. Light-Induced Translocation of a Conjugated Polyelectrolyte in Cells: From Fluorescent Probe to Anticancer Agent. ACS Appl. Mater. Interfaces 2017, 9, 10512–10518. [Google Scholar] [CrossRef]
- Zhao, H.; Peng, K.; Lv, F.; Liu, L.; Wang, S. Boronic Acid-Functionalized Conjugated Polymer for Controllable Cell Membrane Imaging. ACS Appl. Bio. Mater. 2019, 2, 1787–1791. [Google Scholar] [CrossRef]
- Guo, L.; Hu, Y.; Zhang, Z.; Tang, Y. Universal fluorometric aptasensor platform based on water-soluble conjugated polymers/graphene oxide. Anal. Bioanal. Chem. 2018, 410, 287–295. [Google Scholar] [CrossRef]
- Guo, L.; Zhang, Z.; Tang, Y. Cationic conjugated polymers as signal reporter for label-free assay based on targets-mediated aggregation of perylene diimide quencher. Chin. Chem. Lett. 2018, 29, 305–308. [Google Scholar] [CrossRef]
- Wang, L.; Pu, K.Y.; Li, J.; Qi, X.; Li, H.; Zhang, H.; Fan, C.; Liu, B. A graphene-conjugated oligomer hybrid probe for light-up sensing of lectin and Escherichia coli. Adv. Mater. 2011, 23, 4386–4391. [Google Scholar] [CrossRef]
- Liu, Y.; Ogawa, K.; Schanze, K.S. Conjugated polyelectrolytes as fluorescent sensors. J. Photochem. Photobio. C Photochem. Rev. 2009, 10, 173–190. [Google Scholar] [CrossRef]
- Feng, L.; Zhu, C.; Yuan, H.; Liu, L.; Lv, F.; Wang, S. Conjugated polymer nanoparticles: Preparation, properties, functionalization and biological applications. Chem. Soc. Rev. 2013, 42, 6620–6633. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Zhang, Y.; Jiang, K.; Wang, X.; Blum, N.T.; Zhang, J.; Jiang, S.; Lin, J.; Huang, P. Enzyme-Engineered Conjugated Polymer Nanoplatform for Activatable Companion Diagnostics and Multistage Augmented Synergistic Therapy. Adv. Mater. 2022, 34, e2200062. [Google Scholar] [CrossRef] [PubMed]
- Verma, M.; Chan, Y.H.; Saha, S.; Liu, M.H. Recent Developments in Semiconducting Polymer Dots for Analytical Detection and NIR-II Fluorescence Imaging. ACS Appl. Bio Mater. 2021, 4, 2142–2159. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Z.; Zhou, T.; Hu, R.; Huang, M.; Ao, X.; Chu, J.; Jiang, T.; Qin, A.; Zhang, Z. A specific aggregation-induced emission-conjugated polymer enables visual monitoring of osteogenic differentiation. Bioact. Mater. 2020, 5, 1018–1025. [Google Scholar] [CrossRef]
- Deng, K.; Zhao, X.; Liu, F.; Peng, J.; Meng, C.; Huang, Y.; Ma, L.; Chang, C.; Wei, H. Synthesis of Thermosensitive Conjugated Triblock Copolymers by Sequential Click Couplings for Drug Delivery and Cell Imaging. ACS Biomater. Sci. Eng. 2019, 5, 3419–3428. [Google Scholar] [CrossRef]
- Xiong, L.; Shuhendler, A.J.; Rao, J. Self-luminescing BRET-FRET near-infrared dots for in vivo lymph-node mapping and tumour imaging. Nat. Commun. 2012, 3, 1193. [Google Scholar] [CrossRef] [Green Version]
- Rong, Y.; Wu, C.; Yu, J.; Zhang, X.; Ye, F.; Zeigler, M.; Gallina, M.E.; Wu, I.C.; Zhang, Y.; Chan, Y.H. Multicolor fluorescent semiconducting polymer dots with narrow emissions and high brightness. Acs Nano 2013, 7, 376–384. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, S.; Ou, H.; Li, Y.; Zhang, H.; Liu, J.; Lu, X.; Kwok, R.T.K.; Lam, J.W.Y.; Ding, D.; Tang, B.Z. Planar and Twisted Molecular Structure Leads to the High Brightness of Semiconducting Polymer Nanoparticles for NIR-IIa Fluorescence Imaging. J. Am. Chem. Soc. 2020, 142, 15146–15156. [Google Scholar] [CrossRef]
- Li, J.; Pu, K. Semiconducting Polymer Nanomaterials as Near-Infrared Photoactivatable Protherapeutics for Cancer. Acc. Chem. Res. 2020, 53, 752–762. [Google Scholar] [CrossRef] [PubMed]
- Molaei, M.J. A review on nanostructured carbon quantum dots and their applications in biotechnology, sensors, and chemiluminescence. Talanta 2019, 196, 456–478. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.; Pu, K. Advanced Photoacoustic Imaging Applications of Near-Infrared Absorbing Organic Nanoparticles. Small 2017, 13, 1700710. [Google Scholar] [CrossRef]
- Sun, T.; Dou, J.H.; Liu, S.; Wang, X.; Zheng, X.; Wang, Y.; Pei, J.; Xie, Z. Second Near-Infrared Conjugated Polymer Nanoparticles for Photoacoustic Imaging and Photothermal Therapy. ACS Appl. Mater. Interfaces 2018, 10, 7919–7926. [Google Scholar] [CrossRef]
- Cao, Z.; Feng, L.; Zhang, G.; Wang, J.; Shen, S.; Li, D.; Yang, X. Semiconducting polymer-based nanoparticles with strong absorbance in NIR-II window for in vivo photothermal therapy and photoacoustic imaging. Biomaterials 2018, 155, 103–111. [Google Scholar] [CrossRef]
- Zou, Q.; Abbas, M.; Zhao, L.; Li, S.; Shen, G.; Yan, X. Biological Photothermal Nanodots Based on Self-Assembly of Peptide-Porphyrin Conjugates for Antitumor Therapy. J. Am. Chem. Soc. 2017, 139, 1921–1927. [Google Scholar] [CrossRef]
- Kairdolf, B.A.; Smith, A.M.; Stokes, T.H.; Wang, M.D.; Young, A.N.; Nie, S. Semiconductor quantum dots for bioimaging and biodiagnostic applications. Annu. Rev. Anal. Chem. 2013, 6, 143–162. [Google Scholar] [CrossRef] [Green Version]
- Wolfbeis, O.S. An overview of nanoparticles commonly used in fluorescent bioimaging. Chem. Soc. Rev. 2015, 44, 4743–4768. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.N.; Bu, W.; Shi, J. Chemical Design and Synthesis of Functionalized Probes for Imaging and Treating Tumor Hypoxia. Chem. Rev. 2017, 117, 6160–6224. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Pu, K. Development of organic semiconducting materials for deep-tissue optical imaging, phototherapy and photoactivation. Chem. Soc. Rev. 2019, 48, 38–71. [Google Scholar] [CrossRef] [PubMed]
