Analysis of Antioxidant Constituents of Filtering Infusions from Oak (Quercus sideroxyla Bonpl. and Quercus eduardii Trel.) and Yerbaniz (Tagetes lucida (Sweet) Voss) as Monoamine Oxidase Inhibitors
Abstract
:1. Introduction
2. Results and Discussion
2.1. Physicochemical Characterization
2.2. Chemical Constituents
2.3. Antioxidant Activity
2.4. Inhibition of MAO-A In Vitro and In Silico
3. Material and Methods
3.1. Reagents
3.2. Raw Material Collection and Processing
3.3. Mixture Design for Extraction
3.4. Preparation of Filtering Infusions (FI)
3.5. Determination of Physicochemical Parameters
3.6. Analysis of Phenolic Profiles by UPLC-PDA-ESI--QqQ
3.7. Antioxidant Characterization
3.7.1. Oxygen Radical Absorption Capacity (ORAC)
3.7.2. Ferric-Reducing Antioxidant Power (FRAP)
3.7.3. ABTS Cation Radical Scavenging
3.7.4. Chain-Breaking Activity
3.8. MAO-A Assay
3.9. Evaluation of MAO-A Inhibitory Activity In Silico
3.10. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Health Organization. COVID-19 Pandemic Triggers 25% Increase in Prevalence of Anxiety and Depression Worldwide. Available online: https://www.who.int/news/item/02-03-2022-covid-19-pandemic-triggers-25-increase-in-prevalence-of-anxiety-and-depression-worldwide (accessed on 4 April 2022).
- Bahramsoltani, R.; Farzaei, M.; Farahani, M.; Rahimi, R. Phytochemical constituents as future antidepressants: A comprehensive review. Rev. Neurosci. 2015, 26, 699–719. [Google Scholar] [CrossRef]
- Hillhouse, T.M.; Porter, J.H. A brief history of the development of antidepressant drugs: From monoamines to glutamate. Exp. Clin. Psychopharmacol. 2015, 23, 1–21. [Google Scholar] [CrossRef]
- Tripathi, A.C.; Upadhyay, S.; Paliwal, S.; Sarf, S.K. Privileged scaffolds as MAO inhibitors: Retrospect and prospects. Eur. J. Med. Chem. 2018, 145, 445–497. [Google Scholar] [CrossRef]
- Álvarez, S.A.; Rocha-Guzmán, N.E.; González-Laredo, R.F.; Gallegos-Infante, J.A.; Moreno-Jiménez, M.R.; Bravo-Muñoz, M. Ancestral food sources rich in polyphenols, their metabolism, and the potential influence of gut microbiota in the management of depression and anxiety. J. Agric. Food Chem. 2022, 70, 944–956. [Google Scholar] [CrossRef]
- De Ruyck, J.; Brysbaert, G.; Blossey, R.; Lensink, M.F. Molecular docking as a popular tool in drug design, an in silico travel. Adv. Appl. Bioinform Chem. 2016, 9, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ortiz, M.I.; Fernández-Martínez, E.; Soria-Jasso, L.E.; Lucas-Gómez, I.; Villagómez-Ibarra, R.; González-García, M.P.; Castañeda-Hernández, G.; Salinas-Caballero, M. Isolation, identification and molecular docking as cyclooxygenase (COX) inhibitors of the main constituents of Matricaria chamomilla L. extract and its synergistic interaction with diclofenac on nociception and gastric damage in rats. Biomed Pharmacother. 2016, 78, 248–256. [Google Scholar] [CrossRef] [PubMed]
