Effects of Signal Peptide and Chaperone Co-Expression on Heterologous Protein Production in Escherichia coli
Abstract
:1. Introduction
2. Results and Discussion
2.1. Construction of Recombinant Plasmids
2.2. Expression of Enzymes from Bacillus and Pseudomonas in E. coli
2.3. Effects of Chaperone(s) on Proteins Production in E. coli
3. Materials and Methods
3.1. Bacterial Strains, Plasmids, and Culture Conditions
3.2. Synthesis and Cloning of Gene Encoding Full-Length (with Signal Peptide) and Mature Part of Xylanase
3.3. Synthesis and Cloning of Gene Encoding Full-Length (with Signal Peptide) and Mature Part of Glucanase
3.4. Cloning of Gene Encoding Full-Length (with Signal Peptide) and Mature Part of Mannanase
3.5. Transformation of pET24bPsBFDC, pET19bPsBADH and pEPL
3.6. Co-Transformation with the Chaperone Plasmid
3.7. Gene Expression
3.8. Protein Determination and SDS-PAGE Analysis
3.9. Enzyme Assays
3.10. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Larrick, J.W.; Thomas, D.W. Producing proteins in transgenic plants and animals. Curr. Opin. Biotechnol. 2001, 12, 411–418. [Google Scholar] [CrossRef]
- Schmidt, F.R. Recombinant expression systems in the pharmaceutical industry. Appl. Microbiol. Biotechnol. 2004, 65, 363–372. [Google Scholar] [CrossRef]
- Terpe, K. Overview of bacterial expression systems for heterologous protein production: From molecular and biochemical fundamentals to commercial systems. Appl. Microbiol. Biotechnol. 2006, 72, 211–222. [Google Scholar] [CrossRef]
- Nishihara, K.; Kanemori, M.; Yanagi, H.; Yura, T. Overexpression of trigger factor prevents aggregation of recombinant proteins in Escherichia coli. Appl. Environ. Microbiol. 2000, 66, 884–889. [Google Scholar] [CrossRef] [Green Version]
- Ewalt, K.L.; Hendrick, J.P.; Houry, W.A.; Hartl, F.U. In vivo observation of polypeptide flux through the bacterial chaperonin system. Cell. 1997, 90, 491–500. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, H.C.; Sherman, M.Y.; Kandror, O.; Goldberg, A.L. The molecular chaperone DnaJ is required for the degradation of a soluble abnormal protein in Escherichia coli. J. Biol. Chem. 2001, 276, 3920–3928. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paice, M.G.; Gurnagul, N.; Page, D.H.; Jurasek, L. Mechanism of hemicellulose-directed prebleaching of kraft pulps. Enzym. Microb. Technol. 1992, 14, 272–276. [Google Scholar] [CrossRef]
- Bruhlmann, F.; Leupin, M.; Erismann, K.H.; Fiechter, A. Enzymatic degumming of ramie bast fibers. J. Biotechnol. 2000, 76, 43–50. [Google Scholar] [CrossRef] [PubMed]
- Polizeli, M.L.; Rizzatti, A.C.; Monti, R.; Terenzi, H.F.; Jorge, J.A.; Amorim, D.S. Xylanases from fungi: Properties and industrial applications. Appl. Microbiol. Biotechnol. 2005, 67, 577–591. [Google Scholar] [CrossRef]
- Heck, J.X.; de Barros Soares, L.H.; Ayub, M.A.Z. Optimization of xylanase and mannanase production by Bacillus circulans strain BL53 on solid-state cultivation. Enzym. Microb. Technol. 2005, 37, 417–423. [Google Scholar] [CrossRef]
- Minic, Z.; Jouanin, L. Plant glycoside hydrolases involved in cell wall polysaccharide degradation. Plant Physiol. Biochem. 2006, 44, 435–449. [Google Scholar] [CrossRef]