- Yan, T.; Wang, X.; Liu, S.; Fan, D.; Xu, X.; Zeng, Q.; Xie, H.; Yang, X.; Zhu, S.; Ma, X.; et al. Confocal Laser Scanning Microscopy Based on a Silicon Photomultiplier for Multicolor In Vivo Imaging in Near-Infrared Regions I and II. Small Methods 2022, 6, e2201105. [Google Scholar] [CrossRef] [PubMed]
- Men, X.; Geng, X.; Zhang, Z.; Chen, H.; Du, M.; Chen, Z.; Liu, G.; Wu, C.; Yuan, Z. Biomimetic semiconducting polymer dots for highly specific NIR-II fluorescence imaging of glioma. Mater. Today. Bio. 2022, 16, 100383. [Google Scholar] [CrossRef]
- Pu, K.; Chattopadhyay, N.; Rao, J. Recent advances of semiconducting polymer nanoparticles in In vivo molecular imaging. J. Control. Release 2016, 240, 312–322. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, C.; Szymanski, C.; Mcneill, J. Preparation and encapsulation of highly fluorescent conjugated polymer nanoparticles. Langmuir 2006, 22, 2956–2960. [Google Scholar] [CrossRef]
- Kuehne, A.J. Conjugated Polymer Nanoparticles toward In Vivo Theranostics—Focus on Targeting, Imaging, Therapy, and the Importance of Clearance. Adv. Biosyst. 2017, 1, 1700100. [Google Scholar] [CrossRef] [Green Version]
- Chan, Y.-H.; Wu, P.-J. Semiconducting Polymer Nanoparticles as Fluorescent Probes for Biological Imaging and Sensing. Part. Part. Syst. Char. 2015, 32, 11–28. [Google Scholar] [CrossRef]
- Feng, L.; Liu, L.; Lv, F.; Bazan, G.C.; Wang, S. Preparation and biofunctionalization of multicolor conjugated polymer nanoparticles for imaging and detection of tumor cells. Adv. Mater. 2014, 26, 3926–3930. [Google Scholar] [CrossRef]
- Bourke, S.; Teijeiro Gonzalez, Y.; Dona, F.; Panamarova, M.; Suhling, K.; Eggert, U.; Dailey, L.A.; Zammit, P.; Green, M.A. Cellular imaging using emission-tuneable conjugated polymer nanoparticles. RSC. Adv. 2019, 9, 37971–37976. [Google Scholar] [CrossRef]
- Zhong, H.; Zhang, J.; Guo, Y.; Wang, L.; Ge, W.; Chen, M.; Sun, R.; Wang, X. Multi-color light-emitting amphiphilic cellulose/conjugated polymers nanomicelles for tumor cell imaging. Cellulose 2016, 24, 889–902. [Google Scholar] [CrossRef]
- Lindvall, O.; Kokaia, Z.; Martinez, S.A. Stem cell therapy for human neurodegenerative disorders-how to make it work. Nat. Med. 2004, 10, S42–S50. [Google Scholar] [CrossRef]
- Watson, L.J.; Rossi, G.; Brennwald, P. Quantitative Analysis of Membrane Trafficking in Regulation of Cdc42 Polarity. Traffic 2014, 15, 1330–1343. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, J.; Lv, F.; Liu, L.; Ma, Y.; Wang, S. Strategies to design conjugated polymer based materials for biological sensing and imaging. Coord. Chem. Rev. 2018, 354, 135–154. [Google Scholar] [CrossRef]
- Sheng, Z.; Guo, B.; Hu, D.; Xu, S.; Wu, W.; Liew, W.H.; Yao, K.; Jiang, J.; Liu, C.; Zheng, H.; et al. Bright Aggregation-Induced-Emission Dots for Targeted Synergetic NIR-II Fluorescence and NIR-I Photoacoustic Imaging of Orthotopic Brain Tumors. Adv. Mater. 2018, 30, e1800766. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Chen, H.; Liu, H.; Liu, L.; Yuan, Y.; Mao, C.; Zhang, W.; Zhang, X.; Guo, W.; Lee, C.S.; et al. In Vivo Real-Time Pharmaceutical Evaluations of Near-Infrared II Fluorescent Nanomedicine Bound Polyethylene Glycol Ligands for Tumor Photothermal Ablation. ACS Nano 2020, 14, 13681–13690. [Google Scholar] [CrossRef] [PubMed]
- Ding, D.; Liu, J.; Feng, G.; Li, K.; Hu, Y.; Liu, B. Bright far-red/near-infrared conjugated polymer nanoparticles for in vivo bioimaging. Small 2013, 9, 3093–3102. [Google Scholar] [CrossRef]
- Feng, G.; Liu, J.; Liu, R.; Mao, D.; Tomczak, N.; Liu, B. Ultrasmall Conjugated Polymer Nanoparticles with High Specificity for Targeted Cancer Cell Imaging. Adv. Sci. 2017, 4, 1600407. [Google Scholar] [CrossRef] [Green Version]
- Yuan, Y.; Zhang, Z.; Hou, W.; Qin, W.; Meng, Z.; Wu, C. In vivo dynamic cell tracking with long-wavelength excitable and near-infrared fluorescent polymer dots. Biomaterials 2020, 254, 120139. [Google Scholar] [CrossRef]
- Wang, F.; Chen, H.; Liu, Z.; Mi, F.; Fang, X.; Liu, J.; Wang, M.; Lo, P.K.; Li, Q. Conjugated polymer dots for biocompatible siRNA delivery. New J. Chem. 2019, 43, 14443–14449. [Google Scholar] [CrossRef]
- Chen, S.; Cui, S.; Du, R.; Liu, M.; Tsai, W.K.; Guo, F.; Wu, Q.; Zhao, L.; Zhang, Y. Simultaneous near-infrared and green fluorescence from single conjugated polymer dots with aggregation-induced emission fluorogen for cell imaging. J. Mater. Chem. B 2018, 6, 7871–7876. [Google Scholar] [CrossRef] [PubMed]
- Hong, G.; Zou, Y.; Antaris, A.L.; Diao, S.; Wu, D.; Cheng, K.; Zhang, X.; Chen, C.; Liu, B.; He, Y.; et al. Ultrafast fluorescence imaging in vivo with conjugated polymer fluorophores in the second near-infrared window. Nat. Commun. 2014, 5, 4206. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Song, X.; Lu, X.; Sun, B.; Zhang, H.; Sun, P.; Miao, H.; Fan, Q.; Huang, W. Conjugated Polymer Nanoparticles with Absorption beyond 1000 nm for NIR-II Fluorescence Imaging System Guided NIR-II Photothermal Therapy. ACS Appl. Polym. Mater. 2020, 2, 4171–4179. [Google Scholar] [CrossRef]