- Gamboa-Gómez, C.I.; Simental-Mendía, L.E.; González-Laredo, R.F.; Alcantar-Orozco, E.J.; Monserrat-Juarez, V.H.; Ramírez-España, J.C.; Gallegos-Infante, J.A.; Moreno-Jiménez, M.R.; Rocha-Guzmán, N.E. In vitro and in vivo assessment of anti-hyperglycemic and antioxidant effects of oak leaves (Quercus convallata and Quercus arizonica) infusions and fermented beverages. Food Res. Int. 2017, 102, 690–699. [Google Scholar] [CrossRef] [PubMed]
- García-Villalba, R.; Espín, J.C.; Tomás-Barberán, F.A.; Rocha-Guzmán, N.E. Comprehensive characterization by LC-DAD-MS/MS of phenolic composition of seven Quercus leaf teas. J. Food Compos. Anal. 2017, 63, 38–46. [Google Scholar] [CrossRef]
- Kamiyama, M.; Moon, J.-K.; Jang, H.W.; Shibamoto, T. Role of degradation products of chlorogenic acid in the antioxidant activity of roasted coffee. J. Agric. Food Chem. 2015, 63, 1996–2005. [Google Scholar] [CrossRef]
- Salazar, R.; Pozos, M.E.; Cordero, P.; Perez, J.; Salinas, M.C.; Waksman, N. Determination of the antioxidant activity of plants from Northeast Mexico. Pharm. Biol. 2008, 46, 166–170. [Google Scholar] [CrossRef] [Green Version]
- Moldoveanu, S.C.; Oden, R. Antioxidant character and levels of polyphenols in several tea samples. J. Agric. Food Chem. 2021, 6, 9982–9988. [Google Scholar] [CrossRef] [PubMed]
- Dasdemir, Y.; Findik, B.T.; Yildiz, H.; Birisci, E. Blueberry-added black tea: Effects of infusion temperature, drying method, fruit concentration on the iron-polyphenol complex formation, polyphenols profile, antioxidant activity, and sensory properties. Food Chem. 2023, 410, 135463. [Google Scholar] [CrossRef] [PubMed]
- Larit, F.; Elokely, K.M.; Chaurasiya, N.D.; Benyahia, S.; Nael, M.A.; León, F.; Abu-Darwish, M.S.; Efferth, T.; Wang, Y.-H.; Belouahem-Abed, D.; et al. Inhibition of human oxidase A and B by flavonoids isolated from two Algerian medicinal plants. Phytomedicine 2018, 40, 27–36. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Ortega, G.; González-Trujano, M.E.; Ángeles-López, G.E.; Brindis, F.; Vibrans, H.; Reyes-Chilpa, R. Tagetes lucida Cav.: Ethnobotany, phytochemistry and pharmacology of its tranquilizing properties. J. Ethnopharmacol. 2016, 181, 221–228. [Google Scholar] [CrossRef]
- Sloley, B.D.; Urichuk, L.J.; Morley, P.; Durkin, J.; Shan, J.J.; Pang, P.K.T.; Coutts, R.T. Identification of kaempferol as a monoamine oxidase inhibitor and potential neuroprotectant in extracts of ginkgo biloba leaves. J. Pharm. Pharmacol. 2000, 52, 451–459. [Google Scholar] [CrossRef]
- Tusevski, O.; Todorovska, M.; Stanoeva, J.P.; Stefova, M.; Simic, S.G. In vitro and in silico insights on the biological activities, phenolic compounds compositions of Hypericum perforatum L. hairy root cultures. Phyton-Int. J. Exp. Bot. 2023, 92, 921–941. [Google Scholar] [CrossRef]