- Moreira, L.R.; Filho, E.X. An overview of mannan structure and mannan-degrading enzyme systems. Appl. Microbiol. Biotechnol. 2008, 79, 165–178. [Google Scholar] [CrossRef] [PubMed]
- McLeish, M.J.; Kneen, M.M.; Gopalakrishna, K.N.; Koo, C.W.; Babbitt, P.C.; Gerlt, J.A.; Kenyon, G.L. Identification and characterization of a mandelamide hydrolase and an NAD(P)+-dependent benzaldehyde dehydrogenase from Pseudomonas putida ATCC 12633. J. Bacteriol. 2003, 185, 2451–2456. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sprenger, G.A.; Pohl, M. Synthetic potential of thiamin diphosphate-dependent enzymes. J. Mol. Catal. B Enzym. 1999, 6, 145–159. [Google Scholar] [CrossRef]
- Saehuan, C.; Rojanarata, T.; Wiyakrutta, S.; McLeish, M.J.; Meevootisom, V. Isolation and characterization of a benzoylformate decarboxylase and a NAD+/NADP+-dependent benzaldehyde dehydrogenase involved in d-phenylglycine metabolism in Pseudomonas stutzeri ST-201. Biochim. Biophys. Acta 2007, 1770, 1585–1592. [Google Scholar] [CrossRef]
- Iding, H.; Dunnwald, T.; Greiner, L.; Liese, A.; Muller, M.; Siegert, P.; Grotzinger, J.; Demir, A.S.; Pohl, M. Benzoylformate decarboxylase from Pseudomonas putida as stable catalyst for the synthesis of chiral 2-hydroxy ketones. Chemistry 2000, 6, 1483–1495. [Google Scholar] [CrossRef]
- Wildermuth, M.C. Variations on a theme: Synthesis and modification of plant benzoic acids. Curr. Opin. Plant Biol. 2006, 9, 288–296. [Google Scholar] [CrossRef]
- Khampha, W.; Meevootisom, V.; Wiyakrutta, S. Spectrophotometric enzymatic cycling method using L-glutamate dehydrogenase and d-phenylglycine aminotransferase for determination of L-glutamate in foods. Anal. Chim. Acta 2004, 520, 133–139. [Google Scholar] [CrossRef]
- Jomrit, J.; Isarangkul, D.; Summpunn, P.; Wiyakrutta, S. A kinetic spectrophotometric method for the determination of pyridoxal-5’-phosphate based on coenzyme activation of apo-d-phenylglycine aminotransferase. Enzyme Microb. Technol. 2018, 117, 64–71. [Google Scholar] [CrossRef]
- Kongsaeree, P.; Samanchart, C.; Laowanapiban, P.; Wiyakrutta, S.; Meevootisom, V. Crystallization and preliminary X-ray crystallographic analysis of d-phenylglycine aminotransferase from Pseudomonas stutzeri ST201. Acta Crystallogr. D Biol. Crystallogr. 2003, 59, 953–954. [Google Scholar] [CrossRef] [Green Version]
- Chaudhuri, T.K.; Verma, V.K.; Maheshwari, A. GroEL assisted folding of large polypeptide substrates in Escherichia coli: Present scenario and assignments for the future. Prog. Biophys. Mol. Biol. 2009, 99, 42–50. [Google Scholar] [CrossRef] [PubMed]
- Tjalsma, H.; Bolhuis, A.; Jongbloed, J.D.; Bron, S.; van Dijl, J.M. Signal peptide-dependent protein transport in Bacillus subtilis: A genome-based survey of the secretome. Microbiol. Mol. Biol. Rev. 2000, 64, 515–547. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Freudl, R. Signal peptides for recombinant protein secretion in bacterial expression systems. Microb. Cell Factories 2018, 17, 52. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tsirigotaki, A.; De Geyter, J.; Šoštarić, N.; Economou, A.; Karamanou, S. Protein export through the bacterial Sec pathway. Nat. Rev. Microbiol. 2017, 15, 21–36. [Google Scholar] [CrossRef]
