Magnetic ε-Phosphorene for Sensing Greenhouse Gas Molecules
Abstract
:1. Introduction
2. Computational Details
3. Charge Transfer and Adsorption Energy
4. IV Responses of Sensors
5. Electric Field Effect
6. Limitations and Future Scope
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
Appendix A
References
- Baste, I.A.; Watson, R.T. Tackling the climate, biodiversity and pollution emergencies by making peace with nature 50 years after the stockholm conference. Glob. Environ. Chang. 2022, 73, 102466. [Google Scholar] [CrossRef]
- Pei, Y.; Zhang, X.; Hui, Z.; Zhou, J.; Huang, X.; Sun, G.; Huang, W. Ti3C2Tx mxene for sensing applications: Recent progress, design principles, and future perspectives. ACS Nano 2021, 15, 3996. [Google Scholar] [CrossRef]
- Yang, S.; Jiang, C.; Wei, S.-H. Gas sensing in 2D materials. Appl. Phys. Rev. 2017, 4, 021304. [Google Scholar] [CrossRef]
- Bag, A.; Lee, N.-E. Gas sensing with heterostructures based on two-dimensional nanostructured materials: A review. J. Mater. Chem. C 2019, 7, 13367. [Google Scholar] [CrossRef]
- Li, N.; Wang, C.; Chen, L.; Ye, C.; Peng, Y. Ultrathin covalent organic framework nanosheets/Ti3C2Tx-based photoelectrochemical biosensor for efficient detection of prostate-specific antigen. Molecules 2022, 27, 6732. [Google Scholar] [CrossRef] [PubMed]
- Kitadai, H.; Yuan, M.; Ma, Y.; Ling, X. Graphene-based environmental sensors: Electrical and optical devices. Molecules 2021, 26, 2165. [Google Scholar] [CrossRef]
- Zhang, L.; Li, T.; Feng, Y.P.; Li, H.; Shen, L. Highly sensitive and selective sensors for cf4 gas molecules based on two-node hollow fullerene. Adv. Mater. Interfaces 2020, 7, 2000985. [Google Scholar] [CrossRef]
- Zhou, T.; Zhang, T. Recent progress of nanostructured sensing materials from 0d to 3D: Overview of structure–property-application relationship for gas sensors. Small Methods 2021, 5, 2100515. [Google Scholar] [CrossRef]
- Hassan, J.Z.; Raza, A.; Babar, Z.U.D.; Qumar, U.; Kaner, N.T.; Cassinese, A. 2D material-based sensing devices: An update. J. Mater. Chem. A 2023, 11, 6016–6063. [Google Scholar] [CrossRef]
- Anichini, C.; Czepa, W.; Pakulski, D.; Aliprandi, A.; Ciesielski, A.; Samorì, P. Chemical sensing with 2D materials. Chem. Soc. Rev. 2018, 47, 4860. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Khan, K.; Zou, J.; Zhang, H.; Li, Y. Recent advances in emerging 2D material-based gas sensors: Potential in disease diagnosis. Adv. Mater. Interfaces 2019, 6, 1901329. [Google Scholar] [CrossRef]
- Sreenilayam, S.P.; Ahad, I.U.; Nicolosi, V.; Brabazon, D. Mxene materials based printed flexible devices for healthcare, biomedical and energy storage applications. Mater. Today 2021, 43, 99. [Google Scholar] [CrossRef]
- Feng, Y.P.; Shen, L.; Yang, M.; Wang, A.; Zeng, M.; Wu, Q.; Chintalapati, S.; Chang, C.-R. Prospects of spintronics based on 2D materials. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2017, 7, e1313. [Google Scholar] [CrossRef]
- Wu, Q.; Shen, L.; Bai, Z.; Zeng, M.; Yang, M.; Huang, Z.; Feng, Y.P. Efficient spin injection into graphene through a tunnel barrier: Overcoming the spin-conductance mismatch. Phys. Rev. Appl. 2014, 2, 044008. [Google Scholar] [CrossRef] [Green Version]
- Chintalapati, S.; Shen, L.; Xiong, Q.; Feng, Y.P. Magnetism in phosphorene: Interplay between vacancy and strain. Appl. Phys. Lett. 2015, 107, 072401. [Google Scholar] [CrossRef]
