Wild Vitex agnus-castus L.: Phytochemical Characterization, Acute Toxicity, and Bioactive Properties
Abstract
:1. Introduction
2. Results
2.1. Phytochemical Compounds
2.2. Antioxidant Activity
2.3. Antimicrobial Activity
2.4. Acute Toxicity Study
2.5. Analgesic Activity
2.6. Anti-Inflammatory Activity
2.7. Gastroprotective Activity
3. Discussion
3.1. Phytochemical Compounds
3.2. Antioxidant Activity
3.3. Antimicrobial Activity
3.4. Acute Toxicity Study
3.5. Analgesic Activity
3.6. Anti-Inflammatory Activity
3.7. Gastroprotective Activity
4. Materials and Methods
4.1. Reagents
4.2. Plant and Decoction Preparations
4.3. Phytochemical Studies of Vitex agnus-castus Fruit
4.3.1. Total, Soluble and Insoluble Dietary Fiber
4.3.2. Mineral Composition (Macro and Microelements)
4.3.3. Soluble Sugars
4.3.4. Identification of Volatile Compounds
4.3.5. Phenolic Compounds Analysis of Fruit Decoction
4.4. Antioxidant Activity of Vitex agnus-castus Fruit Decoction
4.4.1. DPPH Radical Scavenging Assay
4.4.2. ABTS Radical Scavenging Assay
4.4.3. Iron-Chelating Power
4.4.4. TBARS Assay
4.4.5. β-Carotene Bleaching Inhibition Assay
4.4.6. Ferric Reducing Power
4.4.7. DNA Nicking Assay
4.5. Antimicrobial Study of Vitex agnus-castus Fruit Decoction (VFD)
4.5.1. Strains
4.5.2. Disc-Diffusion Method
4.5.3. Microdilution Method
4.6. Animal Studies
4.6.1. Acute Oral Toxicity of Vitex agnus-castus Fruit Decoction (VFD)
4.6.2. Analgesic Activity of Vitex agnus-castus Fruit Decoction
4.6.3. Anti-Inflammatory Activity
4.6.4. Gastroprotective Activity of Vitex agnus-castus Fruit Decoction (VFD)
4.7. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Zeqiri, A.; Dermaku-Sopjani, M.; Sopjani, M. The mechanisms underlying the role of Vitex agnus-castus in mastalgia. Bratisl. Med. J. 2022, 123, 913–918. [Google Scholar] [CrossRef] [PubMed]
- Karaköse, M. An ethnobotanical study of medicinal plants in Güce district, north-eastern Turkey. Plant Divers. 2022, 44, 577–597. [Google Scholar] [CrossRef] [PubMed]
- Şen, G.; Akbulut, S.; Karaköse, M. Ethnopharmacological study of medicinal plants in Kastamonu province (Türkiye). Open. Chem. 2022, 20, 873–911. [Google Scholar] [CrossRef]
- Khumalo, G.P.; Wyk, B.E.V.; Feng, Y.; Cock, Y.E. A review of the traditional use of southern African medicinal plants for the treatment of inflammation and inflammatory pain. J. Ethnopharmacol. 2022, 283, 114436. [Google Scholar] [CrossRef]
- Moreira, D.D.L.; Teixeira, S.S.; Monteiro, M.H.D.; De-Oliveira, A.C.A.X.; Paumgartten, F.J.R. Traditional use and safety of herbal medicines. Rev. Bras. Farmacogn. 2014, 24, 248–257. [Google Scholar] [CrossRef]
- Muhammad, N.; Saeed, M.; Barkatullah; Ibrar, M.; Khan, H. Pharmacognostic studies of Viola betonicifolia. Afr. J. Pharm. Pharmacol. 2012, 6, 43–47. [Google Scholar] [CrossRef] [Green Version]
- Chen, S.N.; Friesen, J.B.; Webster, D.; Nikolic, D.; van Breemen, R.B.; Wang, Z.J.; Fong, H.H.; Farnsworth, N.R.; Pauli, G.F. Phytoconstituents from Vitex agnus-castus fruits. Fitoterapia 2011, 82, 528–533. [Google Scholar] [CrossRef] [Green Version]
- Daniele, C.; Coon, J.T.; Pittler, M.H.; Ernst, E. Vitex agnus castus: A systematic review of adverse events. Drug Saf. 2005, 28, 319–332. [Google Scholar] [CrossRef]
- Loch, E.G.; Selle, H.; Boblitz, N. Treatment of premenstrual syndrome with a phytopharmaceutical formulation containing Vitex agnus castus. J. Women Health Gend-Based Med. 2000, 9, 315–320. [Google Scholar] [CrossRef] [Green Version]
- Rani, A.; Sharma, A. The genus Vitex: A review. Pharmacogn. Rev. 2013, 7, 188. [Google Scholar] [CrossRef]
- Akgül, G.; Ketenoğlu, O.; Pinar, N.M.; Kurt, L. Pollen and seed morphology of the genus Marrubium (Lamiaceae) in Turkey. Ann. Bot. Fenn. 2008, 45, 1–10. [Google Scholar] [CrossRef]