- Anwar, H.M.; Georgy, G.S.; Hamad, S.R.; Badr, W.K.; El Raey, M.A.; Abdelfattah, M.A.; Wink, M.; Sobeh, M. A leaf extract of Harrisonia abyssinica ameliorates neurobehavioral, histological and biochemical changes in the hippocampus of rats with aluminum chloride-induced alzheimer’s disease. Antioxidants 2021, 10, 947. [Google Scholar] [CrossRef]
- Chaurasiya, N.D.; Leon, F.; Muhammad, I.; Tekwani, B.L. Natural products inhibitors of monoamine oxidases—Potential new drug leads for neuroprotection, neurological disorders, and neuroblastoma. Molecules 2022, 27, 4297. [Google Scholar] [CrossRef]
- Dhiman, P.; Malik, N.; Sobarzo-Sánchez, E.; Uriarte, E.; Khatkar, A. Quercetin and related chromenone derivatives as monoamine oxidase inhibitors: Targeting neurological and mental disorders. Molecules 2019, 24, 418. [Google Scholar] [CrossRef] [Green Version]
- Arora, M.K.; Grover, P.; Asdaq, S.M.B.; Mehta, L.; Tomar, R.; Imran, M.; Pathak, A.; Jangra, A.; Sahoo, J.; Alamri, A.S.; et al. Potential role of nicotinamide analogues against SARS-COV-2 target proteins. Saudi J. Biol. Sci. 2021, 8, 7567–7574. [Google Scholar] [CrossRef]
- Carpéné, C.; Hasnaoui, M.; Balogh, B.; Matyus, P.; Fernández-Quintela, A.; Rodríguez, V.; Mercader, J.; Portillo, M.P. Dietary Phenolic Compounds Interfere with the Fate of Hydrogen Peroxide in Human Adipose Tissue but Do Not Directly Inhibit Primary Amine Oxidase Activity. Oxid. Med. Cell Longev. 2016, 2016, 2427618. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bhuia, M.S.; Rahaman, M.M.; Islam, T.; Bappi, M.H.; Sikder, M.I.; Hossain, K.N.; Akter, F.; Al Shamsh Prottay, A.; Rokonuzzman, M.; Gürer, E.S.; et al. Neurobiological effects of gallic acid: Current perspectives. Chin. Med. 2023, 18, 27. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Liu, Y.; Zhao, J.; Xing, X.; Zhang, C.; Meng, H. Neuroprotective effects of D-(-)-quinic acid on aluminum chloride-induced dementia in rats. Evid. Based Complement. Altern. Med. 2020, 2020, 5602597. [Google Scholar] [CrossRef]
- Marzo, C.M.; Gambini, S.; Poletti, S.; Munari, F.; Assfalg, M.; Guzzo, F. Inhibition of human monoamino oxidase A and B by specialized metabolites present in fresch common fruits and vegetables. Plants 2022, 11, 346. [Google Scholar] [CrossRef]
- López, V.; Les, F.; Iannarelli, R.; Caprioli, G.; Maggi, F. Methanolic extract from red berry-like fruits of Hypericum androsaemum: Chemical characterization and inhibitory potential of central nervous system enzymes. Ind. Crops. Prod. 2016, 94, 363–367. [Google Scholar] [CrossRef]
- Palmioli, A.; Ciaramelli, C.; Tisi, R.; Spinelli, M.; De Sanctis, G.; Sacco, E.; Airoldi, C. Natural compounds in cancer prevention: Effects of coffee extracts and their main polyphenolic component, 5-O-caffeoylquinic acid, on oncogenic ras proteins. Chem. Asian J. 2017, 12, 2457–2466. [Google Scholar] [CrossRef] [PubMed]