- Yoon, J.; Kwag, J.; Shin, T.J.; Park, J.; Lee, Y.M.; Lee, Y.; Park, J.; Heo, J.; Joo, C.; Park, T.J.; et al. Nanoparticles of conjugated polymers prepared from phase-separated films of phospholipids and polymers for biomedical applications. Adv. Mater. 2014, 26, 4559–4564. [Google Scholar] [CrossRef]
- Wu, C.; Szymanski, C.; Cain, Z.; McNeill, J. Conjugated polymer dots for multiphoton fluorescence imaging. J. Am. Chem. Soc. 2007, 129, 12904–12905. [Google Scholar] [CrossRef] [Green Version]
- Tian, N.; Xu, Q.H. Enhanced Two-Photon Excitation Fluorescence by Fluorescence Resonance Energy Transfer Using Conjugated Polymers. Adv. Mater. 2007, 19, 1988–1991. [Google Scholar] [CrossRef]
- Wang, S.; Li, Z.; Liu, X.; Phan, S.; Lv, F.; Belfield, K.D.; Wang, S.; Schanze, K.S. Two-Photon Absorption of Cationic Conjugated Polyelectrolytes: Effects of Aggregation and Application to 2-Photon-Sensitized Fluorescence from Green Fluorescent Protein. Chem. Mater. 2017, 29, 3295–3303. [Google Scholar] [CrossRef]
- Hu, L.; Chen, Z.; Liu, Y.; Tian, B.; Guo, T.; Liu, R.; Wang, C.; Ying, L. In Vivo Bioimaging and Photodynamic Therapy Based on Two-Photon Fluorescent Conjugated Polymers Containing Dibenzothiophene-S,S-dioxide Derivatives. ACS Appl. Mater. Interfaces. 2020, 12, 57281–57289. [Google Scholar] [CrossRef]
- Du, N.; Tan, Y.; Zhang, C.; Tan, C. Poly(fluorenone-co-thiophene)-based nanoparticles for two-photon fluorescence imaging in living cells and tissues. RSC. Adv. 2020, 10, 12373–12377. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Y.; Tang, R.; Liu, X.; Gong, J.; Zhao, Z.; Sheng, Z.; Zhang, J.; Li, X.; Niu, G.; Kwok, R.T.K.; et al. Bright Aggregation-Induced Emission Nanoparticles for Two-Photon Imaging and Localized Compound Therapy of Cancers. ACS Nano 2020, 14, 16840–16853. [Google Scholar] [CrossRef]
- Wang, S.; Liu, J.; Feng, G.; Ng, L.G.; Liu, B. NIR-II Excitable Conjugated Polymer Dots with Bright NIR-I Emission for Deep In Vivo Two-Photon Brain Imaging Through Intact Skull. Adv. Funct. Mater. 2019, 29, 1808365. [Google Scholar] [CrossRef]
- Geng, J.; Goh, C.C.; Tomczak, N.; Liu, J.; Liu, R.; Ma, L.; Ng, L.G.; Gurzadyan, G.G.; Liu, B. Micelle/Silica Co-protected Conjugated Polymer Nanoparticles for Two-Photon Excited Brain Vascular Imaging. Chem. Mater. 2014, 26, 1874–1880. [Google Scholar] [CrossRef]
- Nienhaus, K.; Nienhaus, G.U. Fluorescent proteins for live-cell imaging with super-resolution. Chem. Soc. Rev. 2013, 43, 1088–1106. [Google Scholar] [CrossRef] [PubMed]
- Dedecker, P.; Mo, G.; Dertinger, T.; Jin, Z. Widely accessible method for superresolution fluorescence imaging of living systems. Proc. Natl. Acad. Sci. USA 2012, 109, 10909–10914. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, Z.; Sharma, A.; Qi, J.; Peng, X.; Lee, D.Y.; Hu, R.; Lin, D.; Qu, J.; Kim, J.S. Super-resolution fluorescent materials: An insight into design and bioimaging applications. Chem. Soc. Rev. 2016, 45, 4651–4667. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Li, R.; Liu, Z.; Sun, K.; Sun, Z.; Chen, D.; Xu, G.; Xi, P.; Wu, C.; Sun, Y. Small Photoblinking Semiconductor Polymer Dots for Fluorescence Nanoscopy. Adv. Mater. 2017, 29, 1604850. [Google Scholar] [CrossRef]
- Chen, X.; Liu, Z.; Li, R.; Shan, C.; Zeng, Z.; Xue, B.; Yuan, W.; Mo, C.; Xi, P.; Wu, C.; et al. Multicolor Super-resolution Fluorescence Microscopy with Blue and Carmine Small Photoblinking Polymer Dots. ACS Nano 2017, 11, 8084–8091. [Google Scholar] [CrossRef]
- Liu, J.; Fang, X.; Liu, Z.; Li, R.; Yang, Y.; Sun, Y.; Zhao, Z.; Wu, C. Expansion Microscopy with Multifunctional Polymer Dots. Adv. Mater. 2021, 33, e2007854. [Google Scholar] [CrossRef]
- Weber, J.; Beard, P.C.; Bohndiek, S.E. Contrast agents for molecular photoacoustic imaging. Nat. Methods. 2016, 13, 639–650. [Google Scholar] [CrossRef] [Green Version]
- Jeevarathinam, A.S.; Lemaster, J.E.; Chen, F.; Zhao, E.; Jokerst, J.V. Inside Cover: Photoacoustic Imaging Quantifies Drug Release from Nanocarriers via Redox Chemistry of Dye-Labeled Cargo. Angew. Chem. Int. Ed. 2020, 59, 4594. [Google Scholar] [CrossRef] [Green Version]
- Pu, K.; Shuhendler, A.J.; Jokerst, J.V.; Mei, J.; Gambhir, S.S.; Bao, Z.; Rao, J. Semiconducting polymer nanoparticles as photoacoustic molecular imaging probes in living mice. Nat. Nanotechnol. 2014, 9, 233–239. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lyu, Y.; Fang, Y.; Miao, Q.; Zhen, X.; Ding, D.; Pu, K. Intraparticle Molecular Orbital Engineering of Semiconducting Polymer Nanoparticles as Amplified Theranostics for In Vivo Photoacoustic Imaging and Photothermal Therapy. ACS Nano 2016, 10, 4472–4481. [Google Scholar] [CrossRef]
- Cheng, P.; Chen, W.; Li, S.; He, S.; Miao, Q.; Pu, K. Fluoro-Photoacoustic Polymeric Renal Reporter for Real-Time Dual Imaging of Acute Kidney Injury. Adv. Mater. 2020, 32, e1908530. [Google Scholar] [CrossRef]
- Zhang, Y.; He, S.; Xu, C.; Jiang, Y.; Miao, Q.; Pu, K. An Activatable Polymeric Nanoprobe for Fluorescence and Photoacoustic Imaging of Tumor-Associated Neutrophils in Cancer Immunotherapy. Angew. Chem. Int. Ed. 2022, 61, e202203184. [Google Scholar]