- Das, N.; Salgueiro, A.C.F.; Choudhury, D.R.; Mandal, S.K.; Logesh, R.; Hassan, M.M.; Devkota, H.P. Traditional uses, phytochemistry, and pharmacology of genus Vitex (Lamiaceae). Phytother. Res. 2022, 36, 571–671. [Google Scholar] [CrossRef] [PubMed]
- Berrani, A.; Lrhorfi, L.A.; Larbi, O.M.; Zouarhi, M.; Lella, O.A.; Boufellous, M.; Bengueddour, R. Ethnobotanical study of two medicinal plants: Vitex agnus castus and Anabasis aretioïdes. J. Adv. Biol. 2018, 9, 2017–2026. [Google Scholar]
- Stojković, D.; Soković, M.; Glamočlija, J.; Džamić, A.; Ćirić, A.; Ristić, M.; Grubišić, D. Chemical composition and antimicrobial activity of Vitex agnus-castus L. fruits and leaves essential oils. Food Chem. 2011, 128, 1017–1022. [Google Scholar] [CrossRef]
- Lataoui, M.; Aliakbarian, B.; Casazza, A.A.; Seffen, M.; Converti, A.; Perego, P. Extraction of phenolic compounds from Vitex agnus-castus L. Food Bioprod. Process. 2012, 90, 748–754. [Google Scholar] [CrossRef]
- Niroumand, M.; Heydarpour, F.; Farzaei, M. Pharmacological and therapeutic effects of Vitex agnus-castus L.: A review. Pharmacogn. Rev. 2018, 12, 103–114. [Google Scholar]
- Habbab, A.; Sekkoum, K.; Belboukhari, N.; Cheriti, A.Y.; Aboul-Enein, H. Analgesic and Anti-Inflammatory Effects of Essential Oils of Vitex agnus castus L. from South-West of Algeria. Curr. Bioact. Compd. 2017, 13, 165–169. [Google Scholar] [CrossRef]
- Maltas, C.E.; Uysal, A.; Yildiz, S.; Durak, Y. Evaluation of antioxidant and antimicrobial activity of Vitex agnus castus L. Fresenius Environ. Bull. 2010, 19, 3094–3099. [Google Scholar]
- Ekundayo, O.; Laakso, I.; Holopainen, M.; Hiltunen, R.; Oguntimein, B.; Kauppinen, V. The Chemical Composition and Antimicrobial Activity of the Leaf Oil of Vitex agnus-castus L. J. Essent. Oil Res. 1990, 2, 115–119. [Google Scholar] [CrossRef]
- Ramezani, M.; Amin, G.; Jalili, E. Antinociceptive and anti-inflammatory effects of hydroalcohol extract of Vitex agnus castus fruit. World Acad. Sci. Eng. Technol. 2010, 64, 619–621. [Google Scholar]
- Sarikurkcu, C.; Arisoy, K.; Tepe, B.; Cakir, A.; Abali, G.; Mete, E. Studies on the antioxidant activity of essential oil and different solvent extracts of Vitex agnus castus L. fruits from Turkey. Food Chem. Toxicol. 2009, 47, 2479–2483. [Google Scholar] [CrossRef]
- Zakaria, J.J.; Seely, D.; Perri, D.; Koren, G.; Mills, E. Safety and efficacy of chastetree (Vitex agnus-castus) during pregnancy and lactation. Can. J. Clin. Pharmacol. 2008, 15, 74–79. [Google Scholar]
- Zamani, M.; Neghab, N.; Torabian, S. Therapeutic effect of Vitex agnus castus in patients with premenstrual syndrome. Acta Med. Iran. 2012, 50, 101–106. [Google Scholar] [PubMed]
- Ahmed, F.; Hossain, M.H.; Rahman, A.A.; Shahid, I.Z. Antinociceptive and sedative effects of the bark of Cerbera odollam Gaertn. Orient. Pharm. Exp. Med. 2006, 6, 344–348. [Google Scholar]
- Kimondo, J.M.; Agea, J.G.; Okia, C.A.; Abohassan, R.A.A.; Ndeunyema, E.T.; Woiso, D.A.; Teklehaimanot, Z.; Mulatya, J. Physiochemical and nutritional characterization of Vitex payos (Lour.) Merr. (Verbenaceae): An indigenous fruit tree of Eastern Africa. J. Hortic. For. 2012, 4, 161–168. [Google Scholar]
- European Parliament; Council of the European Union. Regulation (EC) No 1924/2006 of the European Parliament and of the Council of 20 December 2006 on Nutrition and Health Claims Made on Foods. In Official Journal of European Union; L12/3:18 (18/01/2007); European Parliament: Strasbourg, France, 2006. [Google Scholar]