- Gozálvez, J.M.; García-Díaz, J.C. Mixture design experiments applied to the formulation of colorant solutions. J. Chem. Educ. 2006, 83, 647. [Google Scholar] [CrossRef]
- NMX-F-317-NORMEX-2013. Alimentos- Determinación de pH en alimentos y bebidas no alcohólicas-Método potenciométrico-Método de prueba. Diario Oficial de la Federación 27 de mayo de 2013. Available online: https://www.dof.gob.mx/nota_detalle.php?codigo=5311757&fecha=27/08/2013#gsc.tab=0 (accessed on 15 February 2021).
- Díaz-Rivas, J.O.; González-Laredo, R.F.; Chávez-Simental, J.A.; Montoya-Ayón, J.B.; Moreno-Jiménez, M.R.; Gallegos-Infante, J.A.; Rocha-Guzmán, N.E. Comprehensive characterization of extractable phenolic compounds by UPLC-PDA-ESI-QqQ of Buddleja scordioides plants elicited with salicylic acid. J. Chem. 2018, 2018, 4536970. [Google Scholar] [CrossRef] [Green Version]
- Ou, B.; Hampsch-Woodill, M.; Prior, R.L. Development and validation of an improved oxygen radical absorbance capacity assay using fluorescein as the fluorescent probe. J. Agric. Food Chem. 2001, 49, 4619–4626. [Google Scholar] [CrossRef]
- Benzie, I.F.; Choi, S.W. Antioxidant in food: Content, measurement, significance, action, cautions, caveats, and research needs. Adv. Food Nutr. Res. 2014, 71, 1–53. [Google Scholar] [CrossRef]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef] [PubMed]
- Manzocco, L.; Anese, M.; Nicoli, M.C. Antioxidant properties of tea extracts as affected by processing. LWT Food Sci. Technol. 1998, 31, 694–698. [Google Scholar] [CrossRef]
- Chávez-Fumagalli, M.A.; Lage, D.P.; Tavares, G.S.V.; Mendonça, D.V.C.; Dias, D.S.; Ribeiro, P.A.F.; Ludolf, F.; Costa, L.E.; Coelho, V.T.S.; Coelho, E.A.F. In silico Leishmania proteome mining applied to identify drug target potential to be used to treat against visceral and tegumentary leishmaniasis. J. Mol. Graph. Model. 2019, 87, 89–97. [Google Scholar] [CrossRef] [PubMed]
No. | Compound | Acronym | Retention Time (Min) | λmax | Main Transitions |
---|---|---|---|---|---|
Phenolic acids | |||||
1. | Quinic acid | QA | 0.62 | 254.86 | 191.20 > 85.06 |
2. | Shikimic acid | ShA | 0.68 | - | 173.18 > 111.07 |
3. | Gallic acid | GaA | 1.48 | 270.86 | 169.15 > 125.05 |
4. | Protocatechuic acid | PA | 2.74 | 258.86, 292.86 | 153.15 > 109.05 |
5. | Caffeoylquinic acid isomer | CQA iso | 3.41 | 324.86 | 353.10 > 191.20 |
6. | 2,5-di-hydroxybenzoic acid | 2,5-DHBA | 3.65 | 323.86 | 153.15 > 108.92 |
7. | 4-hydroxybenzoic acid | 4-HBA | 3.89 | 253.86 | 137.04 > 93.05 |
8. | Chlorogenic acid | ChA | 4.27 | 324.86 | 353.10 > 191.20 |
9. | 4-O-caffeoylquinic acid | 4-O-CQA | 4.45 | 324.86 | 353.10 > 191.20 |
10. | Vanillic acid | VA | 4.54 | 259.86, 290.86 | 167.18 > 152.02 |
11. | Caffeic acid | CaA | 4.73 | 321.86 | 179.19 > 135.08 |
12. | Syringic acid | SyA | 4.86 | 273.86 | 197.21 > 182.05 |
