Adsorption Features of Tetrahalomethanes (CX4; X = F, Cl, and Br) on β12 Borophene and Pristine Graphene Nanosheets: A Comparative DFT Study
Abstract
:1. Introduction
2. Results and Discussion
2.1. Geometric Structures
2.2. Adsorption Energy Calculations
2.3. Frontier Molecular Orbital (FMO) Calculations
2.4. Charge Transfer Calculations
2.5. Band Structure Calculations
2.6. Density of State Calculations
2.7. Solvent Effect Calculations
3. Computational Methods
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Cao, M.S.; Wang, X.X.; Zhang, M.; Shu, J.C.; Cao, W.Q.; Yang, H.J.; Fang, X.Y.; Yuan, J. Electromagnetic response and energy conversion for functions and devices in low-dimensional materials. Adv. Funct. Mater. 2019, 29, 1807398. [Google Scholar] [CrossRef]
- Tang, Q.; Zhou, Z. Graphene-analogous low-dimensional materials. Prog. Mater. Sci. 2013, 58, 1244–1315. [Google Scholar] [CrossRef]
- Xia, F.; Wang, H.; Jia, Y. Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics. Nat. Commun. 2014, 5, 4458. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ibrahim, M.A.A.; Mahmoud, A.H.M.; Soliman, K.A.; Mekhemer, G.A.H.; Ahmed, M.N.; Shawky, A.M.; Abourehab, M.A.S.; Elkaeed, E.B.; Soliman, M.E.S.; Moussa, N.A.M. Borophene and pristine graphene 2D sheets as potential surfaces for the adsorption of electron-rich and electron-deficient pi-systems: A comparative DFT study. Nanomaterials 2022, 12, 1028. [Google Scholar] [CrossRef]
- Novoselov, K.S.; Fal’ko, V.I.; Colombo, L.; Gellert, P.R.; Schwab, M.G.; Kim, K. A roadmap for graphene. Nature 2012, 490, 192–200. [Google Scholar] [CrossRef]
- Schedin, F.; Geim, A.K.; Morozov, S.V.; Hill, E.W.; Blake, P.; Katsnelson, M.I.; Novoselov, K.S. Detection of individual gas molecules adsorbed on graphene. Nat. Mater. 2007, 6, 652–655. [Google Scholar] [CrossRef]
- Leenaerts, O.; Partoens, B.; Peeters, F.M. Adsorption of H2O, NH3, CO, NO2, and NO on graphene: A first-principles study. Phys. Rev. B 2008, 77, 125416–125421. [Google Scholar] [CrossRef] [Green Version]
- Ren, Z.; Zhang, H.; Liu, N.; Lei, D.; Zhang, Q.; Su, T.; Wang, L.; Su, J.; Gao, Y. Self-powered 2D nanofluidic graphene pressure sensor with Serosa-Mimetic structure. EcoMat 2022, 5, e12299. [Google Scholar] [CrossRef]
- Xiao, H.; Li, Y.; Chen, R.; Xie, T.; Xu, P.; Zhu, H.; He, J.; Zheng, W.; Huang, S. Integrative design of laser-induced graphene array with lithiophilic MnOx nanoparticles enables superior lithium metal batteries. eScience 2023, 100134. [Google Scholar] [CrossRef]
- Mujib, S.B.; Ren, Z.; Mukherjee, S.; Soares, D.M.; Singh, G. Design, characterization, and application of elemental 2D materials for electrochemical energy storage, sensing, and catalysis. Mater. Adv. 2020, 1, 2562–2591. [Google Scholar] [CrossRef]