- Khalilzadeh, E.; Saiah, G.V.; Hasannejad, H.; Ghaderi, A.; Ghaderi, S.; Hamidian, G.; Mahmoudi, R.; Eshgi, D.; Zangisheh, M. Antinociceptive effects, acute toxicity and chemical composition of Vitex agnus-castus essential oil. Avicenna J. Phytomed. 2015, 5, 218. [Google Scholar]
- Sorensen, J.M.; Katsiotis, S.T. Variation in essential oil yield and composition of Cretan Vitex agnus castus L. fruits. J. Essent. Oil Res. 1999, 11, 599–605. [Google Scholar] [CrossRef]
- Matkowski, A. Plant Phenolic Metabolites as Antioxidants and Mutagenesis Inhibitors. In Cell Biology and Instrumentation: UV Radiation, Nitric Oxide and Cell Death in Plants, 1st ed.; IOS Press: Amsterdam, The Netherlands, 2006; pp. 129–148. [Google Scholar]
- Adouni, K.; Chahdoura, H.; Mosbah, H.; Santos-Buelga, C.; González-Paramás, A.M.; Ciudad-Mulero, M.; Fernandes, A.; Calhelha, R.C.; Morales, P.; Flamini, G.; et al. Revalorization of wild Asparagus stipularis Forssk. as a traditional vegetable with nutritional and functional properties. Food Funct. 2018, 9, 1578–1586. [Google Scholar] [CrossRef] [Green Version]
- Romdhane, M.H.; Chahdoura, H.; Barros, L.; Días, M.I.; Corrêa, R.C.G.; Morales, P.; Ciudad-Mulero, M.; Flamini, G.; Majdoub, H.; Ferreira, I.C.F.R. Chemical Composition, Nutritional Value, and Biological Evaluation of Tunisian Okra Pods (Abelmoschus esculentus L. Moench). Molecules 2020, 25, 4739. [Google Scholar] [CrossRef]
- Mzoughi, Z.; Chahdoura, H.; Chakroun, Y.; Cámara, M.; Fernández-Ruiz, V.; Morales, P.; Mosbah, H.; Flamini, G.; Snoussi, M.; Majdoub, H. Wild edible Swiss chard leaves (Beta vulgaris L. var. cicla): Nutritional, phytochemical composition and biological activities. Food Res. Int. 2019, 119, 612–621. [Google Scholar] [CrossRef]
- Maqsood, S.; Benjakul, S.; Shahidi, F. Emerging role of phenolic compounds as natural food additives in fish and fish products. Crit. Rev. Food Sci. Nutr. 2013, 53, 162–179. [Google Scholar] [CrossRef]
- Gökbulut, A.; Özhan, O.; Karacaoğlu, M.; Şarer, E. Radical scavenging activity and vitexin content of Vitex agnus-castus leaves and fruits. FABAD J. Pharm. Sci. 2010, 35, 85–91. [Google Scholar]
- El Kamari, F.; Taroq, A.; El Atki, Y.; Aouam, I.; Badiaa, L.; Abdellaoui, A. Total phenols content, flavonoid concentration and antioxidant activities of leaves extracts of Vitex agnus-castus L. growing wild in Morocco. Int. J. Pharm. Sci. Res. 2019, 10, 1670–1676. [Google Scholar]
- El Jemli, M.; Kamal, R.; Marmouzi, I.; Zerrouki, A.; Cherrah, Y.; Alaoui, K. Radical-scavenging activity and ferric reducing ability of Juniperus thurifera (L.), J. oxycedrus (L.), J. phoenicea (L.) and Tetraclinis articulata (L.). Adv. Pharmacol. Sci. 2016, 2016, 6392656. [Google Scholar] [PubMed] [Green Version]
- Dorman, H.D.; Koşar, M.; Kahlos, K.; Holm, Y.; Hiltunen, R. Antioxidant properties and composition of aqueous extracts from Mentha species, hybrids, varieties, and cultivars. J. Agric. Food Chem. 2003, 51, 4563–4569. [Google Scholar] [CrossRef] [PubMed]
- Velioglu, Y.; Mazza, G.; Gao, L.; Oomah, B. Antioxidant activity and total phenolics in selected fruits, vegetables, and grain products. J. Agric. Food Chem. 1998, 46, 4113–4117. [Google Scholar] [CrossRef]
- Lad, H.; Joshi, A.; Dixit, D.; Sharma, H.; Bhatnagar, D. Antioxidant, genoprotective and immunomodulatory potential of Vitex negundo leaves in experimental arthritis. Orient. Pharm. Exp. Med. 2016, 16, 217–224. [Google Scholar] [CrossRef]
- Asdadi, A.; Hamdouch, A.; Oukacha, A.; Moutaj, R.; Gharby, S.; Harhar, H.; El Hadek, M.; Chebli, B.; Hassani, L.I. Study on chemical analysis, antioxidant and in vitro antifungal activities of essential oil from wild Vitex agnus-castus L. seeds growing in area of Argan Tree of Morocco against clinical strains of Candida responsible for nosocomial infections. J. Mycol. Med. 2015, 25, e118–e127. [Google Scholar] [CrossRef]