13. | 2,4,6-trihydroxybenzaldehyde | 2,4,6-THBA | 5.76 | 290.86 | 153.15 > 83.04 |
14. | Coumaric acid | CouA | 5.86 | 308.86 | 163.24 > 119.08 |
15. | Ferulic acid | FA | 6.42 | 322.86 | 193.24 > 134.04 |
16. | Benzoic acid | BA | 7.02 | 271.86 | 121.10 > 77.10 |
17. | Trans-cinnamic acid | t-CiA | 7.07 | 276.86 | 147.17 > 103.08 |
18. | 2-hydroxybenzoic acid | 2-HBA | 7.12 | 254.53 | 137.04 > 93.05 |
19. | Di-caffeoylquinic acid | di-CQA | 7.19 | 324.86 | 515.43 > 353.20 |
20. | Rosmarinic acid | RoA | 7.55 | 327.86 | 359.28 > 161.04 |
Flavonoids | |||||
21. | Procyanidin B1 | PB1 | 3.88 | 278.86 | 577.44 > 289.18 |
22. | Catechin | C | 4.29 | 277.86 | 288.97 > 245.06 |
23. | (epi)-catechin | epi-C | 5.18 | 277.86 | 288.97 > 245.06 |
24. | Rutin | R | 6.46 | 354.86 | 609.04 > 270.94 |
25. | Quercetin 3-O-ß-glucuronide | Q-glur | 6.61 | 287.86 | 476.92 > 300.99 |
26. | Quercetin 3-O-glucoside | Q-glu | 6.65 | 354.86 | 463.36 > 300.42 |
27. | Taxifolin | Ta | 6.66 | 284.86 | 303.03 > 285.00 |
28. | Kaempferol 3-O-glucoside | K-glu | 7.15 | 357.86 | 447.30 > 284.24 |
Hydrolyzable tannins | |||||
29. | Di-galloyl-HHDP-hexoside | DG-HHDP-Hex | 5.05 | 359.86 | 785.00 > 301.00 |
30. | Trigalloyl hexoside | TG-Hex | 5.26 | 359.86 | 635.00 > 465.00 |
31. | Ellagic acid hexoside | EA-Hex | 5.44 | 353.86 | 463.00 > 300.00 |
32. | Pentagalloyl glucose | PG-Glu | 5.86 | - | 939.00 > 169.00 |
33. | Ellagic acid xyloside | EA-Xyl | 6.01 | 359.86 | 433.00 > 301.00 |
34. | Ellagic acid rhamnoside | EA-Rham | 6.18 | 359.86 | 447.00 > 300.00 |
35. | Ellagic acid methyl ether | EAME | 6.59 | 359.86 | 315.00 > 300.00 |
36. | Ellagic acid hexoside isomer | EA-Hex iso | 6.61 | 350.86 | 463.00 > 300.00 |
37. | Vescavaloninic acid | VeA | 6.83 | - | 1101.00 > 569.00 |
38. | Ellagic acid rhamnoside isomer | EA-Rham iso | 7.17 | 359.86 | 447.00 > 300.00 |
39. | Ellagic acid dimethyl ether | EADME | 10.33 | - | 329.00 > 229.00 |
Mixture | Phenolic Acids | Flavonoids | Hydrolyzable Tannins | Total |
---|---|---|---|---|
Y | 9.855 ± 0.069 g | 1.669 ± 0.005 i | 3.569 ± 0.301 f | 15.122 ± 0.236 g |
Qs | 53.723 ± 3.784 a | 10.020 ± 0.281 a | 35.716 ± 1.104 a | 99.459 ± 5.170 a |
Qe | 33.029 ± 0.908 d | 4.479 ± 0.018 d | 10.455 ± 2.234 e | 47.963 ± 1.344 d |
Y-Qs | 31.418 ± 0.968 d | 5.012 ± 0.147 c | 23.848 ± 1.185 c | 60.280 ± 0.069 c |
Y-Qe | 20.800 ± 0.804 e | 3.228 ± 0.075 g | 17.360 ± 0.826 d | 41.389 ± 1.704 e |
Qs-Qe | 41.823 ± 1.814 b | 7.613 ± 0.293 b | 31.557 ± 1.502 b | 80.994 ± 3.610 b |
Y-Qs-Qe | 35.630 ± 1.539 c,d | 4.049 ± 0.114 e | 18.819 ± 0.896 d | 58.500 ± 2.549 c |
4Y-Qs-Qe | 17.156 ± 0.668 f | 2.652 ± 0.047 h | 11.029 ± 0.525 e | 30.838 ± 1.241 f |
Y-4Qs-Qe | 47.405 ± 2.117 a | 7.324 ± 0.270 b | 25.396 ± 1.209 c | 80.126 ± 3.597 b |
Y-Qs-4Qe | 38.843 ± 3.347 b,c | 3.666 ± 0.096 f | 16.162 ± 0.726 d | 58.672 ± 3.839 c |