- Yang, D.; Weng, H.; Wang, M.; Xu, W.; Li, Y.; Yang, H. Cloning and expression of a novel thermostable cellulase from newly isolated Bacillus subtilis strain I15. Mol. Biol. Rep. 2010, 37, 1923–1929. [Google Scholar] [CrossRef]
- Jalal, A.; Rashid, N.; Rasool, N.; Akhtar, M. Gene cloning and characterization of a xylanase from a newly isolated Bacillus subtilis strain R5. J. Biosci. Bioeng. 2009, 107, 360–365. [Google Scholar] [CrossRef]
- Summpunn, P.; Chaijan, S.; Isarangkul, D.; Wiyakrutta, S.; Meevootisom, V. Characterization, gene cloning, and heterologous expression of [beta]-mannanase from a thermophilic Bacillus subtilis. J. Microbiol. 2011, 49, 86–93. [Google Scholar] [CrossRef]
- Chalmers, R.M.; Scott, A.J.; Fewson, C.A. Purification of the benzyl alcohol dehydrogenase and benzaldehyde dehydrogenase encoded by the TOL plasmid pWW53 of Pseudomonas putida MT53 and their preliminary comparison with benzyl alcohol dehydrogenase and benzaldehyde dehydrogenases I and II from Acinetobacter calcoaceticus. Microbiology 1990, 136, 637–643. [Google Scholar]
- Wiyakrutta, S.; Meevootisom, V. A stereo-inverting d-phenylglycine aminotransferase from Pseudomonas stutzeri ST-201: Purification, characterization and application for d-phenylglycine synthesis. J. Biotechnol. 1997, 55, 193–203. [Google Scholar] [CrossRef]
- Martínez-Alonso, M.; García-Fruitós, E.; Ferrer-Miralles, N.; Rinas, U.; Villaverde, A. Side effects of chaperone gene co-expression in recombinant protein production. Microb. Cell Factories 2010, 9, 64. [Google Scholar] [CrossRef] [Green Version]
- Yoshimune, K.; Ninomiya, Y.; Wakayama, M.; Moriguchi, M. Molecular chaperones facilitate the soluble expression of N-acyl-D-amino acid amidohydrolases in Escherichia coli. J. Ind. Microbiol. Biotechnol. 2004, 31, 421–426. [Google Scholar] [CrossRef] [PubMed]
- Baneyx, F.; Mujacic, M. Recombinant protein folding and misfolding in Escherichia coli. Nat. Biotechnol. 2004, 22, 1399–1408. [Google Scholar] [CrossRef] [PubMed]
- Deuerling, E.; Patzelt, H.; Vorderwulbecke, S.; Rauch, T.; Kramer, G.; Schaffitzel, E.; Mogk, A.; Schulze-Specking, A.; Langen, H.; Bukau, B. Trigger Factor and DnaK possess overlapping substrate pools and binding specificities. Mol. Microbiol. 2003, 47, 1317–1328. [Google Scholar] [CrossRef] [Green Version]
- Hartl, F.U.; Hayer-Hartl, M. Molecular chaperones in the cytosol: From nascent chain to folded protein. Science 2002, 295, 1852–1858. [Google Scholar] [CrossRef] [Green Version]
- Teter, S.A.; Houry, W.A.; Ang, D.; Tradler, T.; Rockabrand, D.; Fischer, G.; Blum, P.; Georgopoulos, C.; Hartl, F.U. Polypeptide flux through bacterial Hsp70: DnaK cooperates with trigger factor in chaperoning nascent chains. Cell 1999, 97, 755–765. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eicholt, L.A.; Aubel, M.; Berk, K.; Bornberg-Bauer, E.; Lange, A. Heterologous expression of naturally evolved putative de novo proteins with chaperones. Protein Sci. 2022, 31, e4371. [Google Scholar] [CrossRef]
- Haacke, A.; Fendrich, G.; Ramage, P.; Geiser, M. Chaperone over-expression in Escherichia coli: Apparent increased yields of soluble recombinant protein kinases are due mainly to soluble aggregates. Protein Expr. Purif. 2009, 64, 185–193. [Google Scholar] [CrossRef]