- Keikha, N.; Shafaghat, M.; Mousavia, S.M.; Moudi, M.; Keshavarzi, F. Antifungal effects of ethanolic and aqueous extracts of Vitex agnus-castus against vaginal isolates of Candida albicans. Curr. Med. Mycol. 2018, 4, 1. [Google Scholar] [CrossRef]
- Cavaleiro, C.; Salgueiro, L.; Gonçalves, M.J.; Hrimpeng, K.; Pinto, J.; Pinto, E. Antifungal activity of the essential oil of Angelica major against Candida, Cryptococcus, Aspergillus and dermatophyte species. J. Nat. Med. 2015, 69, 241–248. [Google Scholar] [CrossRef]
- Pina-Vaz, C.; Gonçalves Rodrigues, A.; Pinto, E.; Costa de Oliveira, S.; Tavares, C.; Salgueiro, L.; Cavaleiro, C.; Gonçalves, M.; Martinez de Oliveira, J. Antifungal activity of Thymus oils and their major compounds. J. Eur. Acad. Dermatol. Venereol. 2004, 18, 73–78. [Google Scholar] [CrossRef] [PubMed]
- Sahib, H.B.; AL-Zubaudy, A.A.; Hussain, S.M.; Banj Qasim, G.; ALRawi, S. Acute toxicity of Vitex agnus castus methanol extract. Int. J. Pharmacol. Sci. Rev. Res. 2014, 26, 123–128. [Google Scholar]
- Chhabra, G.; Kulkarni, S. Evaluation of anti-inflammatory activity of Vitex agnus castus leaves. Quantitative analysis of flavonoids as possible active constituents. J. Pharmacogn. Phytochem. 2014, 3, 183–189. [Google Scholar]
- Chapman, S.E.; Hostutler, R.A. A laboratory diagnostic approach to hepatobiliary disease in small animals. Vet. Clin. Small Anim. Pract. 2013, 43, 1209–1225. [Google Scholar] [CrossRef] [PubMed]
- El Hilaly, J.; Israili, Z.H.; Lyoussi, B. Acute and chronic toxicological studies of Ajuga iva in experimental animals. J. Ethnopharmacol. 2004, 91, 43–50. [Google Scholar] [CrossRef] [PubMed]
- Lameire, N.; Van Biesen, W.; Vanholder, R. Acute kidney injury. Lancet 2008, 372, 1863–1865. [Google Scholar] [CrossRef]
- Ridtitid, W.; Sae-Wong, C.; Reanmongkol, W.; Wongnawa, M. Antinociceptive activity of the methanolic extract of Kaempferia galanga Linn. in experimental animals. J. Ethnopharmacol. 2008, 118, 225–230. [Google Scholar] [CrossRef]
- Zakaria, Z.A.; Ghani, Z.D.F.A.; Nor, R.N.S.R.M.; Gopalan, H.K.; Sulaiman, M.R.; Jais, A.M.M.; Somchit, M.N.; Kader, A.A.; Ripin, J. Antinociceptive, anti-inflammatory, and antipyretic properties of an aqueous extract of Dicranopteris linearis leaves in experimental animal models. J. Nat. Med. 2008, 62, 179–187. [Google Scholar] [CrossRef]
- Gertsch, J.; Leonti, M.; Raduner, S.; Racz, I.; Chen, J.Z.; Xie, X.Q.; Altmann, K.H.; Karsak, M.; Zimmer, A. Beta-caryophyllene is a dietary cannabinoid. Proc. Natl. Acad. Sci. USA 2008, 105, 9099–9104. [Google Scholar] [CrossRef] [Green Version]
- Cho, J.Y.; Chang, H.J.; Lee, S.K.; Kim, H.J.; Hwang, J.K.; Chun, H.S. Amelioration of dextran sulfate sodium-induced colitis in mice by oral administration of β-caryophyllene, a sesquiterpene. Life Sci. 2007, 80, 932–939. [Google Scholar] [CrossRef]
- Ghelardini, C.; Galeotti, N.; Mannelli, L.D.C.; Mazzanti, G.; Bartolini, A. Local anaesthetic activity of β-caryophyllene. Il Farm. 2001, 56, 387–389. [Google Scholar] [CrossRef]
- Guimarães, A.G.; Quintans, J.S.; Quintans-Júnior, L.J. Monoterpenes with analgesic activity—A systematic review. Phytother. Res. 2013, 27, 1–15. [Google Scholar] [CrossRef]
- García, M.; Fernández, M.; Álvarez, A.; Saenz, M. Antinociceptive and anti-inflammatory effect of the aqueous extract from leaves of Pimenta racemosa var. ozua (Mirtaceae). J. Ethnopharmacol. 2004, 91, 69–73. [Google Scholar] [CrossRef] [PubMed]
- Maity, T.K.; Mandal, S.C.; Mukherjee, P.K.; Saha, K.; Das, J.; Pal, M.; Saha, B. Studies on antiinflammatory effect of Cassia tora leaf extract (fam. Leguminosae). Phytother. Res. 1998, 12, 221–223. [Google Scholar] [CrossRef]