- Liu, X.M.; Xu, T.; Li, Y.L.; Zang, Z.G.; Peng, X.S.; Wei, H.Y.; Zha, W.Y.; Wang, F. Enhanced X-ray photon response in solution-synthesized CsPbBr3 nanoparticles wrapped by reduced graphene oxide. Sol. Energy Mater. Sol. Cells 2018, 187, 249–254. [Google Scholar] [CrossRef]
- Rao, C.N.; Sood, A.K.; Subrahmanyam, K.S.; Govindaraj, A. Graphene: The new two-dimensional nanomaterial. Angew. Chem. Int. Ed. Engl. 2009, 48, 7752–7777. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Tan, Y.W.; Stormer, H.L.; Kim, P. Experimental observation of the quantum Hall effect and Berry’s phase in graphene. Nature 2005, 438, 201–204. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Balandin, A.A.; Ghosh, S.; Bao, W.; Calizo, I.; Teweldebrhan, D.; Miao, F.; Lau, C.N. Superior thermal conductivity of single-layer graphene. Nano Lett. 2008, 8, 902–907. [Google Scholar] [CrossRef]
- Novoselov, K.S.; Geim, A.K.; Morozov, S.V.; Jiang, D.; Zhang, Y.; Dubonos, S.V.; Grigorieva, I.V.; Firsov, A.A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669. [Google Scholar] [CrossRef] [Green Version]
- Miura, Y.; Kasai, H.; Diño, W.; Nakanishi, H.; Sugimoto, T. First principles studies for the dissociative adsorption of H2 on graphene. J. Appl. Phys. 2003, 93, 3395–3400. [Google Scholar] [CrossRef]
- Durgun, E.; Ciraci, S.; Yildirim, T. Functionalization of carbon-based nanostructures with light transition-metal atoms for hydrogen storage. Phys. Rev. B 2008, 77, 085405. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Cui, L.; Losic, D. Graphene and graphene oxide as new nanocarriers for drug delivery applications. Acta Biomater. 2013, 9, 9243–9257. [Google Scholar] [CrossRef]
- Davis, M.E.; Chen, Z.G.; Shin, D.M. Nanoparticle therapeutics: An emerging treatment modality for cancer. Nat. Rev. Drug Discov. 2008, 7, 771–782. [Google Scholar] [CrossRef]
- Ibrahim, M.A.A.; Hamad, M.H.A.; Mahmoud, A.H.M.; Mekhemer, G.A.H.; Sayed, S.R.M.; El-Rahman, M.K.A.; Sidhom, P.A.; Dabbish, E.; Shoeib, T. On the use of graphene nanosheets for drug delivery: A case study of cisplatin and some of its analogs. Pharmaceutics 2023, 15, 1640. [Google Scholar] [CrossRef]
- Ibrahim, M.A.A.; Hamad, M.H.A.; Mahmoud, A.H.M.; Mekhemer, G.A.H.; Sidhom, P.A.; Sayed, S.R.M.; Moussa, N.A.M.; Rabee, A.I.M.; Dabbish, E.; Shoeib, T. Adsorption of Favipiravir on pristine graphene nanosheets as a drug delivery system: A DFT study. RSC Adv. 2023, 13, 17465–17475. [Google Scholar] [CrossRef] [PubMed]
- Palacios, J.J.; Fernandez-Rossier, J.; Brey, L. Vacancy-induced magnetism in graphene and graphene ribbons. Phys. Rev. B 2008, 77, 195428. [Google Scholar] [CrossRef] [Green Version]
- Hou, Y.; Wen, Z.H.; Cui, S.M.; Ci, S.Q.; Mao, S.; Chen, J.H. An advanced nitrogen-doped graphene/cobalt-embedded porous carbon polyhedron hybrid for efficient catalysis of oxygen reduction and water splitting. Adv. Funct. Mater. 2015, 25, 872–882. [Google Scholar] [CrossRef]