- Wu, J.; Lee, H.J.; You, L.; Luo, X.; Hasegawa, T.; Huang, K.C.; Lin, P.; Ratliff, T.; Ashizawa, M.; Mei, J.; et al. Functionalized NIR-II Semiconducting Polymer Nanoparticles for Single-cell to Whole-Organ Imaging of PSMA-Positive Prostate Cancer. Small 2020, 16, e2001215. [Google Scholar] [CrossRef]
- Li, T.; Guo, H.; Liu, Y.; Qi, W.; Wu, C.; Xi, L. All-in-One Photoacoustic Theranostics Using Multi-Functional Nanoparticles. Adv. Funct. Mater. 2021, 32, 2107624. [Google Scholar] [CrossRef]
- Krafft, C.; Schie, I.W.; Meyer, T.; Schmitt, M.; Popp, J. Developments in spontaneous and coherent Raman scattering microscopic imaging for biomedical applications. Chem. Soc. Rev. 2016, 45, 1819–1849. [Google Scholar] [CrossRef]
- Lane, L.A.; Qian, X.; Nie, S. SERS Nanoparticles in Medicine: From Label-Free Detection to Spectroscopic Tagging. Chem. Rev. 2015, 115, 10489–10529. [Google Scholar] [CrossRef]
- Abramczyk, H.; Brozek-Pluska, B. Raman imaging in biochemical and biomedical applications. Diagnosis and treatment of breast cancer. Chem. Rev. 2013, 113, 5766–5781. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Chen, T.; Wang, Y.; Liu, L.; Lv, F.; Li, Z.; Huang, Y.; Schanze, K.S.; Wang, S. Conjugated Polymer with Intrinsic Alkyne Units for Synergistically Enhanced Raman Imaging in Living Cells. Angew. Chem. Int. Ed. 2017, 56, 13455–13458. [Google Scholar] [CrossRef] [PubMed]
- Su, X.; Liu, R.; Li, Y.; Han, T.; Zhang, Z.; Niu, N.; Kang, M.; Fu, S.; Wang, D.; Wang, D.; et al. Aggregation-Induced Emission-Active Poly(phenyleneethynylene)s for Fluorescence and Raman Dual-Modal Imaging and Drug-Resistant Bacteria Killing. Adv. Healthc. Mater. 2021, 10, e2101167. [Google Scholar] [CrossRef]
- Cui, K.; Zhang, Y.; Chen, G.; Cui, Y.; Wu, W.; Zhao, N.; Liu, T.; Xiao, Z. Molecular Regulation of Polymeric Raman Probes for Ultrasensitive Microtumor Diagnosis and Noninvasive Microvessle Imaging. Small 2022, 18, e2106925. [Google Scholar] [CrossRef] [PubMed]
- Ao, J.; Fang, X.; Miao, X.; Ling, J.; Kang, H.; Park, S.; Wu, C.; Ji, M. Switchable stimulated Raman scattering microscopy with photochromic vibrational probes. Nat. Commun. 2021, 12, 3089. [Google Scholar] [CrossRef]
- Das, R.S.; Mukherjee, A.; Kar, S.; Bera, T.; Das, S.; Sengupta, A.; Guha, S. Construction of Red Fluorescent Dual Targeting Mechanically Interlocked Molecules for Live Cancer Cell Specific Lysosomal Staining and Multicolor Cellular Imaging. Org. Lett. 2022, 24, 5907–5912. [Google Scholar] [CrossRef] [PubMed]
- Jiang, D.; Pan, Y.; Yao, H.; Sun, J.; Xiong, W.; Li, L.; Zheng, F.; Sun, S.; Zhu, J.J. Synthesis of Renal-Clearable Multicolor Fluorescent Silicon Nanodots for Tumor Imaging and In Vivo H2O2 Profiling. Anal. Chem. 2022, 94, 9074–9080. [Google Scholar] [CrossRef]
- Wang, Y.; Lei, Y.; Wang, J.; Yang, H.; Sun, L. Tetrapeptide self-assembled multicolor fluorescent nanoparticles for bioimaging applications. Chin. Chem. Lett. 2023, 34, 107915. [Google Scholar] [CrossRef]
- Liu, Y.; Gao, L.; Yan, H.; Shangguan, J.; Zhang, Z.; Xiang, X. A cationic conjugated polymer coupled with exonuclease I: Application to the fluorometric determination of protein and cell imaging. Mikrochim. Acta. 2018, 185, 118. [Google Scholar] [CrossRef]
- Lu, Q.; Wu, C.J.; Liu, Z.; Niu, G.; Yu, X. Fluorescent AIE-Active Materials for Two-Photon Bioimaging Applications. Front. Chem. 2020, 8, 617463. [Google Scholar] [CrossRef]
- de Bettencourt-Dias, A. Two-Photon Excitation for Bone Imaging: A New Application for Lanthanide Luminescence. Chem 2016, 1, 342–343. [Google Scholar] [CrossRef] [Green Version]
- Yan, L.; Bai, C.; Zheng, Y.; Zhou, X.; Wan, M.; Zong, Y.; Chen, S.; Zhou, Y. Study on the Application of Super-Resolution Ultrasound for Cerebral Vessel Imaging in Rhesus Monkeys. Front. Neurol. 2021, 12, 720320. [Google Scholar] [CrossRef]
- Turcotte, R.; Liang, Y.; Tanimoto, M.; Zhang, Q.; Li, Z.; Koyama, M.; Betzig, E.; Ji, N. Dynamic super-resolution structured illumination imaging in the living brain. Proc. Natl. Acad. Sci. USA 2019, 116, 9586–9591. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bodea, S.V.; Westmeyer, G.G. Photoacoustic Neuroimaging—Perspectives on a Maturing Imaging Technique and its Applications in Neuroscience. Front. Neurosci. 2021, 15, 655247. [Google Scholar] [CrossRef]
- Zhang, Y.; He, S.; Chen, W.; Liu, Y.; Zhang, X.; Miao, Q.; Pu, K. Activatable Polymeric Nanoprobe for Near-Infrared Fluorescence and Photoacoustic Imaging of T Lymphocytes. Angew. Chem. Int. Ed. 2021, 60, 5921–5927. [Google Scholar] [CrossRef] [PubMed]
- Kumamoto, Y.; Li, M.; Koike, K.; Fujita, K. Slit-scanning Raman microscopy: Instrumentation and applications for molecular imaging of cell and tissue. J. Appl. Phys. 2022, 132, 171101. [Google Scholar] [CrossRef]
- Wu, Y.; Pang, H.; Liu, Y.; Wang, X.; Yu, S.; Fu, D.; Chen, J.; Wang, X. Environmental remediation of heavy metal ions by novel-nanomaterials: A review. Environ. Pollut. 2019, 246, 608–620. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Wang, X.; Zhao, G.; Chen, C.; Chai, Z.; Alsaedi, A.; Hayat, T.; Wang, X. Metal-organic framework-based materials: Superior adsorbents for the capture of toxic and radioactive metal ions. Chem. Soc. Rev. 2018, 47, 2322–2356. [Google Scholar] [CrossRef]