Compound | Y | Qs | Qe | Y-Qs | Y-Qe | Qs-Qe | Y-Qs-Qe | 4Y-Qs-Qe | Y-4Qs-Qe | Y-Qs-4Qe |
---|---|---|---|---|---|---|---|---|---|---|
Phenolic acids | ||||||||||
QA | 2.55 ± 0.08 | 29.91 ± 2.82 | 17.03 ± 0.65 | 15.17 ± 0.93 | 9.29 ± 0.43 | 20.22 ± 0.95 | 17.58 ± 0.82 | 6.83 ± 0.31 | 25.24 ± 1.19 | 21.32 ± 2.01 |
ShA | 0.67 ± 0.06 | 13.57 ± 0.61 | 7.05 ± 0.02 | 7.95 ± 0.45 | 4.21 ± 0.21 | 11.49 ± 0.57 | 9.57 ± 0.45 | 3.82 ± 0.18 | 12.32 ± 0.58 | 9.38 ± 0.89 |
GaA | 0.03 ± 0.00 | 0.93 ± 0.10 | 0.20 ± 0.01 | 0.49 ± 0.03 | 0.16 ± 0.00 | 0.59 ± 0.03 | 0.04 ± 0.00 | 0.24 ± 0.01 | 0.72 ± 0.03 | 0.01 ± 0.00 |
PA | 1.39 ± 0.06 | 0.11 ± 0.01 | 0.13 ± 0.03 | 0.41 ± 0.03 | 0.32 ± 0.08 | 0.13 ± 0.01 | 0.53 ± 0.02 | 0.41 ± 0.02 | 0.26 ± 0.01 | 0.49 ± 0.02 |
CQA iso | 0.25 ± 0.00 | 0.24 ± 0.01 | 0.31 ± 0.00 | 0.26 ± 0.01 | 0.29 ± 0.00 | 0.29 ± 0.00 | 0.27 ± 0.00 | 0.25 ± 0.00 | 0.27 ± 0.00 | 0.29 ± 0.00 |
2,5-DHBA | traces | 0.01 ± 0.00 | 0.01 ± 0.00 | traces | traces | 0.01 ± 0.00 | traces | traces | traces | 0.01 ± 0.00 |
4-HBA | 0.36 ± 0.04 | 0.20 ± 0.00 | 0.19 ± 0.00 | 0.26 ± 0.00 | 0.26 ± 0.00 | 0.19 ± 0.00 | 0.24 ± 0.00 | 0.28 ± 0.00 | 0.21 ± 0.00 | 0.23 ± 0.00 |
ChA | 1.03 ± 0.06 | 6.52 ± 0.27 | 5.11 ± 0.23 | 3.78 ± 0.41 | 3.37 ± 0.15 | 6.07 ± 0.28 | 4.40 ± 0.20 | 2.21 ± 0.09 | 5.84 ± 0.27 | 4.14 ± 0.37 |
4-O-CQA | 0.20 ± 0.00 | 0.00 ± 0.00 | 0.20 ± 0.00 | 0.21 ± 0.00 | 0.00 ± 0.00 | 0.21 ± 0.00 | 0.22 ± 0.00 | 0.00 ± 0.00 | 0.00 ± 0.00 | 0.22 ± 0.00 |
VA | 0.36 ± 0.00 | 0.31 ± 0.00 | 0.31 ± 0.00 | 0.33 ± 0.00 | 0.32 ± 0.00 | 0.30 ± 0.00 | 0.33 ± 0.00 | 0.34 ± 0.00 | 0.31 ± 0.00 | 0.32 ± 0.00 |
CaA | 0.75 ± 0.02 | 0.28 ± 0.01 | 0.35 ± 0.00 | 0.36 ± 0.01 | 0.46 ± 0.01 | 0.28 ± 0.00 | 0.30 ± 0.00 | 0.63 ± 0.02 | 0.32 ± 0.00 | 0.28 ± 0.00 |
SyA | 0.32 ± 0.01 | 0.27 ± 0.01 | 0.27 ± 0.00 | 0.29 ± 0.00 | 0.28 ± 0.00 | 0.27 ± 0.00 | 0.28 ± 0.00 | 0.31 ± 0.00 | 0.28 ± 0.00 | 0.28 ± 0.00 |
2,4,6-THBA | 0.17 ± 0.00 | 0.17 ± 0.00 | 0.17 ± 0.00 | 0.17 ± 0.00 | 0.17 ± 0.00 | 0.17 ± 0.00 | 0.17 ± 0.00 | 0.17 ± 0.00 | 0.00 ± 0.00 | 0.18 ± 0.00 |
CouA | 0.25 ± 0.01 | 0.21 ± 0.01 | 0.30 ± 0.00 | 0.24 ± 0.02 | 0.24 ± 0.00 | 0.20 ± 0.00 | 0.24 ± 0.00 | 0.26 ± 0.00 | 0.23 ± 0.00 | 0.27 ± 0.01 |
FA | 0.31 ± 0.00 | 0.27 ± 0.00 | 0.29 ± 0.00 | 0.30 ± 0.00 | 0.30 ± 0.00 | 0.29 ± 0.00 | 0.29 ± 0.00 | 0.31 ± 0.00 | 0.29 ± 0.00 | 0.29 ± 0.00 |
BA | 0.28 ± 0.02 | 0.32 ± 0.03 | 0.26 ± 0.00 | 0.31 ± 0.00 | 0.26 ± 0.00 | 0.25 ± 0.00 | 0.29 ± 0.00 | 0.24 ± 0.00 | 0.23 ± 0.00 | 0.26 ± 0.00 |
t-CiA | 0.29 ± 0.01 | 0.19 ± 0.00 | 0.19 ± 0.00 | 0.27 ± 0.02 | 0.24 ± 0.00 | 0.19 ± 0.00 | 0.24 ± 0.00 | 0.25 ± 0.00 | 0.23 ± 0.00 | 0.24 ± 0.00 |
2-HBA | 0.16 ± 0.00 | 0.21 ± 0.00 | 0.21 ± 0.00 | 0.18 ± 0.00 | 0.18 ± 0.00 | 0.21 ± 0.00 | 0.21 ± 0.00 | 0.17 ± 0.00 | 0.21 ± 0.00 | 0.21 ± 0.00 |
di-CQA | 0.25 ± 0.00 | 0.22 ± 0.00 | 0.22 ± 0.00 | 0.24 ± 0.00 | 0.25 ± 0.00 | 0.22 ± 0.00 | 0.23 ± 0.00 | 0.23 ± 0.00 | 0.23 ± 0.00 | 0.22 ± 0.00 |