- Zhang, L.; Zhou, J.; Li, H.; Shen, L.; Feng, Y.P. Recent progress and challenges in magnetic tunnel junctions with 2D materials for spintronic applications. Appl. Phys. Rev. 2021, 8, 021308. [Google Scholar] [CrossRef]
- Liu, N.; Zhu, H.; Feng, Y.; Zhu, S.; Yao, K.; Wang, S. Tuning of the electronic structures and spin-dependent transport properties of phosphorene nanoribbons by vanadium substitutional doping. Phys. E Low-Dimens. Syst. Nanostruct. 2022, 138, 115067. [Google Scholar] [CrossRef]
- Zheng, C.; Wu, K.; Jiang, K.; Yao, K.; Zhu, S.; Lu, Y. Perfect spin filtering effect, tunnel magnetoresistance and thermoelectric effect in metals-adsorbed blue phosphorene nanoribbons. Phys. Condens. Matter 2022, 626, 413580. [Google Scholar] [CrossRef]
- Shen, L.; Zhou, J.; Yang, T.; Yang, M.; Feng, Y.P. High-throughput computational discovery and intelligent design of two-dimensional functional materials for various applications. Accounts Mater. Res. 2022, 3, 572. [Google Scholar] [CrossRef]
- Muhmood, T.; Cai, Z.; Lin, S.; Xiao, J.; Hu, X.; Ahmad, F. Graphene/graphitic carbon nitride decorated with agbr to boost photoelectrochemical performance with enhanced catalytic ability. Nanotechnology 2020, 31, 505602. [Google Scholar] [CrossRef]
- Muhmood, T.; Xia, M.; Lei, W.; Wang, F.; Mahmood, A. Fe-ZrO2 imbedded graphene like carbon nitride for acarbose (acb) photo-degradation intermediate study. Adv. Powder Technol. 2018, 29, 3233. [Google Scholar] [CrossRef]
- Tao, W.; Zhu, X.; Yu, X.; Zeng, X.; Xiao, Q.; Zhang, X.; Ji, X.; Wang, X.; Shi, J.; Zhang, H.; et al. Black phosphorus nanosheets as a robust delivery platform for cancer theranostics. Adv. Mater. 2017, 29, 1603276. [Google Scholar] [CrossRef] [Green Version]
- Novoselov, K.S.; Geim, A.K.; Morozov, S.V.; Jiang, D.-E.; Zhang, Y.; Dubonos, S.V.; Grigorieva, I.V.; Firsov, A.A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shen, L.; Zeng, M.; Li, S.; Sullivan, M.B.; Feng, Y.P. Electron transmission modes in electrically biased graphene nanoribbons and their effects on device performance. Phys. Rev. B 2012, 86, 115419. [Google Scholar] [CrossRef]
- Manzeli, S.; Ovchinnikov, D.; Pasquier, D.; Yazyev, O.V.; Kis, A. 2D transition metal dichalcogenides. Nat. Rev. Mater. 2017, 2, 17033. [Google Scholar] [CrossRef]
- Liu, H.; Neal, A.T.; Zhu, Z.; Luo, Z.; Xu, X.; Tománek, D.; Ye, P.D. Phosphorene: An unexplored 2D semiconductor with a high hole mobility. ACS Nano 2014, 8, 4033. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cai, Y.; Ke, Q.; Zhang, G.; Feng, Y.P.; Shenoy, V.B.; Zhang, Y.-W. Giant phononic anisotropy and unusual anharmonicity of phosphorene: Interlayer coupling and strain engineering. Adv. Funct. Mater. 2015, 25, 2230. [Google Scholar] [CrossRef] [Green Version]
- Cai, Y.; Zhang, G.; Zhang, Y.-W. Layer-dependent band alignment and work function of few-layer phosphorene. Sci. Rep. 2014, 4, 6677. [Google Scholar] [CrossRef] [Green Version]
- Wu, Q.; Shen, L.; Yang, M.; Cai, Y.; Huang, Z.; Feng, Y.P. Electronic and transport properties of phosphorene nanoribbons. Phys. Rev. B 2015, 92, 035436. [Google Scholar] [CrossRef]