- Burugu, S.; Dancsok, A.R.; Nielsen, T.O. Emerging targets in cancer immunotherapy. Semin. Cancer. Biol. 2018, 52, 39–52. [Google Scholar] [CrossRef] [PubMed]
- Hansen, M.; Andersen, M.H. The role of dendritic cells in cancer. Semin. Immunopathol. 2017, 39, 307–316. [Google Scholar] [CrossRef]
- Chen, Y.; Du, M.; Yuan, Z.; Chen, Z.; Yan, F. Spatiotemporal control of engineered bacteria to express interferon-gamma by focused ultrasound for tumor immunotherapy. Nat. Commun. 2022, 13, 4468. [Google Scholar] [CrossRef]
- Jiang, Y.; Sun, M.; Ouyang, N.; Tang, Y.; Miao, P. Synergistic Chemo-thermal Therapy of Cancer by DNA-Templated Silver Nanoclusters and Polydopamine Nanoparticles. ACS Appl. Mater. Interfaces 2021, 13, 21653–21660. [Google Scholar] [CrossRef]
- Nam, J.; Son, S.; Ochyl, L.J.; Rui, K.; Schwendeman, A.; Moon, J.J. Chemo-photothermal therapy combination elicits anti-tumor immunity against advanced metastatic cancer. Nat. Commun. 2018, 9, 1074. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Li, T.; Ni, J.S.; Guo, H.; Kang, T.; Li, Z.; Zha, M.; Lu, S.; Zhang, C.; Qi, W.; et al. Photoacoustic Force-Guided Precise and Fast Delivery of Nanomedicine with Boosted Therapeutic Efficacy. Adv. Sci. 2021, 8, e2100228. [Google Scholar] [CrossRef]
- Ng, C.W.; Li, J.; Pu, K. Phototherapy-Synergized Cancer Immunotherapy: Recent Progresses in Phototherapy-Synergized Cancer Immunotherapy (Adv. Funct. Mater. 46/2018). Adv. Funct. Mater. 2018, 28, 1870327. [Google Scholar] [CrossRef] [Green Version]
- Liu, C.; Cao, Y.; Cheng, Y.; Wang, D.; Dong, H. An open source and reduce expenditure ROS generation strategy for chemodynamic/photodynamic synergistic therapy. Nat. Commun. 2020, 11, 1735. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Xiong, X.; Zhu, Y.; Song, X.; Li, Q.; Zhang, S. A pH-Responsive Nanoplatform Based on Fluorescent Conjugated Polymer Dots for Imaging-Guided Multitherapeutics Delivery and Combination Cancer Therapy. ACS Biomater. Sci. Eng. 2022, 8, 161–169. [Google Scholar] [CrossRef]
- Ren, Z.; Cui, J.; Sun, Q.; Qin, D.; Tan, H.; Li, M. Polyethylene glycol-modified nanoscale conjugated polymer for the photothermal therapy of lung cancer. Nat. Nanotechnol. 2022, 33, 455101. [Google Scholar] [CrossRef]
- Huang, X.; Lan, N.; Chen, W.; Yan, Y.; Zeng, W.; Liu, S. Low-bandgap conjugated polymers with photocurrent response over 1000 nm. J. Mater. Sci. 2021, 56, 8334–8357. [Google Scholar] [CrossRef]
- Yang, Y.; Fan, X.; Li, L.; Yang, Y.; Nuernisha, A.; Xue, D.; He, C.; Qian, J.; Hu, Q.; Chen, H.; et al. Semiconducting Polymer Nanoparticles as Theranostic System for Near-Infrared-II Fluorescence Imaging and Photothermal Therapy under Safe Laser Fluence. ACS Nano 2020, 14, 2509–2521. [Google Scholar] [CrossRef] [PubMed]
- Men, X.; Wang, F.; Chen, H.; Liu, Y.; Men, X.; Yuan, Y.; Zhang, Z.; Gao, D.; Wu, C.; Yuan, Z. Ultrasmall Semiconducting Polymer Dots with Rapid Clearance for Second Near-Infrared Photoacoustic Imaging and Photothermal Cancer Therapy. Adv. Funct. Mater. 2020, 30, 1909673. [Google Scholar] [CrossRef]
- Jiang, L.; Bai, H.; Liu, L.; Lv, F.; Ren, X.; Wang, S. Luminescent, Oxygen-Supplying, Hemoglobin-Linked Conjugated Polymer Nanoparticles for Photodynamic Therapy. Angew. Chem. Int. Ed. 2019, 58, 10660–10665. [Google Scholar] [CrossRef] [PubMed]
- Zhu, H.; Fang, Y.; Miao, Q.; Qi, X.; Ding, D.; Chen, P.; Pu, K. Regulating Near-Infrared Photodynamic Properties of Semiconducting Polymer Nanotheranostics for Optimized Cancer Therapy. ACS Nano 2017, 11, 8998–9009. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Tian, S.; Liu, Y.; Zheng, M.; Yang, X.; Zou, Y.; Shi, B.; Luo, L. Near infrared-activatable biomimetic nanogels enabling deep tumor drug penetration inhibit orthotopic glioblastoma. Nat. Commun. 2022, 13, 6835. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Yuan, H.; Bai, H.; Zhang, P.; Lv, F.; Liu, L.; Dai, Z.; Bao, J.; Wang, S. Electrochemiluminescence for Electric-Driven Antibacterial Therapeutics. J. Am. Chem. Soc. 2018, 140, 2284–2291. [Google Scholar] [CrossRef]
- Zhang, Z.; Cao, Y.; Zhu, X.; Li, Y.; Cai, X. Zwitterionic Conjugated Polymer as the Single Component for Photoacoustic-Imaging-Guided Dual-Modal Near-Infrared Phototherapy. ACS Biomater. Sci. Eng. 2020, 6, 4005–4011. [Google Scholar] [CrossRef]
- Zhao, L.; Chang, M.; He, Z.; Zhao, Y.; Wang, J.; Lu, Y. Photoactive Oligomer with an Acceptor–Donor–Acceptor-Conjugated Structure for Single Near-Infrared Light-Triggered Photothermal/Photodynamic Synergistic Therapy of Tumors. ACS Appl. Polym. Mater. 2023, 5, 1530–1538. [Google Scholar] [CrossRef]
- Feng, G.; Fang, Y.; Liu, J.; Geng, J.; Ding, D.; Liu, B. Multifunctional Conjugated Polymer Nanoparticles for Image-Guided Photodynamic and Photothermal Therapy. Small 2017, 13, 1602807. [Google Scholar] [CrossRef]
- Xu, Y.; Chen, J.; Tong, L.; Su, P.; Liu, Y.; Gu, B.; Bao, B.; Wang, L. pH/NIR-responsive semiconducting polymer nanoparticles for highly effective photoacoustic image guided chemo-photothermal synergistic therapy. J. Control. Release 2019, 293, 94–103. [Google Scholar] [CrossRef]
- Tang, D.; Yu, Y.; Zhang, J.; Dong, X.; Liu, C.; Xiao, H. Self-Sacrificially Degradable Pseudo-Semiconducting Polymer Nanoparticles that Integrate NIR-II Fluorescence Bioimaging, Photodynamic Immunotherapy, and Photo-Activated Chemotherapy. Adv. Mater. 2022, 34, e2203820. [Google Scholar] [CrossRef]