RoA | 0.17 ± 0.00 | 0.17 ± 0.00 | 0.17 ± 0.00 | 0.17 ± 0.00 | 0.17 ± 0.00 | 0.17 ± 0.00 | 0.17 ± 0.00 | 0.17 ± 0.00 | 0.17 ± 0.00 | 0.17 ± 0.00 |
Flavonoids | ||||||||||
PB1 | 0.00 ± 0.00 | 1.19 ± 0.09 | 0.36 ± 0.00 | 0.53 ± 0.01 | 0.24 ± 0.00 | 0.78 ± 0.03 | 0.33 ± 0.00 | 0.27 ± 0.00 | 0.90 ± 0.03 | 0.29 ± 0.00 |
C | 0.19 ± 0.00 | 3.12 ± 0.02 | 0.57 ± 0.02 | 1.54 ± 0.06 | 0.27 ± 0.00 | 2.02 ± 0.09 | 0.42 ± 0.01 | 0.36 ± 0.00 | 2.24 ± 0.09 | 0.24 ± 0.00 |
epi-C | 0.19 ± 0.00 | 0.00 ± 0.00 | 0.19 ± 0.00 | 0.19 ± 0.00 | 0.19 ± 0.00 | 0.00 ± 0.00 | 0.19 ± 0.00 | 0.19 ± 0.00 | 0.19 ± 0.00 | 0.19 ± 0.00 |
R | 0.20 ± 0.00 | 0.41 ± 0.00 | 0.61 ± 0.00 | 0.27 ± 0.01 | 0.45 ± 0.01 | 0.59 ± 0.02 | 0.40 ± 0.01 | 0.28 ± 0.00 | 0.38 ± 0.01 | 0.41 ± 0.01 |
Q-glur | 0.19 ± 0.00 | 0.60 ± 0.01 | 0.54 ± 0.02 | 0.35 ± 0.00 | 0.43 ± 0.01 | 0.66 ± 0.02 | 0.43 ± 0.01 | 0.29 ± 0.00 | 0.49 ± 0.01 | 0.46 ± 0.01 |
Q-glu | 0.27 ± 0.00 | 1.32 ± 0.05 | 0.62 ± 0.02 | 0.86 ± 0.03 | 0.46 ± 0.01 | 0.90 ± 0.03 | 0.68 ± 0.02 | 0.45 ± 0.01 | 0.88 ± 0.03 | 0.55 ± 0.01 |
Ta | 0.17 ± 0.00 | 0.12 ± 0.00 | 0.00 ± 0.00 | 0.14 ± 0.00 | 0.12 ± 0.00 | 0.12 ± 0.00 | 0.12 ± 0.00 | 0.16 ± 0.00 | 0.13 ± 0.00 | 0.12 ± 0.00 |
K-glu | 0.44 ± 0.00 | 3.25 ± 0.14 | 1.57 ± 0.05 | 1.10 ± 0.05 | 1.05 ± 0.03 | 2.52 ± 0.10 | 1.45 ± 0.05 | 0.63 ± 0.01 | 2.08 ± 0.08 | 1.48 ± 0.05 |
Hydrolyzable tannins | ||||||||||
DG-HHDP-Hex | 0.00 ± 0.00 | 0.17 ± 0.03 | 0.04 ± 0.00 | 0.03 ± 0.00 | 0.03 ± 0.00 | 0.09 ± 0.00 | 0.05 ± 0.00 | traces | 0.07 ± 0.00 | traces |
TG-Hex | traces | 0.05 ± 0.00 | 0.01 ± 0.00 | 0.01 ± 0.00 | 0.11 ± 0.00 | 0.17 ± 0.00 | 0.04 ± 0.00 | 0.01 ± 0.00 | 0.02 ± 0.00 | 0.04 ± 0.00 |
EA-Hex | 0.00 ± 0.00 | 0.19 ± 0.10 | 0.11 ± 0.02 | 0.09 ± 0.01 | 0.19 ± 0.01 | 0.21 ± 0.01 | 0.17 ± 0.00 | 0.00 ± 0.00 | 0.15 ± 0.00 | 0.00 ± 0.00 |
PG-Glu | 0.00 ± 0.00 | 0.19 ± 0.01 | 0.06 ± 0.00 | 0.03 ± 0.00 | traces | 0.12 ± 0.00 | 0.03 ± 0.00 | 0.00 ± 0.00 | 0.08 ± 0.00 | 0.02 ± 0.00 |
EA-Xyl | 0.10 ± 0.02 | 2.10 ± 0.17 | 1.77 ± 0.33 | 0.96 ± 0.37 | 3.28 ± 0.15 | 4.08 ± 0.19 | 2.39 ± 0.11 | 1.11 ± 0.05 | 1.84 ± 0.08 | 2.94 ± 0.19 |
EA-Rham | 0.01 ± 0.00 | 0.22 ± 0.01 | 0.09 ± 0.00 | 0.18 ± 0.01 | 0.18 ± 0.00 | 0.24 ± 0.01 | 0.24 ± 0.00 | 0.11 ± 0.00 | 0.13 ± 0.00 | 0.19 ± 0.00 |
EAME | 0.00 ± 0.00 | 1.64 ± 0.09 | 0.02 ± 0.00 | 0.84 ± 0.14 | 0.02 ± 0.00 | 0.71 ± 0.03 | 0.58 ± 0.03 | 0.26 ± 0.01 | 1.22 ± 0.06 | 0.28 ± 0.01 |
EA-Hex iso | 0.31 ± 0.02 | 28.34 ± 0.67 | 6.44 ± 1.84 | 18.05 ± 0.75 | 8.98 ± 0.42 | 22.92 ± 1.09 | 12.49 ± 0.59 | 5.25 ± 0.25 | 19.24 ± 0.91 | 10.07 ± 0.48 |
VeA | 0.00 ± 0.00 | 0.02 ± 0.00 | traces | traces | 0.00 ± 0.00 | 0.01 ± 0.00 | 0.00 ± 0.00 | 0.01 ± 0.00 | 0.03 ± 0.00 | 0.01 ± 0.00 |
EA-Rham iso | 0.99 ± 0.09 | 1.79 ± 0.05 | 0.87 ± 0.11 | 2.06 ± 0.95 | 2.26 ± 0.10 | 1.76 ± 0.08 | 1.45 ± 0.07 | 2.26 ± 0.11 | 1.34 ± 0.06 | 1.24 ± 0.06 |