- Liang, Y.; Zhang, L.; Wang, K.; Ren, J.; Yu, L.; Yin, M. Conversion of MoS2 to ternary alloyed MoS2−XSeX for resistive NO2 sensors. Sens. Actuators B Chem. 2023, 378, 133137. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, Y.; Sun, Y.; Zhang, K.; Zhang, C.; Liu, J.; Fu, C.; Wang, J. Selective NO2 detection by black phosphorus gas sensor prepared via aqueous route for ship pollutant monitoring. J. Mar. Sci. Eng. 2022, 10, 1892. [Google Scholar] [CrossRef]
- Chung, M.G.; Kim, D.H.; Lee, H.M.; Kim, T.; Choi, J.H.; Seo, D.K.; Yoo, J.-B.; Hong, S.-H.; Kang, T.J.; Kim, Y.H. Highly sensitive NO2 gas sensor based on ozone treated graphene. Sens. Actuators B Chem. 2012, 166, 172. [Google Scholar] [CrossRef]
- Han, Y.; Huang, D.; Ma, Y.; He, G.; Hu, J.; Zhang, J.; Hu, N.; Su, Y.; Zhou, Z.; Zhang, Y.; et al. Design of hetero-nanostructures on MoS2 nanosheets to boost NO2 room-temperature sensing. ACS Appl. Mater. Interfaces 2018, 10, 22640. [Google Scholar] [CrossRef]
- Zheng, W.; Xu, Y.; Zheng, L.; Yang, C.; Pinna, N.; Liu, X.; Zhang, J. MoS2 van der waals p–n junctions enabling highly selective room-temperature NO2 sensor. Adv. Funct. Mater. 2020, 30, 2000435. [Google Scholar] [CrossRef]
- Kaewmaraya, T.; Ngamwongwan, L.; Moontragoon, P.; Jarernboon, W.; Singh, D.; Ahuja, R.; Karton, A.; Hussain, T. Novel green phosphorene as a superior chemical gas sensing material. J. Hazard. Mater. 2021, 401, 123340. [Google Scholar] [CrossRef] [PubMed]
- Fan, Y.-Y.; Tu, H.-L.; Pang, Y.; Wei, F.; Zhao, H.-B.; Yang, Y.; Ren, T.-L. Au-decorated porous structure graphene with enhanced sensing performance for low-concentration NO2 detection. Rare Met. 2020, 39, 651. [Google Scholar] [CrossRef]
- Wang, D.; Zhang, D.; Guo, J.; Hu, Y.; Yang, Y.; Sun, T.; Zhang, H.; Liu, X. Multifunctional poly (vinyl alcohol)/ag nanofibers-based triboelectric nanogenerator for self-powered mxene/tungsten oxide nanohybrid NO2 gas sensor. Nano Energy 2021, 89, 106410. [Google Scholar] [CrossRef]
- Xu, Y.; Xie, J.; Zhang, Y.; Tian, F.; Yang, C.; Zheng, W.; Liu, X.; Zhang, J.; Pinna, N. Edge-enriched WS2 nanosheets on carbon nanofibers boosts NO2 detection at room temperature. J. Hazard. Mater. 2021, 411, 125120. [Google Scholar] [CrossRef]
- Jaiswal, J.; Sanger, A.; Tiwari, P.; Chandra, R. MoS2 hybrid heterostructure thin film decorated with cdte quantum dots for room temperature NO2 gas sensor. Sens. Actuators B Chem. 2020, 305, 127437. [Google Scholar] [CrossRef]
- Kumar, S.; Pavelyev, V.; Mishra, P.; Tripathi, N.; Sharma, P.; Calle, F. A review on 2D transition metal di-chalcogenides and metal oxide nanostructures based NO2 gas sensors. Mater. Sci. Semicond. Process. 2020, 107, 104865. [Google Scholar] [CrossRef]
- Matatagui, D.; Lopez-Sanchez, J.; Pena, A.; Serrano, A.; Del Campo, A.; de la Fuente, O.R.; Carmona, N.; Navarro, E.; Marin, P.; del Carmen Horrillo, M. Ultrasensitive NO2 gas sensor with insignificant NH3-interference based on a few-layered mesoporous graphene. Sens. Actuators B Chem. 2021, 335, 129657. [Google Scholar] [CrossRef]
- Tang, Y.; Yang, K.; Hua, Z.; Yin, F.; Yuan, W. A new sensing material design based on chemically passivated phosphorene/porous two-dimensional polymer: Highly sensitive and selective detection of NO2. Sens. Actuators B Chem. 2021, 329, 129233. [Google Scholar] [CrossRef]
- Alfalasi, W.; Feng, Y.P.; Tit, N. Designing a functionalized 2D-tmd (MoX2, X = S, Se) hosting half-metallicity for selective gas-sensing applications: Atomic-scale study. Acta Mater. 2023, 246, 118655. [Google Scholar] [CrossRef]