- Zhang, Z.; Lu, Z.; Yuan, Q.; Zhang, C.; Tang, Y. ROS-Responsive and active targeted drug delivery based on conjugated polymer nanoparticles for synergistic chemo-/photodynamic therapy. J. Mater. Chem. B 2021, 9, 2240–2248. [Google Scholar] [CrossRef]
- Jiang, H.; Su, Y.; Li, N.; Jin, X. Laser-Responsive Polymeric Nanomicelles to Subdue Tumor Multidrug Resistance Based on Mild Photodynamic Therapy and Chemotherapy. ACS Appl. Nano Mater. 2020, 3, 6702–6710. [Google Scholar] [CrossRef]
- Wu, L.; Sun, Y.; Sugimoto, K.; Luo, Z.; Ishigaki, Y.; Pu, K.; Suzuki, T.; Chen, H.Y.; Ye, D. Engineering of Electrochromic Materials as Activatable Probes for Molecular Imaging and Photodynamic Therapy. J. Am. Chem. Soc. 2018, 140, 16340–16352. [Google Scholar] [CrossRef]
- Yuan, H.; Wang, B.; Lv, F.; Liu, L.; Wang, S. Conjugated-polymer-based energy-transfer systems for antimicrobial and anticancer applications. Adv. Mater. 2014, 26, 6978–6982. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Wang, M.; Mikhailovsky, A.; Wang, S.; Bazan, G.C. A Membrane-Intercalating Conjugated Oligoelectrolyte with High-Efficiency Photodynamic Antimicrobial Activity. Angew. Chem. Int. Ed. 2017, 56, 5031–5034. [Google Scholar] [CrossRef] [PubMed]
- Dan, Q.; Yuan, Z.; Zheng, S.; Ma, H.; Luo, W.; Zhang, L.; Su, N.; Hu, D.; Sheng, Z.; Li, Y. Gold Nanoclusters-Based NIR-II Photosensitizers with Catalase-like Activity for Boosted Photodynamic Therapy. Pharmaceutics 2022, 14, 1645. [Google Scholar] [CrossRef]
- Zhen, S.; Yi, X.; Zhao, Z.; Lou, X.; Xia, F.; Tang, B.Z. Drug delivery micelles with efficient near-infrared photosensitizer for combined image-guided photodynamic therapy and chemotherapy of drug-resistant cancer. Biomaterials 2019, 218, 119330. [Google Scholar] [CrossRef] [PubMed]
- Shen, Y.; Shuhendler, A.J.; Ye, D.; Xu, J.J.; Chen, H.Y. Two-photon excitation nanoparticles for photodynamic therapy. Chem. Soc. Rev. 2016, 45, 6725–6741. [Google Scholar] [CrossRef] [PubMed]
- Yu, X.; Zhu, W.; Di, Y.; Gu, J.; Guo, Z.; Li, H.; Fu, D.; Jin, C. Triple-functional albumin-based nanoparticles for combined chemotherapy and photodynamic therapy of pancreatic cancer with lymphatic metastases. Int. J. Nanomedicine. 2017, 12, 6771–6785. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wen, S.; Wang, W.; Liu, R.; He, P. Amylase-Protected Ag Nanodots for in vivo Fluorescence Imaging and Photodynamic Therapy of Tumors. Int. J. Nanomedicine. 2020, 15, 3405–3414. [Google Scholar] [CrossRef]
- Chong, H.; Nie, C.; Zhu, C.; Yang, Q.; Liu, L.; Lv, F.; Wang, S. Conjugated polymer nanoparticles for light-activated anticancer and antibacterial activity with imaging capability. Langmuir 2012, 28, 2091–2098. [Google Scholar] [CrossRef] [PubMed]
- Feng, L.; Zhu, J.; Wang, Z. Biological Functionalization of Conjugated Polymer Nanoparticles for Targeted Imaging and Photodynamic Killing of Tumor Cells. ACS Appl. Mater. Interfaces 2016, 8, 19364–19370. [Google Scholar] [CrossRef]
- Wu, W.; Feng, G.; Xu, S.; Liu, B. A Photostable Far-Red/Near-Infrared Conjugated Polymer Photosensitizer with Aggregation-Induced Emission for Image-Guided Cancer Cell Ablation. Macromolecules 2016, 49, 5017–5025. [Google Scholar] [CrossRef]
- Xu, X.; Cui, Y.; Bu, H.; Chen, J.; Li, Y.; Tang, G.; Wang, L.Q. A photosensitizer loaded hemoglobin-polymer conjugate as a nanocarrier for enhanced photodynamic therapy. J. Mater. Chem. B 2018, 6, 1825–1833. [Google Scholar] [CrossRef] [PubMed]
- Yuan, H.; Chong, H.; Wang, B.; Zhu, C.; Liu, L.; Yang, Q.; Lv, F.; Wang, S. Chemical molecule-induced light-activated system for anticancer and antifungal activities. J. Am. Chem. Soc. 2012, 134, 13184–13187. [Google Scholar] [CrossRef] [PubMed]
- Song, X.; Chen, Q.; Liu, Z. Recent advances in the development of organic photothermal nano-agents. Nano. Res. 2014, 8, 340–354. [Google Scholar] [CrossRef]
- Jung, H.S.; Verwilst, P.; Sharma, A.; Shin, J.; Sessler, J.L.; Kim, J.S. Organic molecule-based photothermal agents: An expanding photothermal therapy universe. Chem. Soc. Rev. 2018, 47, 2280–2297. [Google Scholar] [CrossRef]
- Li, P.; Zhang, Y.; Pan, H.; Ji, M.; Sheng, N.; Ma, Y. Doxorubicin-loaded pH-sensitive dextran-retinal nanoparticles suppress tumor growth by inducing both apoptosis and cell senescence. J. Control. Release 2015, 213, e88–e89. [Google Scholar] [CrossRef]
- Liu, Y.; Xu, M.; Chen, Q.; Guan, G.; Hu, W.; Zhao, X.; Qiao, M.; Hu, H.; Liang, Y.; Zhu, H.; et al. Gold nanorods/mesoporous silica-based nanocomposite as theranostic agents for targeting near-infrared imaging and photothermal therapy induced with laser. Int. J. Nanomedicine. 2015, 10, 4747–4761. [Google Scholar] [CrossRef] [Green Version]
- Hong, F.; Geng, X.; Min, G.; Sun, X.; Zhang, B.; Yao, Y.; Li, R.; Wang, J.; Zhao, H.; Guo, P.; et al. Deep NIR-II optical imaging combined with minimally invasive interventional photothermal therapy for orthotopic bladder cancer. Chem. Eng. J. 2022, 449, 137846. [Google Scholar] [CrossRef]
- Lyu, Y.; Zeng, J.; Jiang, Y.; Zhen, X.; Wang, T.; Qiu, S.; Lou, X.; Gao, M.; Pu, K. Enhancing Both Biodegradability and Efficacy of Semiconducting Polymer Nanoparticles for Photoacoustic Imaging and Photothermal Therapy. ACS Nano 2018, 12, 1801–1810. [Google Scholar] [CrossRef]