- Varghese, S.S.; Lonkar, S.; Singh, K.K.; Swaminathan, S.; Abdala, A. Recent advances in graphene based gas sensors. Sens. Actuators B-Chem. 2015, 218, 160–183. [Google Scholar] [CrossRef]
- Zhang, S.; Yan, Z.; Li, Y.; Chen, Z.; Zeng, H. Atomically thin arsenene and antimonene: Semimetal-semiconductor and indirect-direct band-gap transitions. Angew. Chem. Int. Ed. Engl. 2015, 54, 3112–3115. [Google Scholar] [CrossRef]
- Khan, A.F.; Randviir, E.P.; Brownson, D.A.C.; Ji, X.B.; Smith, G.C.; Banks, C.E. 2D hexagonal boron nitride (2D-hBN) explored as a potential electrocatalyst for the oxygen reduction reaction. Electroanalysis 2017, 29, 622–634. [Google Scholar] [CrossRef] [Green Version]
- Zhang, S.; Xie, M.; Li, F.; Yan, Z.; Li, Y.; Kan, E.; Liu, W.; Chen, Z.; Zeng, H. Semiconducting group 15 monolayers: A broad range of band gaps and high carrier mobilities. Angew. Chem. Int. Ed. Engl. 2016, 55, 1666–1669. [Google Scholar] [CrossRef]
- Aufray, B.; Kara, A.; Vizzini, S.; Oughaddou, H.; Leandri, C.; Ealet, B.; Le Lay, G. Graphene-like silicon nanoribbons on Ag(110): A possible formation of silicene. Appl. Phys. Lett. 2010, 96, 183102. [Google Scholar] [CrossRef] [Green Version]
- Du, Y.; Zhuang, J.; Liu, H.; Xu, X.; Eilers, S.; Wu, K.; Cheng, P.; Zhao, J.; Pi, X.; See, K.W.; et al. Tuning the band gap in silicene by oxidation. ACS Nano 2014, 8, 10019–10025. [Google Scholar] [CrossRef] [Green Version]
- Feng, B.; Zhang, J.; Zhong, Q.; Li, W.; Li, S.; Li, H.; Cheng, P.; Meng, S.; Chen, L.; Wu, K. Experimental realization of two-dimensional boron sheets. Nat. Chem. 2016, 8, 563–568. [Google Scholar] [CrossRef] [Green Version]
- Mannix, A.J.; Zhou, X.F.; Kiraly, B.; Wood, J.D.; Alducin, D.; Myers, B.D.; Liu, X.; Fisher, B.L.; Santiago, U.; Guest, J.R.; et al. Synthesis of borophenes: Anisotropic, two-dimensional boron polymorphs. Science 2015, 350, 1513–1516. [Google Scholar] [CrossRef] [Green Version]
- Ranjan, P.; Lee, J.M.; Kumar, P.; Vinu, A. Borophene: New sensation in flatland. Adv. Mater. 2020, 32, e2000531. [Google Scholar] [CrossRef]
- Peng, B.; Zhang, H.; Shao, H.Z.; Xu, Y.F.; Zhang, R.J.; Zhua, H.Y. The electronic, optical, and thermodynamic properties of borophene from first-principles calculations. J. Mater. Chem. C 2016, 4, 3592–3598. [Google Scholar] [CrossRef] [Green Version]
- Gao, M.; Li, Q.Z.; Yan, X.W.; Wang, J. Prediction of phonon-mediated superconductivity in borophene. Phys. Rev. B 2017, 95, 024505. [Google Scholar] [CrossRef] [Green Version]
- Jiang, H.R.; Lu, Z.H.; Wu, M.C.; Ciucci, F.; Zhao, T.S. Borophene: A promising anode material offering high specific capacity and high rate capability for lithium-ion batteries. Nano Energy 2016, 23, 97–104. [Google Scholar] [CrossRef]