- Korotcenkov, G.; Cho, B. Engineering approaches for the improvement of conductometric gas sensor parameters: Part 1. improvement of sensor sensitivity and selectivity (short survey). Sens. Actuators B Chem. 2013, 188, 709. [Google Scholar] [CrossRef]
- Gu, D.; Wang, X.; Liu, W.; Li, X.; Lin, S.; Wang, J.; Rumyantseva, M.N.; Gaskov, A.M.; Akbar, S.A. Visible-light activated room temperature NO2 sensing of SnS2 nanosheets based chemiresistive sensors. Sens. Actuators B Chem. 2020, 305, 127455. [Google Scholar] [CrossRef]
- Zhang, D.; Mi, Q.; Wang, D.; Li, T. Mxene/CO3O4 composite based formaldehyde sensor driven by zno/mxene nanowire arrays piezoelectric nanogenerator. Sens. Actuators B Chem. 2021, 339, 129923. [Google Scholar] [CrossRef]
- Qu, F.; Zhang, S.; Huang, C.; Guo, X.; Zhu, Y.; Thomas, T.; Guo, H.; Attfield, J.P.; Yang, M. Surface functionalized sensors for humidity-independent gas detection. Angew. Chem. 2021, 133, 6635. [Google Scholar] [CrossRef]
- Yue, Q.; Shao, Z.; Chang, S.; Li, J. Adsorption of gas molecules on monolayer MoS2 and effect of applied electric field. Nanoscale Res. Lett. 2013, 8, 425. [Google Scholar] [CrossRef] [Green Version]
- Cai, Y.; Ke, Q.; Zhang, G.; Zhang, Y.-W. Energetics, charge transfer, and magnetism of small molecules physisorbed on phosphorene. J. Phys. Chem. C 2015, 119, 3102. [Google Scholar] [CrossRef] [Green Version]
- Leenaerts, O.; Partoens, B.; Peeters, F. Adsorption of H2O, NH3, CO, NO2, and no on graphene: A first-principles study. Phys. Rev. B 2008, 77, 125416. [Google Scholar] [CrossRef] [Green Version]
- Kou, L.; Chen, C.; Smith, S.C. Phosphorene: Fabrication, properties, and applications. J. Phys. Chem. Lett. 2015, 6, 2794. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sultana, N.; Degg, A.; Upadhyaya, S.; Nilges, T.; Sarma, N.S. Synthesis, modification, and application of black phosphorus, few-layer black phosphorus (flbp), and phosphorene: A detailed review. Mater. Adv. 2022, 3, 5557–5574. [Google Scholar] [CrossRef]
- Carvalho, A.; Wang, M.; Zhu, X.; Rodin, A.S.; Su, H.; Castro Neto, A.H. Phosphorene: From theory to applications. Nat. Rev. Mater. 2016, 1, 16061. [Google Scholar] [CrossRef]
- Zhu, Y.; Xie, Z.; Li, J.; Liu, Y.; Li, C.; Liang, W.; Huang, W.; Kang, J.; Cheng, F.; Kang, L.; et al. From phosphorus to phosphorene: Applications in disease theranostics. Coord. Chem. Rev. 2021, 446, 214110. [Google Scholar] [CrossRef]
- Zeng, Y.; Guo, Z. Synthesis and stabilization of black phosphorus and phosphorene: Recent progress and perspectives. Iscience 2021, 24, 103116. [Google Scholar] [CrossRef]
- Guan, J.; Zhu, Z.; Tománek, D. High stability of faceted nanotubes and fullerenes of multiphase layered phosphorus: A computational study. Phys. Rev. Lett. 2014, 113, 226801. [Google Scholar] [CrossRef] [Green Version]
- Guan, J.; Zhu, Z.; Tománek, D. Phase coexistence and metal-insulator transition in few-layer phosphorene: A computational study. Phys. Rev. Lett. 2014, 113, 046804. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nagarajan, V.; Chandiramouli, R. Molecular adsorption of o-ethyltoluene and phenyl propane on square-octagon phosphorene nanosheet—A first-principles calculation. J. Mol. Liq. 2021, 326, 115320. [Google Scholar] [CrossRef]