- Guo, B.; Feng, G.; Manghnani, P.N.; Cai, X.; Liu, J.; Wu, W.; Xu, S.; Cheng, X.; Teh, C.; Liu, B. A Porphyrin-Based Conjugated Polymer for Highly Efficient In Vitro and In Vivo Photothermal Therapy. Small 2016, 12, 6243–6254. [Google Scholar] [CrossRef]
- Li, S.; Wang, X.; Hu, R.; Chen, H.; Li, M.; Wang, J.; Wang, Y.; Liu, L.; Lv, F.; Liang, X.-J.; et al. Near-Infrared (NIR)-Absorbing Conjugated Polymer Dots as Highly Effective Photothermal Materials for In Vivo Cancer Therapy. Chem. Mater. 2016, 28, 8669–8675. [Google Scholar] [CrossRef]
- Duan, X.; Zhang, Q.; Jiang, Y.; Wu, X.; Yue, X.; Geng, Y.; Shen, J.; Ding, D. Semiconducting Polymer Nanoparticles with Intramolecular Motion-Induced Photothermy for Tumor Phototheranostics and Tooth Root Canal Therapy. Adv. Mater. 2022, 34, e2200179. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Liu, L.; Li, S.; Wan, Y.; Chen, J.X.; Tian, S.; Huang, Z.; Xiao, Y.F.; Cui, X.; Xiang, C.; et al. Biodegradable pi-Conjugated Oligomer Nanoparticles with High Photothermal Conversion Efficiency for Cancer Theranostics. ACS Nano 2019, 13, 12901–12911. [Google Scholar] [CrossRef] [PubMed]
- Xu, M.; Xue, B.; Wang, Y.; Wang, D.; Gao, D.; Yang, S.; Zhao, Q.; Zhou, C.; Ruan, S.; Yuan, Z. Temperature-Feedback Nanoplatform for NIR-II Penta-Modal Imaging-Guided Synergistic Photothermal Therapy and CAR-NK Immunotherapy of Lung Cancer. Small 2021, 17, e2101397. [Google Scholar] [CrossRef]
- Wang, Q.; Xu, J.; Geng, R.; Cai, J.; Li, J.; Xie, C.; Tang, W.; Shen, Q.; Huang, W.; Fan, Q. High performance one-for-all phototheranostics: NIR-II fluorescence imaging guided mitochondria-targeting phototherapy with a single-dose injection and 808 nm laser irradiation. Biomaterials 2020, 231, 119671. [Google Scholar] [CrossRef]
- Zhu, H.; Cheng, P.; Chen, P.; Pu, K. Recent progress in the development of near-infrared organic photothermal and photodynamic nanotherapeutics. Biomater. Sci. 2018, 6, 746–765. [Google Scholar] [CrossRef]
- Yang, T.; Liu, L.; Deng, Y.; Guo, Z.; Zhang, G.; Ge, Z.; Ke, H.; Chen, H. Ultrastable Near-Infrared Conjugated-Polymer Nanoparticles for Dually Photoactive Tumor Inhibition. Adv. Mater. 2017, 29, 1700487. [Google Scholar] [CrossRef]
- Zhou, S.; Yang, C.; Guo, L.; Wang, Y.; Zhang, G.; Feng, L. Water-soluble conjugated polymer with near-infrared absorption for synergistic tumor therapy using photothermal and photodynamic activity. Chem. Commun. 2019, 55, 8615–8618. [Google Scholar] [CrossRef]
- Zhu, D.; Wu, S.; Hu, C.; Chen, Z.; Wang, H.; Fan, F.; Qin, Y.; Wang, C.; Sun, H.; Leng, X. Folate-targeted polymersomes loaded with both paclitaxel and doxorubicin for the combination chemotherapy of hepatocellular carcinoma. Acta Biomater. 2017, 58, 412. [Google Scholar] [CrossRef]
- Luo, D.; Carter, K.A.; Razi, A.; Geng, J.; Shao, S.; Giraldo, D.; Sunar, U.; Ortega, J.; Lovell, J.F. Doxorubicin encapsulated in stealth liposomes conferred with light-triggered drug release. Biomaterials 2016, 75, 202. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Agarwal, P.; Zhao, S.; Yu, J.; Lu, X.; He, X. A biomimetic hybrid nanoplatform for encapsulation and precisely controlled delivery of theranostic agents. Nat. Commun. 2015, 6, 10081. [Google Scholar] [CrossRef] [Green Version]
- Yu, H.; Cui, Z.; Yu, P.; Guo, C.; Li, Y. pH- and NIR Light-Responsive Micelles with Hyperthermia-Triggered Tumor Penetration and Cytoplasm Drug Release to Reverse Doxorubicin Resistance in Breast Cancer. Adv. Funct. Mater. 2015, 25, 2489–2500. [Google Scholar] [CrossRef]
- Jiang, Y.; Cui, D.; Fang, Y.; Zhen, X.; Upputuri, P.K.; Pramanik, M.; Ding, D.; Pu, K. Amphiphilic semiconducting polymer as multifunctional nanocarrier for fluorescence/photoacoustic imaging guided chemo-photothermal therapy. Biomaterials 2017, 145, 168–177. [Google Scholar] [CrossRef] [PubMed]
- Yao, J.; Kang, S.; Zhang, J.; Du, J.; Zhang, Z.; Li, M. Amphiphilic Near-Infrared Conjugated Polymer for Photothermal and Chemo Combination Therapy. ACS Biomater. Sci. Eng. 2017, 3, 2230–2234. [Google Scholar] [CrossRef]
- Qin, Y.; Guo, Q.; Wu, S.; Huang, C.; Zhang, Z.; Zhang, L.; Zhang, L.; Zhu, D. LHRH/TAT dual peptides-conjugated polymeric vesicles for PTT enhanced chemotherapy to overcome hepatocellular carcinoma—ScienceDirect. Chin. Chem. Lett. 2020, 31, 3121–3126. [Google Scholar] [CrossRef]
- Yu, D.; Wang, Y.; Chen, J.; Liu, S.; Deng, S.; Liu, C.; McCulloch, I.; Yue, W.; Cheng, D. Co-delivery of NIR-II semiconducting polymer and pH-sensitive doxorubicin-conjugated prodrug for photothermal/chemotherapy. Acta Biomater. 2022, 137, 238–251. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Wu, M.; Li, J.; Lan, S.; Zeng, Y.; Liu, X.; Liu, J. Light-Enhanced Hypoxia-Response of Conjugated Polymer Nanocarrier for Successive Synergistic Photodynamic and Chemo-Therapy. ACS Appl. Mater. Interfaces 2018, 10, 21909–21919. [Google Scholar] [CrossRef]
Title | Advantage | Application | Ref. |
---|---|---|---|