- Gilligan, J.P.; Lovato, S.J.; Erion, M.D.; Jeng, A.Y. Modulation of carrageenan-induced hind paw edema by substance P. Inflammation 1994, 18, 285–292. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Guerrero, C.; Herrera, M.D.; Ortiz, R.; de Sotomayor, M.A.; Fernández, M.A. A pharmacological study of Cecropia obtusifolia Bertol aqueous extract. J. Ethnopharmacol. 2001, 76, 279–284. [Google Scholar] [CrossRef] [PubMed]
- Saeed AL-Wajeeh, N.; Halabi, M.F.; Hajrezaie, M.M.; Dhiyaaldeen, S.; Abdulaziz Bardi, D.M.; Salama, S.; Rouhollahi, E.; Karimian, H.; Abdolmalaki, R.; Azizan, A.H.S. The gastroprotective effect of vitex pubescens leaf extract against ethanol-provoked gastric mucosal damage in sprague-dawley rats. PLoS ONE 2016, 11, e0157431. [Google Scholar] [CrossRef] [Green Version]
- Hussain, H.; Ahmad, S.; Shah, S.W.A.; Ullah, A.; Almehmadi, M.; Abdulaziz, M.; Alsaiari, A.A.; Halawi, M.; Alamer, E. Investigation of Antistress and Antidepresant Activities od Synthetic Curcumin analogues: Behavioral and Biomarker Approach. Biomedicines 2022, 10, 2385. [Google Scholar] [CrossRef]
- Ogaly, H.A.; Alsherbiny, M.A.; El Badawy, A.A.; Abd-Elsalam, R.M.; Li, C.G.; Azouz, A.A. Gastroprotective effects and metabolomic profiling of Chasteberry fruits against indomethacin-induced gastric injury in rats. J. Funct. Food 2021, 86, 104732. [Google Scholar] [CrossRef]
- Horwitz, W.; Latimer, G.W. Official Methods of Analysis of AOAC International; AOAC International: Gaithersburg, MD, USA, 2005. [Google Scholar]
- Chahdoura, H.; João, C.; Barros, L.; Santos-Buelga, C.; Ferreira, I.C.F.R.; Achour, L. Phytochemical characterization and antioxidant activity of Opuntia microdasys (Lehm.) Pfeiff flowers in different stages of maturity. J. Funct. Foods 2014, 9, 27–37. [Google Scholar] [CrossRef]
- Ruiz-Rodríguez, B.M.; Morales, P.; Fernández-Ruiz, V.; Sánchez-Mata, M.C.; Camara, M.; Díez-Marqués, C.; Pardo-de-Santayana, M.; Molina, M.; Tardío, J. Valorization of wild strawberry-tree fruits (Arbutus unedo L.) through nutritional assessment and natural production data. Food Res. Int. 2011, 44, 1244–1253. [Google Scholar] [CrossRef]
- Mechri, B.; Tekaya, M.; Cheheb, H.; Hammami, M. Determination of mannitol sorbitol and myo-inositol in olive tree roots and rhizospheric soil by gas chromatography and effect of severe drought conditions on their profiles. J. Chromatogr. Sci. 2015, 53, 1631–1638. [Google Scholar] [CrossRef] [Green Version]
- Adams, R.P. Identification of Essential Oil Components by Gas Chromatography/Mass Spectrometry; Allured Publishing Corporation: Carol Stream, IL, USA, 2007; p. 456. [Google Scholar]
- Joulain, D.; König, W.A. The Atlas of Spectral Data of Sesquiterpene Hydrocarbons; EB-Verlag: Hamburg, Germany, 1998. [Google Scholar]
- Wolfe, K.; Wu, X.; Liu, R.H. Antioxidant activity of apple peels. J. Agric. Food Chem. 2003, 51, 609–614. [Google Scholar] [CrossRef]
- Zhishen, J.; Mengcheng, T.; Jianming, W. The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chem. 1999, 64, 555–559. [Google Scholar] [CrossRef]
- Romani, A.; Mancini, P.; Tatti, S.; Vincieri, F. Polyphenols and polysaccharides in Tuscan grapes and wines. Ital. J. Food Sci. 1996, 8, 13–24. [Google Scholar]
- Julkunen-Titto, R. Phenolic constituents in the leaves of northern willows: Methods for the analysis of certain phenolics. J. Agric. Food Chem. 1985, 33, 213–217. [Google Scholar] [CrossRef]
- Mekni, M.; Flamini, G.; Garrab, M.; Hmida, R.B.; Cheraief, I.; Mastouri, M.; Hammami, M. Aroma volatile components, fatty acids and antibacterial activity of four Tunisian Punica granatum L. flower cultivars. Ind. Crop. Prod. 2013, 48, 111–117. [Google Scholar] [CrossRef]