- Tang, H.; Ismail-Beigi, S. Novel precursors for boron nanotubes: The competition of two-center and three-center bonding in boron sheets. Phys. Rev. Lett. 2007, 99, 115501. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, X.B.; Ding, Y.; Ni, J. Ab initio prediction of stable boron sheets and boron nanotubes: Structure, stability, and electronic properties. Phys. Rev. B 2008, 77, 041402. [Google Scholar] [CrossRef]
- Li, W.L.; Jiang, Q.G.; Li, D.D.; Ao, Z.M.; An, T.C. Density functional theory investigation on selective adsorption of VOCs on borophene. Chin. Chem. Lett. 2021, 32, 2803–2806. [Google Scholar] [CrossRef]
- Joshi, D.J.; Malek, N.I.; Kailasa, S.K. Borophene as a rising star in materials chemistry: Synthesis, properties and applications in analytical science and energy devices. New J. Chem. 2022, 46, 4514–4533. [Google Scholar] [CrossRef]
- Ta, L.T.; Hamada, I.; Morikawa, Y.; Dinh, V.A. Adsorption of toxic gases on borophene: Surface deformation links to chemisorptions. RSC Adv. 2021, 11, 18279–18287. [Google Scholar] [CrossRef]
- Liu, T.T.; Chen, Y.H.; Zhang, M.L.; Yuan, L.H.; Zhang, C.R.; Wang, J.; Fan, J.J. A first-principles study of gas molecule adsorption on borophene. AIP Adv. 2017, 7, 125007. [Google Scholar] [CrossRef] [Green Version]
- Huang, C.S.; Murat, A.; Babar, V.; Montes, E.; Schwingenschlogl, U. Adsorption of the gas molecules NH3, NO, NO2, and CO on borophene. J. Phys. Chem. C 2018, 122, 14665–14670. [Google Scholar] [CrossRef]
- Ibrahim, M.A.A.; Mahmoud, A.H.M.; Mekhemer, G.A.H.; Shawky, A.M.; Soliman, M.E.S.; Moussa, N.A.M. Adsorption behavior of toxic carbon dichalcogenides (CX2; X = O, S, or Se) on β12 borophene and pristine graphene sheets: A DFT study. Nanomaterials 2022, 12, 3411. [Google Scholar] [CrossRef] [PubMed]
- Radilov, A.S.; Shkayeva, I.E.; Solntseva, S.A.; Kondrashov, V.A.; Menshikov, N.M.; Nikulin, O.S. Experimental studies of the toxic properties of halogen-derivatives of saturated hydrocarbons (Chladons). Toxicol. Rev. 2017, 35–41. [Google Scholar] [CrossRef] [Green Version]
- Agarwal, A.K.; Berndt, W.O.; Mehendale, H.M. Possible nephrotoxic effect of carbon tetrabromide and its interaction with chlordecone. Toxicol. Lett. 1983, 17, 57–62. [Google Scholar] [CrossRef]
- Klingensmith, J.S.; Mehendale, H.M. Potentiation of CCl4 lethality by chlordecone. Toxicol. Lett. 1982, 11, 149–154. [Google Scholar] [CrossRef]
- Babaa, M.R.; Dupont-Pavlovsky, N.; McRae, E.; Masenelli-Varlot, K. Physical adsorption of carbon tetrachloride on as-produced and on mechanically opened single walled carbon nanotubes. Carbon 2004, 42, 1549–1554. [Google Scholar] [CrossRef]
- Bermudez, V.M.; Robinson, J.T. Effects of molecular adsorption on the electronic structure of single-layer graphene. Langmuir 2011, 27, 11026–11036. [Google Scholar] [CrossRef]