Multicolor imaging | Being able to observe multiple cell structures simultaneously at the same excitation wavelength provides more important physiological results and greatly solves the problem of spectral overlap caused by multiple fluorescence. | Application of tumor cell imaging and detection. Multiple biological analysis and diagnostic applications. Selective internalization and imaging of malignant lysosomes, as well as real-time tracking, 3D, and polychromatic cell imaging applications. | [60,61,104,105,106] |
Near-infrared imaging | Has good sensitivity, spatiotemporal resolution, high signal-to-noise ratio, and easy operation. | Real-time cell tracking application in vivo. In vivo blood and tumor imaging. In vivo cytotoxicity analysis and microvascular imaging. In vivo, deep-tissue, and ultrafast imaging of mouse arterial blood flow. Non-invasive cranial brain imaging. | [69,71,72,73,107] |
Two-photon imaging | The scattering coefficient in biological tissues is small, with good penetrability, relatively small damage to biological tissues, and low phototoxicity. | Used for 3D reconstruction of intact mouse brain and skull cerebral vascular network. Two-photon fluorescence imaging of cells, tissues, and organs in living animals. Cell imaging, in vitro tissue imaging, and vascular imaging. Deep high-resolution imaging of microcracks in bone. | [78,81,82,108,109] |
Super-resolution imaging | It can clearly observe cellular structure and subcellular structure, which overcomes the optical diffraction limitations of optical microscopy, and has good temporal and spatial resolution. | Super-resolution long-term visualization for subcellular dynamics. Used for in vivo brain imaging. In vivo imaging of animal brain microvessels. | [86,87,88,110,111] |
Photoacoustic imaging | PAI signals can penetrate deeper tissues, are non-invasive, non-radiative, have high imaging resolution, good contrast, strong sensitivity, and can provide multi-scale and multi-dimensional image information. | PAI of whole-body lymph nodes in mice. Used for in vivo imaging and treatment of tumors. Real-time imaging and optical urine analysis. Whole-brain photoacoustic imaging in animal models. Imaging of mouse brain and cerebral blood vessels. | [93,94,96,112,113] |
Raman imaging | High specificity, high sensitivity, fast scanning speed, can avoid self-luminescence problems, low background signal, high spatial resolution, high chemical specificity, multiplexing ability, excellent optical stability, and non-invasive detection ability. | Raman imaging of cells and tissues. Used for non-invasive microvascular imaging in vivo. | [101,102,103,114] |
Title | Schematic Diagram | Application | Ref. |
---|---|---|---|
PTT | PTT has the advantages of small adverse reactions and high specificity. Combined with a variety of imaging, it can achieve visual and effective local killing of tumors. Usually used to treat breast cancer and prostate cancer. | [126,127,128,129] | |
PDT | PDT therapy has the advantages of good selectivity, minimal trauma, low toxicity, and good applicability, which can protect the functions of tissues and important organs. Can effectively resist bacteria and treat tumors. | [130,131,132,133] | |
PTT-PDT | During the combined application of PTT and PDT, PTT enhances CAT activity, promotes an increase in oxygen content, alleviates hypoxia, and improves PDT. The free radicals generated by PDT disrupt the expression of heat shock proteins, thereby improving PTT. From this, PDT and PTT mutually promote and synergistically improve the anti-tumor effect. The multimodal therapy, combined with PTT and PDT, has broad prospects in combating multiple-drug resistance (MDR) and hypoxia-related tumor resistance. | [134,135,136] | |
PTT-Chem | Nanomaterials loaded with chemotherapy drugs can passively target tumors by enhancing penetration and retention effects, or actively target tumors by surface-binding molecules. Local heating during photothermal therapy can also improve cell membrane permeability and drug cytotoxicity, achieving a “1 + 1 > 2” therapeutic effect and inhibiting tumor recurrence. | [126,137] | |
PDT-Chem | The synergistic effect of PDT chemotherapy solves the limitations of insufficient local drug concentration and severe adverse reactions during chemotherapy, overcomes tumor resistance and increases anticancer activity, and treats tumors by exerting synergistic effects. | [138,139,140] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zheng, Q.; Duan, Z.; Zhang, Y.; Huang, X.; Xiong, X.; Zhang, A.; Chang, K.; Li, Q. Conjugated Polymeric Materials in Biological Imaging and Cancer Therapy. Molecules 2023, 28, 5091. https://doi.org/10.3390/molecules28135091
Zheng Q, Duan Z, Zhang Y, Huang X, Xiong X, Zhang A, Chang K, Li Q. Conjugated Polymeric Materials in Biological Imaging and Cancer Therapy. Molecules. 2023; 28(13):5091. https://doi.org/10.3390/molecules28135091
Chicago/Turabian StyleZheng, Qinbin, Zhuli Duan, Ying Zhang, Xinqi Huang, Xuefan Xiong, Ang Zhang, Kaiwen Chang, and Qiong Li. 2023. "Conjugated Polymeric Materials in Biological Imaging and Cancer Therapy" Molecules 28, no. 13: 5091. https://doi.org/10.3390/molecules28135091
APA StyleZheng, Q., Duan, Z., Zhang, Y., Huang, X., Xiong, X., Zhang, A., Chang, K., & Li, Q. (2023). Conjugated Polymeric Materials in Biological Imaging and Cancer Therapy. Molecules, 28(13), 5091. https://doi.org/10.3390/molecules28135091