- Zhu, L.; Glahn, R.P.; Yeung, C.K.; Miller, D.D. Iron uptake by Caco-2 cells from NaFeEDTA and FeSO4: Effects of ascorbic acid, pH, and a Fe (II) chelating agent. J. Agric. Food Chem. 2006, 54, 7924–7928. [Google Scholar] [CrossRef] [PubMed]
- Condelli, N.; Caruso, M.C.; Galgano, F.; Russo, D.; Milella, L.; Favati, F. Prediction of the antioxidant activity of extra virgin olive oils produced in the Mediterranean area. Food Chem. 2015, 177, 233–239. [Google Scholar] [CrossRef]
- Oyaizu, M. Studies on products of browning reaction: Antioxidative activity of products of browning reaction. Jpn. J. Nutr. 1986, 44, 307–315. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.C.; Kim, H.R.; Kim, J.; Jang, Y.S. Antioxidant property of an ethanol extract of the stem of Opuntia ficus-indica var. saboten. J. Agric. Food Chem. 2002, 50, 6490–6496. [Google Scholar] [CrossRef] [PubMed]
- Vuddhakul, V.; Bhoopong, P.; Hayeebilan, F.; Subhadhirasakul, S. Inhibitory activity of Thai condiments on pandemic strain of Vibrio parahaemolyticus. Food Microbiol. 2007, 24, 413–418. [Google Scholar] [CrossRef]
- Mosbah, H.; Louati, H.; Boujbiha, M.A.; Chahdoura, H.; Snoussi, M.; Flamini, G.; Ascrizzi, R.; Bouslema, A.; Achour, L.; Selmi, B. Phytochemical characterization, antioxidant, antimicrobial and pharmacological activities of Feijoa sellowiana leaves growing in Tunisia. Ind. Crops Prod. 2018, 112, 521–531. [Google Scholar] [CrossRef]
- Snoussi, M.; Noumi, E.; Trabelsi, N.; Flamini, G.; Papetti, A.; De Feo, V. Mentha spicata essential oil: Chemical composition, antioxidant and antibacterial activities against planktonic and biofilm cultures of Vibrio spp. strains. Molecules 2015, 20, 14402–14424. [Google Scholar] [CrossRef]
- Gatsing, D.; Tchakoute, V.; Ngamga, D.; Kuiate, J.R.; Tamokou, J.D.D.; Nji, N.B.; Tchouanguep, F.M.; Fodouop, S.P. In Vitro Antibacterial activity of Crinum purpurascens herb leaf extract against the Salmonella species causing typhoid fever and its toxicological evaluation. Iran. J. Med. Sci. 2009, 34, 126–136. [Google Scholar]
- Walum, E. Acute oral toxicity. Environ. Health Perspect. 1998, 106, 497–503. [Google Scholar]
- Ishola, I.O.; Agbaje, O.E.; Narender, T.; Adeyemi, O.O.; Shukla, R. Bioactivity guided isolation of analgesic and anti-inflammatory constituents of Cnestis ferruginea Vahl ex DC (Connaraceae) root. J. Ethnopharmacol. 2012, 142, 383–389. [Google Scholar] [CrossRef]
- Chahdoura, H.; El Bok, S.; Refifa, T.; Adouni, K.; Khemiss, F.; Mosbah, H.; Ben-Attia, M.; Flamini, G.; Achour, L. Activity of anti-inflammatory, analgesic and antigenotoxic of the aqueous flower extracts of Opuntia microdasys Lem. Pfeiff. J. Pharm. Pharmacol. 2017, 69, 1056–1063. [Google Scholar] [CrossRef] [PubMed]
- Majouli, K.; Hamdi, A.; Abdelhamid, A.; Bouraoui, A.; Kenani, A. Anti-inflammatory activity and gastroprotective effect of Hertia cheirifolia L. roots extract. J. Ethnopharmacol. 2018, 217, 7–10. [Google Scholar] [CrossRef] [PubMed]
Compounds | Amounts (per 100 g dw) | |
---|---|---|
Dietary fiber (g/100 g dw) | Insoluble dietary fiber (IDF) | 81.37 ± 2.50 |
Soluble dietary fiber (SDF) | 3.65 ± 0.18 | |
Total dietary fiber (TDF) | 85.02 ± 1.37 | |
Soluble sugars (mg/100 g dw) | Fructose | 169.41 ± 0.29 |
Glucose | 81.21 ± 0.34 | |
Galactose | 99.10 ± 0.06 | |
Arabinose | 470.08 ± 0.05 | |
Rhamnose | 41.25 ± 0.17 | |
Sucrose | 180.49 ± 0.34 | |
Xylose | 44.95 ± 0.02 | |
Mannose | 272.88 ± 0.07 | |
Raffinose | 16.42 ± 0.30 | |
Mannitol | 68.09 ± 0.06 | |
Sorbitol | 470.40 ± 0.28 | |
Maltitol | 4.95 ± 0.03 | |
Myo-inositol | 180.42 ± 0.07 | |
Minerals (mg/100 g dw) | Cu | 0.44 ± 0.01 |