- Li, K.; Li, N.; Yan, N.N.; Wang, T.Y.; Zhang, Y.T.; Song, Q.; Li, H.J. Adsorption of small hydrocarbons on pristine, N-doped and vacancy graphene by DFT study. Appl. Surf. Sci. 2020, 515, 146028. [Google Scholar] [CrossRef]
- Chakarova-Kack, S.D.; Schroder, E.; Lundqvist, B.I.; Langreth, D.C. Application of van der Waals density functional to an extended system: Adsorption of benzene and naphthalene on graphite. Phys. Rev. Lett. 2006, 96, 146107. [Google Scholar] [CrossRef] [Green Version]
- Ha, M.; Kim, D.Y.; Li, N.; Madridejos, J.M.L.; Park, I.K.; Youn, I.S.; Lee, J.; Baig, C.; Filatov, M.; Min, S.K.; et al. Adsorption of carbon tetrahalides on coronene and graphene. J. Phys. Chem. C 2017, 121, 14968–14974. [Google Scholar] [CrossRef]
- Singh, D.; Kumar, A.; Kumar, D. Adsorption of small gas molecules on pure and Al-doped graphene sheet: A quantum mechanical study. Bull. Mater. Sci. 2017, 40, 1263–1271. [Google Scholar] [CrossRef] [Green Version]
- Qin, G.Q.; Cui, Q.Y.; Du, A.J.; Sun, Q. Borophene: A metal-free and metallic electrocatalyst for efficient converting CO2 into CH4. Chemcatchem 2020, 12, 1483–1490. [Google Scholar] [CrossRef]
- Bader, R.F.W.; Nguyen-Dang, T.T. Quantum theory of atoms in molecules–dalton revisited. In Advances in Quantum Chemistry; Löwdin, P.-O., Ed.; Academic Press: Cambridge, MA, USA, 1981; Volume 14, pp. 63–124. [Google Scholar]
- Henkelman, G.; Arnaldsson, A.; Jonsson, H. A fast and robust algorithm for Bader decomposition of charge density. Comp. Mater. Sci. 2006, 36, 354–360. [Google Scholar] [CrossRef]
- Kresse, G.; Furthmuller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186. [Google Scholar] [CrossRef]
- Kresse, G.; Furthmuller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comp. Mater. Sci. 1996, 6, 15–50. [Google Scholar] [CrossRef]
- Giannozzi, P.; Baroni, S.; Bonini, N.; Calandra, M.; Car, R.; Cavazzoni, C.; Ceresoli, D.; Chiarotti, G.L.; Cococcioni, M.; Dabo, I.; et al. QUANTUM ESPRESSO: A modular and open-source software project for quantum simulations of materials. J. Phys. Condens. Matter 2009, 21, 395502. [Google Scholar] [CrossRef] [PubMed]
- Giannozzi, P.; Andreussi, O.; Brumme, T.; Bunau, O.; Buongiorno Nardelli, M.; Calandra, M.; Car, R.; Cavazzoni, C.; Ceresoli, D.; Cococcioni, M.; et al. Advanced capabilities for materials modelling with Quantum ESPRESSO. J. Phys. Condens. Matter 2017, 29, 465901. [Google Scholar] [CrossRef] [Green Version]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868. [Google Scholar] [CrossRef] [Green Version]
- Vanderbilt, D. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys. Rev. B 1990, 41, 7892–7895. [Google Scholar] [CrossRef]
- Grimme, S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 2006, 27, 1787–1799. [Google Scholar] [CrossRef]