- Jyothi, M.; Nagarajan, V.; Chandiramouli, R. Interaction studies of dichlobenil and isoproturon on square-octagon phosphorene nanotube based on DFT frame work. Chem. Phys. Lett. 2021, 778, 138773. [Google Scholar] [CrossRef]
- Zhang, Y.; Lee, J.; Wang, W.-L.; Yao, D.-X. Two-dimensional octagon-structure monolayer of nitrogen group elements and the related nano-structures. Comput. Mater. Sci. 2015, 110, 109. [Google Scholar] [CrossRef] [Green Version]
- Zhao, T.; Wang, G.; Liao, Y. A theoretical investigation on the magnetic and transport properties of the phosphorus nanoribbons with tetragons at the edges. Chem. Phys. Lett. 2016, 652, 1–5. [Google Scholar] [CrossRef]
- Wang, Z.; Wu, Q.; Shen, L. Magnetic properties of transition-metal adsorbed ot-phosphorus monolayer: A first-principles and monte carlo study. arXiv 2017, arXiv:1701.01105. [Google Scholar]
- Hohenberg, P.; Kohn, W. Inhomogeneous electron gas. Phys. Rev. 1964, 136, B864. [Google Scholar] [CrossRef] [Green Version]
- Kohn, W.; Sham, L.J. Self-consistent equations including exchange and correlation effects. Phys. Rev. 1965, 140, A1133. [Google Scholar] [CrossRef] [Green Version]
- Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169. [Google Scholar] [CrossRef]
- Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758. [Google Scholar] [CrossRef]
- Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15. [Google Scholar] [CrossRef]
- Blöchl, P.E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, L.; Li, H.; Feng, Y.P.; Shen, L. Diverse transport behaviors in cyclo[18]carbon-based molecular devices. J. Phys. Chem. Lett. 2020, 11, 2611. [Google Scholar] [CrossRef]
- Ng, M.-F.; Shen, L.; Zhou, L.; Yang, S.-W.; Tan, V.B.C. Geometry dependent I-V characteristics of silicon nanowires. Nano Lett. 2008, 8, 3662. [Google Scholar] [CrossRef]
- Lin, J.; Yang, D.; Huang, S.; Chen, X.; Wang, X.; Zhang, Y.; Xiao, B.; Jiang, X. Cubine monolayer as a super sensor for NO2 molecule detection and capture. Adv. Theory Simulations 2022, 5, 2100384. [Google Scholar] [CrossRef]
- Yang, Z.-H.; Ren, J.-H.; Huang, T.; Huang, W.-Q.; Hu, W.-Y.; Huang, G.-F. Two-dimensional chromium phosphorus monolayer based gas sensors to detect nox: A first-principles study. Results Phys. 2022, 32, 105100. [Google Scholar] [CrossRef]
- Bai, Z.; Shen, L.; Cai, Y.; Wu, Q.; Zeng, M.; Han, G.; Feng, Y.P. Magnetocrystalline anisotropy and its electric-field-assisted switching of heusler-compound-based perpendicular magnetic tunnel junctions. New J. Phys. 2014, 16, 103033. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Z.; Wu, H.; Wu, Q.; Zhao, Y.-M.; Shen, L. Magnetic ε-Phosphorene for Sensing Greenhouse Gas Molecules. Molecules 2023, 28, 5402. https://doi.org/10.3390/molecules28145402
Wang Z, Wu H, Wu Q, Zhao Y-M, Shen L. Magnetic ε-Phosphorene for Sensing Greenhouse Gas Molecules. Molecules. 2023; 28(14):5402. https://doi.org/10.3390/molecules28145402
Chicago/Turabian StyleWang, Zengyao, Hao Wu, Qingyun Wu, Yi-Ming Zhao, and Lei Shen. 2023. "Magnetic ε-Phosphorene for Sensing Greenhouse Gas Molecules" Molecules 28, no. 14: 5402. https://doi.org/10.3390/molecules28145402
APA StyleWang, Z., Wu, H., Wu, Q., Zhao, Y. -M., & Shen, L. (2023). Magnetic ε-Phosphorene for Sensing Greenhouse Gas Molecules. Molecules, 28(14), 5402. https://doi.org/10.3390/molecules28145402