EADME | 2.17 ± 0.38 | 0.96 ± 0.03 | 1.01 ± 0.08 | 1.58 ± 0.50 | 2.27 ± 0.11 | 1.21 ± 0.05 | 1.36 ± 0.06 | 1.99 ± 0.09 | 1.23 ± 0.05 | 1.35 ± 0.06 |
Mixture | ORAC * | FRAP * | ABTS * | DPPH/Breaking-Chain ** |
---|---|---|---|---|
Y | 58.82 ± 7.16 d | 172.21 ± 0.93 b | 31.39 ± 2.22 e | 0.79 ± 0.04 g |
Qs | 133.06 ± 13.72 a | 186.23 ± 1.31 a | 273.41 ± 3.15 a | 40.76 ± 1.72 a |
Qe | 67.44 ± 5.72 c,d | 168.43 ± 0.93 c | 235.32 ± 22.21 b | 6.24 ± 0.27 c |
Y-Qs | 57.40 ± 5.62 d | 174.49 ± 0.93 b | 204.21 ± 8.31 b | 5.56 ± 0.24 d |
Y-Qe | 47.82 ± 0.79 e | 167.67 ± 0.93 c | 99.61 ± 6.28 d | 1.82 ± 0.08 g |
Qs-Qe | 117.02 ± 9.34 a,b | 174.41 ± 1.61 b | 158.02 ± 3.15 c | 4.42 ± 0.19 e |
Y-Qs-Qe | 60.36 ± 2.88 d | 176.17 ± 1.86 b | 103.24 ± 15.55 d | 1.34 ± 0.06 g |
4Y-Qs-Qe | 53.42 ± 4.39 d,e | 170.52 ± 2.27 c | 118.62 ± 15.55 d | 2.38 ± 0.11 f |
Y-4Qs-Qe | 98.29 ± 6.03 b | 176.06 ± 2.46 b | 148.33 ± 6.28 c,d | 9.32 ± 0.39 b |
Y-Qs-4Qe | 76.28 ± 4.26 c | 169.86 ± 1.61 c | 89.51 ± 6.66 d | 1.24 ± 0.05 g |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Álvarez, S.A.; Rocha-Guzmán, N.E.; Sánchez-Burgos, J.A.; Gallegos-Infante, J.A.; Moreno-Jiménez, M.R.; González-Laredo, R.F.; Solís-González, S. Analysis of Antioxidant Constituents of Filtering Infusions from Oak (Quercus sideroxyla Bonpl. and Quercus eduardii Trel.) and Yerbaniz (Tagetes lucida (Sweet) Voss) as Monoamine Oxidase Inhibitors. Molecules 2023, 28, 5167. https://doi.org/10.3390/molecules28135167
Álvarez SA, Rocha-Guzmán NE, Sánchez-Burgos JA, Gallegos-Infante JA, Moreno-Jiménez MR, González-Laredo RF, Solís-González S. Analysis of Antioxidant Constituents of Filtering Infusions from Oak (Quercus sideroxyla Bonpl. and Quercus eduardii Trel.) and Yerbaniz (Tagetes lucida (Sweet) Voss) as Monoamine Oxidase Inhibitors. Molecules. 2023; 28(13):5167. https://doi.org/10.3390/molecules28135167
Chicago/Turabian StyleÁlvarez, Saúl Alberto, Nuria Elizabeth Rocha-Guzmán, Jorge Alberto Sánchez-Burgos, José Alberto Gallegos-Infante, Martha Rocío Moreno-Jiménez, Rubén Francisco González-Laredo, and Santiago Solís-González. 2023. "Analysis of Antioxidant Constituents of Filtering Infusions from Oak (Quercus sideroxyla Bonpl. and Quercus eduardii Trel.) and Yerbaniz (Tagetes lucida (Sweet) Voss) as Monoamine Oxidase Inhibitors" Molecules 28, no. 13: 5167. https://doi.org/10.3390/molecules28135167
APA StyleÁlvarez, S. A., Rocha-Guzmán, N. E., Sánchez-Burgos, J. A., Gallegos-Infante, J. A., Moreno-Jiménez, M. R., González-Laredo, R. F., & Solís-González, S. (2023). Analysis of Antioxidant Constituents of Filtering Infusions from Oak (Quercus sideroxyla Bonpl. and Quercus eduardii Trel.) and Yerbaniz (Tagetes lucida (Sweet) Voss) as Monoamine Oxidase Inhibitors. Molecules, 28(13), 5167. https://doi.org/10.3390/molecules28135167