- Marzari, N.; Vanderbilt, D.; De Vita, A.; Payne, M.C. Thermal contraction and disordering of the Al(110) surface. Phys. Rev. Lett. 1999, 82, 3296–3299. [Google Scholar] [CrossRef] [Green Version]
- Kutzelnigg, W. Book review: Atoms in molecules. A quantum theory. (International Series Monographs on Chemistry, Vol. 22). By R. F. W. Bader. Angew. Chem. Int. Ed. Engl. 1993, 32, 128–129. [Google Scholar] [CrossRef]
- Momma, K.; Izumi, F. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystallogr. 2011, 44, 1272–1276. [Google Scholar] [CrossRef]
- Andreussi, O.; Dabo, I.; Marzari, N. Revised self-consistent continuum solvation in electronic-structure calculations. J. Chem. Phys. 2012, 136, 064102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
2D Nanosheets | Adsorption Site a | X = F | X = Cl | X = Br | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Eads (kcal/mol) | d (Å) | Qtb (e) | Eads (kcal/mol) | d (Å) | Qtb (e) | Eads (kcal/mol) | d (Å) | Qtb (e) | ||
Tetrel-oriented configuration | ||||||||||
β12 | T1 | −4.42 | 3.69 | −0.0309 | −7.47 | 4.09 | −0.0275 | −11.45 | 4.14 | −0.0231 |
T2 | −4.25 | 3.72 | −0.0289 | −7.69 | 4.06 | −0.0230 | −11.42 | 4.13 | −0.0080 | |
T3 | −4.14 | 3.68 | −0.0309 | −7.22 | 4.11 | −0.0275 | −11.07 | 4.17 | −0.0215 | |
H | −4.39 | 3.65 | −0.0306 | −7.21 | 4.07 | −0.0219 | −11.15 | 4.13 | −0.0115 | |
Br1 | −4.46 | 3.67 | −0.0313 | −7.74 | 4.05 | −0.0283 | −12.33 | 4.11 | −0.0263 | |
Br2 | −4.14 | 3.74 | −0.0291 | −7.15 | 4.12 | −0.0269 | −11.03 | 4.18 | −0.0175 | |
GN | T | −4.66 | 3.50 | −0.0175 | −7.32 | 3.93 | −0.0072 | −10.03 | 4.07 | 0.0036 |
Br | −4.36 | 3.57 | −0.0177 | −6.82 | 4.02 | −0.0051 | −9.49 | 4.13 | 0.0023 | |
H | −4.12 | 3.63 | −0.0168 | −6.57 | 4.06 | −0.0025 | −9.43 | 4.13 | 0.0070 | |
Halogen-oriented configuration | ||||||||||
β12 | T1 | −2.54 | 3.10 | −0.0164 | −5.14 | 3.16 | −0.0410 | −8.65 | 3.10 | −0.0654 |
T2 | −2.62 | 3.12 | −0.0149 | −4.33 | 3.26 | −0.0254 | −6.72 | 3.21 | −0.0291 | |
T3 | −2.63 | 3.06 | −0.0167 | −4.97 | 3.17 | −0.0366 | --- c | --- c | --- c | |
H | −2.71 | 2.93 | −0.0185 | −5.58 | 3.02 | −0.0321 | −9.00 | 2.98 | −0.0424 | |
Br1 | −2.46 | 3.11 | −0.0165 | −5.25 | 3.13 | −0.0413 | −8.91 | 2.98 | −0.0697 | |
Br2 | −2.69 | 3.05 | −0.0163 | −4.26 | 3.26 | −0.0258 | −6.37 | 3.24 | −0.0317 | |
GN | T | −2.46 | 3.00 | −0.0095 | −4.22 | 3.16 | −0.0149 | −6.00 | 3.17 | −0.0196 |
Br | −2.47 | 2.99 | −0.0094 | −4.18 | 3.17 | −0.0152 | −5.93 | 3.18 | −0.0174 | |
H | −2.61 | 2.89 | −0.0093 | −3.99 | 3.18 | −0.0093 | −5.54 | 3.23 | −0.0086 |
Complex a | EHOMO (eV) | ELUMO (eV) | Egap (eV) |
---|---|---|---|
Isolated systems | |||
GN Nanosheet | −2.354 | −2.343 | 0.011 |
β12 Nanosheet | −2.875 | −3.501 | −0.626 |
CF4 | −10.333 | −0.477 | 9.855 |
CCl4 | −7.416 | −2.680 | 4.735 |