Mn | 1.90 ± 0.02 | |
Zn | 4.69 ± 0.05 | |
Fe | 5.89 ± 1.26 | |
Ca | 781.29 ± 0.59 | |
Mg | 190.34 ± 0.79 | |
Na | 23.28 ± 1.32 | |
K | 1428.84 ± 8.81 |
N° | Constituents | L.R.I a | (%) b |
---|---|---|---|
1 | α-thujene | 933 | 0.8 |
2 | α-pinene c | 941 | 6.2 |
3 | sabinene | 977 | 7.0 |
4 | β-pinene | 982 | 1.8 |
5 | myrcene | 993 | 0.3 |
6 | α-terpinene | 1020 | 0.3 |
7 | p-cymene | 1028 | 0.7 |
8 | 1,8-cineole | 1034 | 30.3 |
9 | γ-terpinene | 1036 | 0.6 |
10 | cis-sabinene hydrate | 1070 | 1.0 |
11 | terpinolene | 1090 | 0.2 |
12 | trans-sabinene hydrate | 1099 | 0.7 |
13 | 3-octyl acetate | 1126 | 0.1 |
14 | δ-terpineol | 1172 | 0.3 |
15 | 4-terpineol | 1179 | 0.8 |
16 | α-terpineol | 1191 | 1.0 |
17 | bornylacetate | 1287 | 0.3 |
18 | δ-elemene | 1340 | 1.1 |
19 | exo-2-hydroxycineol acetate | 1345 | 0.1 |
20 | α-cubebene | 1352 | 4.4 |
21 | α-copaene | 1377 | 0.1 |
22 | β-bourbonene | 1385 | 0.8 |
23 | β-cubebene | 1391 | 0.4 |
24 | β-elemene | 1392 | 0.5 |
25 | α-gurjunene | 1410 | 1.3 |
26 | β-caryophyllene | 1419 | 9.1 |
27 | β-copaene | 1430 | 0.5 |
28 | γ-elemene | 1434 | 0.3 |
29 | trans-α-bergamotene | 1437 | 0.3 |
30 | aromadendrene | 1440 | 0.2 |
31 | (Z)-β-farnesene | 1444 | 0.5 |
32 | α-humulene | 1455 | 0.5 |
33 | (E)-β-farnesene | 1458 | 9.4 |
34 | germacrene D | 1482 | 11.8 |
35 | bicyclogermacrene | 1496 | 3.7 |
36 | δ-cadinene | 1524 | 0.3 |
37 | germacrene B | 1557 | 0.7 |
38 | spathulenol | 1577 | 0.4 |
39 | caryophyllene oxide | 1582 | 0.5 |
40 | 5,7-di-epi-α-eudesmol | 1607 | 0.2 |
41 | T-cadinol | 1641 | 0.2 |
monoterpene hydrocarbons | - | 17.9 | |
oxygenated monoterpenes | - | 34.5 | |
sesquiterpene hydrocarbons | - | 45.9 | |
oxygenated sesquiterpenes | - | 1.3 | |
non-terpene derivatives | - | 0.1 | |
Total identified | - | 99.7 |
Phytochemical Compounds | Values (mg/g VFD) |
---|---|
Total phenolic content a | 78.53 ± 2.08 |
Total flavonoid content b | 56.52 ± 0.78 |
Total flavonol content c | 33.77 ± 0.33 |
Total tannin content d | 19.75 ± 3.51 |
Ortho-benzenediol content e | 30.47 ± 0.09 |
Antioxidant activities | (EC50 = mg/mL VFD) |
DPPH | 0.64 ± 0.11 |
ABTS | 1.03 ± 0.02 |
TBARS inhibition | 3.108 ± 0.074 |
Ferrous chelating | 0.44 ± 0.12 |
β-carotene bleaching inhibition | 0.16 ± 0.014 |
FRAP * | 0.35 ± 0.09 |
Microorganisms | Fruits Extract | Drug | ||||||
---|---|---|---|---|---|---|---|---|
IZ (mm) | MIC | MBC | MBC/MIC | Remarks | IZ (mm) | MIC | MBC | |
Bacteria Strains | Ampicillin | |||||||
Listeria monocytogenes CECT933 | 6.00 ± 0.0 | 3.125 | 50 | >4 | Bacteriostatic | 12.66 ± 0.57 | 0.08 | 3.00 |
Salmonella enterica subsp. Enterica ECT443 | 6.00 ± 0.0 | 3.125 | 50 | >4 | Bacteriostatic | 14.66 ± 0.57 | 0.2 | 3.00 |
Staphylococcus aureus ATCC25923 | 6.00 ± 0.0 | 3.125 | 50 | >4 | Bacteriostatic | 26.66 ± 0.57 | 0.08 | 0.625 |
Escherichia coli ATCC35218 | 6.00 ± 0.0 | 3.125 | 50 | >4 | Bacteriostatic | 11.67 ± 0.57 | 0.02 | 3.00 |
Bacillus cereus ATCC 11778 | 6.00 ± 0.0 | 3.125 | 50 | >4 | Bacteriostatic | 26.00 ± 1.00 | 0.08 | 0.625 |
Enterococcus epidermidis CECT231 | 6.00 ± 0.0 | 3.125 | 50 | >4 | Bacteriostatic | 14.33 ± 0.57 | 0.2 | 0.625 |
Shigella flexneri CECT 4804 | 6.00 ± 0.0 | 3.125 | 50 | >4 | Bacteriostatic | 12.66 ± 0.57 | 0.2 | 6.00 |
Pseudomonas aeruginosa PAO1 | 7.00 ± 0.57 | 1.6 | 50 | >4 | Bacteriostatic | 22.67 ± 0.57 | 0.1 | 12.00 |
Yeast strains | Amphotericin B | |||||||
IZ (mm) | MIC | MFC | MFC/MIC | Remarks | IZ (mm) | MIC | MFC | |
Candida parapsilosis ATCC 20019 | 8.66 ± 0.66 | 1.6 | 6.25 | ˂4 | Fungicide | 12.66 ± 0.57 | 0.2 | 0.39 |
Candida albicans ATCC 2019 | 12.33 ± 0.32 | 0.4 | 0.8 | ˂4 | Fungicide | 12.00 ± 0.00 | 0.026 | 0.82 |