CBr4 | −6.644 | −3.394 | 3.250 |
Tetrel-oriented Configuration | |||
FC-F3∙∙∙Br1@β12 | −2.734 | −3.358 | −0.625 |
ClC-Cl3∙∙∙Br1@β12 | −2.602 | −3.217 | −0.615 |
BrC-Br3∙∙∙Br1@β12 | −2.544 | −3.146 | −0.602 |
FC-F3∙∙∙T@GN | −2.202 | −2.191 | 0.0104 |
ClC-Cl3∙∙∙T@GN | −2.064 | −2.054 | 0.0107 |
BrC-Br3∙∙∙T@GN | −2.010 | −1.999 | 0.0108 |
Halogen-oriented Configuration | |||
F3C-F∙∙∙H@β12 | −2.737 | −3.364 | −0.627 |
Cl3C-Cl∙∙∙H@β12 | −2.612 | −3.237 | −0.626 |
Br3C-Br∙∙∙H@β12 | −2.564 | −3.190 | −0.626 |
F3C-F∙∙∙H@GN | −2.200 | −2.190 | 0.0104 |
Cl3C-Cl∙∙∙T@GN | −2.066 | −2.056 | 0.0104 |
Br3C-Br∙∙∙T@GN | −2.021 | −2.010 | 0.0105 |
System a | (kcal/mol) | (kcal/mol) | (kcal/mol) |
---|---|---|---|
Tetrel-oriented Configuration | |||
FC-F3∙∙∙Br1@β12 | −4.46 | −6.91 | −2.45 |
ClC-Cl3∙∙∙Br1@β12 | −7.74 | −11.21 | −3.47 |
BrC-Br3∙∙∙Br1@β12 | −12.33 | −15.99 | −3.66 |
FC-F3∙∙∙T@GN | −4.66 | −7.14 | −2.48 |
ClC-Cl3∙∙∙T@GN | −7.32 | −10.99 | −3.67 |
BrC-Br3∙∙∙T@GN | −10.03 | −14.09 | −4.06 |
Halogen-oriented Configuration | |||
F3C-F∙∙∙H@β12 | −2.71 | −4.22 | −1.51 |
ClC-Cl3∙∙∙H@β12 | −5.58 | −7.26 | −1.68 |
BrC-Br3∙∙∙H@β12 | −9.00 | −10.60 | −1.60 |
F3C-F∙∙∙H@GN | −2.61 | −4.17 | −1.56 |
Cl3C-Cl∙∙∙T@GN | −4.22 | −5.98 | −1.76 |
Br3C-Br∙∙∙T@GN | −6.00 | −7.72 | −1.72 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ibrahim, M.A.A.; Mahmoud, A.H.M.; Moussa, N.A.M.; Mekhemer, G.A.H.; Sayed, S.R.M.; Ahmed, M.N.; Abd El-Rahman, M.K.; Dabbish, E.; Shoeib, T. Adsorption Features of Tetrahalomethanes (CX4; X = F, Cl, and Br) on β12 Borophene and Pristine Graphene Nanosheets: A Comparative DFT Study. Molecules 2023, 28, 5476. https://doi.org/10.3390/molecules28145476
Ibrahim MAA, Mahmoud AHM, Moussa NAM, Mekhemer GAH, Sayed SRM, Ahmed MN, Abd El-Rahman MK, Dabbish E, Shoeib T. Adsorption Features of Tetrahalomethanes (CX4; X = F, Cl, and Br) on β12 Borophene and Pristine Graphene Nanosheets: A Comparative DFT Study. Molecules. 2023; 28(14):5476. https://doi.org/10.3390/molecules28145476
Chicago/Turabian StyleIbrahim, Mahmoud A. A., Amna H. M. Mahmoud, Nayra A. M. Moussa, Gamal A. H. Mekhemer, Shaban R. M. Sayed, Muhammad Naeem Ahmed, Mohamed K. Abd El-Rahman, Eslam Dabbish, and Tamer Shoeib. 2023. "Adsorption Features of Tetrahalomethanes (CX4; X = F, Cl, and Br) on β12 Borophene and Pristine Graphene Nanosheets: A Comparative DFT Study" Molecules 28, no. 14: 5476. https://doi.org/10.3390/molecules28145476
APA StyleIbrahim, M. A. A., Mahmoud, A. H. M., Moussa, N. A. M., Mekhemer, G. A. H., Sayed, S. R. M., Ahmed, M. N., Abd El-Rahman, M. K., Dabbish, E., & Shoeib, T. (2023). Adsorption Features of Tetrahalomethanes (CX4; X = F, Cl, and Br) on β12 Borophene and Pristine Graphene Nanosheets: A Comparative DFT Study. Molecules, 28(14), 5476. https://doi.org/10.3390/molecules28145476