Candida krusei ATCC 6258 | 14.33 ± 0.33 | 0.4 | 0.8 | ˂4 | Fungicide | 10.33 ± 0.57 | 0.1 | 0.2 |
Candida tropicalis 06-85 | 15.66 ± 0.23 | 0.4 | 0.8 | ˂4 | Fungicide | 12.00 ± 0.00 | 0.42 | 6.75 |
Group | Treatment | AST (U/L) | ALT (U/L) | Urea (mmol/L) | Creatinine (µmol/L) | CRP (mg/L) |
---|---|---|---|---|---|---|
Group I | Control | 106.5 ± 9.80 | 41.66 ± 3.64 | 7.30 ± 1.03 | 34.00 ± 2.39 | 48.33 ± 4.61 |
Group II | VFD (50 mg/kg) | 111.12 ± 6.41 | 47.03 ± 6.22 | 6.62 ± 0.28 | 28.04 ± 1.24 | 47.80 ± 6.80 |
Group III | VFD (100 mg/kg) | 115.00 ± 4.61 | 42.66 ± 5.25 | 4.35 ± 0.28 | 27.00 ± 1.15 | 48.5 ± 7.50 |
Group IV | VFD (200 mg/kg) | 108.50 ± 8.66 | 44.00 ± 9.23 | 5.00 ± 0.15 | 27.00 ± 1.15 | 55.50 ± 5.77 |
Groups | Concentration (mg/kg) | Number of Writhes | Inhibition of Writhing (%) |
---|---|---|---|
Negative control | - | 72.80 ± 6.91 | - |
VFD | 50 | 39.16 ± 5.54 ***♪♪ | 46.19 |
100 | 25.16 ± 2.49 ***♪ | 65.43 | |
200 | 13.33 ± 1.97 ***♪ | 81.68 | |
Reference drug (ASL) | 200 | 18.66 ± 0.76 *** | 74.35 |
Sample | Dose (mg/kg) | Volume of Plantar Edema (10−2 mL) | Edema Inhibition (%) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
1 h | 2 h | 3 h | 4 h | 5 h | 1 h | 2 h | 3 h | 4 h | 5 h | ||
Control | - | 31.02 ± 1.08 | 82.58 ± 2.03 | 110.76 ± 2.8 | 118.3 ± 3.31 | 97.87 ± 3.05 | - | - | - | - | - |
VFD | 50 | 25.03 ± 0.37 **♪♪♪ | 50.03 ± 1.59 ***♪♪♪ | 60.08 ± 1.46 ***♪♪♪ | 58.03 ± 1.57 ***♪♪♪ | 49.05 ± 4.85 ***♪♪♪ | 19.41 | 39.45 | 45.83 | 50.97 | 49.93 |
100 | 22.03 ± 0.67 ***♪♪ | 37.06 ± 2.62 ***♪♪♪ | 38.06 ± 3.62 ***♪♪♪ | 39.01 ± 3.61 ***♪♪ | 42.03 ± 3.91 ***♪♪♪ | 29.08 | 55.19 | 65.69 | 67.03 | 57.09 | |
200 | 18.05 ± 0.81 ***♪ | 20.01 ± 1.77 *** | 22.05 ± 2.41 *** | 25.02 ± 2.8 *** | 28.05 ± 2.49 ***♪♪♪ | 41.97 | 75.78 | 80.13 | 78.86 | 71.39 | |
ASL (Reference drug) | 200 | 16.42 ± 0.25 *** | 17.6 ± 0.91 *** | 19.58 ± 1.35 *** | 21.02 ± 1.34 *** | 24.16 ± 175 *** | 47.04 | 78.68 | 82.32 | 82.24 | 75.30 |
Lot | Dose (mg/kg) | Ulcer Index (mm) | Inhibition (%) |
---|---|---|---|
Control | - | 186.44 ± 8.42 | - |
VFD | 50 | 126.66 ± 10.16 **♪♪♪ | 32.06 |
100 | 56.33 ± 8.50 ***♪♪ | 69.78 | |
200 | 28.66 ± 3.05 ***♪ | 84.62 | |
Omeprazole (reference drug) | 30 | 10.32 ± 1.68 *** | 94.46 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Boujbiha, M.A.; Chahdoura, H.; Adouni, K.; Ziani, B.E.C.; Snoussi, M.; Chakroun, Y.; Ciudad-Mulero, M.; Fernández-Ruiz, V.; Achour, L.; Selmi, B.; et al. Wild Vitex agnus-castus L.: Phytochemical Characterization, Acute Toxicity, and Bioactive Properties. Molecules 2023, 28, 5096. https://doi.org/10.3390/molecules28135096
Boujbiha MA, Chahdoura H, Adouni K, Ziani BEC, Snoussi M, Chakroun Y, Ciudad-Mulero M, Fernández-Ruiz V, Achour L, Selmi B, et al. Wild Vitex agnus-castus L.: Phytochemical Characterization, Acute Toxicity, and Bioactive Properties. Molecules. 2023; 28(13):5096. https://doi.org/10.3390/molecules28135096
Chicago/Turabian StyleBoujbiha, Mohamed Ali, Hassiba Chahdoura, Khaoula Adouni, Borhane Eddine Cherif Ziani, Mejdi Snoussi, Yasmine Chakroun, María Ciudad-Mulero, Virginia Fernández-Ruiz, Lotfi Achour, Boulbaba Selmi, and et al. 2023. "Wild Vitex agnus-castus L.: Phytochemical Characterization, Acute Toxicity, and Bioactive Properties" Molecules 28, no. 13: 5096. https://doi.org/10.3390/molecules28135096
APA StyleBoujbiha, M. A., Chahdoura, H., Adouni, K., Ziani, B. E. C., Snoussi, M., Chakroun, Y., Ciudad-Mulero, M., Fernández-Ruiz, V., Achour, L., Selmi, B., Morales, P., Flamini, G., & Mosbah, H. (2023). Wild Vitex agnus-castus L.: Phytochemical Characterization, Acute Toxicity, and Bioactive Properties. Molecules, 28(13), 5096. https://doi.org/10.3390/molecules28135096