- Pope, B.; Kent, H.M. High efficiency 5 min transformation of Escherichia coli. Nucleic Acids Res. 1996, 24, 536–537. [Google Scholar] [CrossRef] [Green Version]
- Nishihara, K.; Kanemori, M.; Kitagawa, M.; Yanagi, H.; Yura, T. Chaperone coexpression plasmids: Differential and synergistic roles of DnaK-DnaJ-GrpE and GroEL-GroES in assisting folding of an allergen of Japanese cedar pollen, Cryj2, in Escherichia coli. Appl. Environ. Microbiol. 1998, 64, 1694–1699. [Google Scholar] [CrossRef] [Green Version]
- Laemmli, U.K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 1970, 227, 680–685. [Google Scholar] [CrossRef]
- Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef] [PubMed]
- Ghose, T.K. Measurement of cellulase activities. Pure Appl. Chem. 1987, 59, 257–268. [Google Scholar] [CrossRef]
- Hegeman, G.D. Benzoylformate decarboxylase (Pseudomonas putida). Meth. Enzymol. 1970, 17, 674–678. [Google Scholar]
- Summpunn, P.; Jomrit, J.; Panbangred, W. Improvement of extracellular bacterial protein production in Pichia pastoris by co-expression of endoplasmic reticulum residing GroEL–GroES. J. Biosci. Bioeng. 2018, 125, 268–274. [Google Scholar] [CrossRef] [PubMed]
Enzymes Activities (U·L−1·OD600−1) | |||||||
---|---|---|---|---|---|---|---|
Plasmid | Description | Chaperones Plasmid | |||||
None | pG-KJE8 (GroEL-GroES, DnaK-DnaJ-GrpE) | pGro7 (GroEL-GroES) | pKJE7 (DnaK-DnaJ-GrpE) | pG-Tf2 (GroEL-GroES, Tf) | pTf16 (Tf) | ||
pEXynhis | Xylanase with SP (spXyn) | 1.32 ± 0.04 a | 7.74 ± 0.15 b | 38.74 ± 1.17 c | 15.78 ± 0.39 d | 0.54 ± 0.01 e | 0.94 ± 0.02 f |
pEmXynhis | Xylanase without SP (Xyn) | 1468.64 ± 90.66 *,a | 5002.20 ± 323.16 *,b | 5083.08 ± 409.19 *,b | 748.90 ± 87.68 *,c | 3705.46 ± 372.74 *,d | 753.91 ± 99.01 *,c |
pECelhis | Glucanase with SP (spCel) | 660.18 ± 38.48 a | 318.51 ± 8.11 b | 423.05 ± 26.31 c | 472.55 ± 33.46 d | 525.53 ± 56.60 d | 428.72 ± 16.22 c |
pEmCelhis | Glucanase without SP (Cel) | 1154.95 ± 58.66 *,a | 1068.83 ± 73.89 *,b | 964.79 ± 30.40 *,c | 1077.41 ± 63.79 *,b | 1211.92 ± 10.12 *,a | 1048.72 ± 18.19 *,b |
pEManAhis | Mannanase with SP (spMan) | 27,620.03 ± 3029.29 a | 19,500.94 ± 2404.23 b | 20,113.83 ± 2402.98 c | 13,954.43 ± 1866.52 d | 15,864.20 ± 1422.00 e | 28,100.02 ± 2489.88 a |
pEmManAhis | Mannanase without SP (Man) | 30,989.45 ± 2704.37 a | 44,512.17 ± 4575.60 *,b | 47,498.04 ± 4225.01 *,c | 40,933.50 ± 4275.97 *,d | 21,618.66 ± 2397.71 *,e | 21,575.18 ± 2139.69 *,e |
pET24bPsBFDC | Benzoylformate decarboxylase (BFDC) # | 3.80 ± 0.01 a | 3.91 ± 0.15 a | 18.77 ± 0.43 b | 0.96 ± 0.15 c | 4.91 ± 0.13 d | 7.50 ± 0.15 e |
pE19bPsBADH | Benzaldehyde dehydrogenase (BADH) | 1136.89 ± 36.76 a | 346.93 ± 1.06 b | 1486.04 ± 13.15 c | 641.93 ± 10.52 d | 288.11 ± 3.91 e | 1129.90 ± 47.30 a |
pEPL | d-phenylglycine aminotransferase (d-PhgAT) | 0.43 ± 0.01 a | 9.49 ± 0.31 b | 16.31 ± 0.74 c | 1.70 ± 0.52 d | 0.25 ± 0.03 e | 3.00 ± 0.17 f |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jomrit, J.; Suhardi, S.; Summpunn, P. Effects of Signal Peptide and Chaperone Co-Expression on Heterologous Protein Production in Escherichia coli. Molecules 2023, 28, 5594. https://doi.org/10.3390/molecules28145594
Jomrit J, Suhardi S, Summpunn P. Effects of Signal Peptide and Chaperone Co-Expression on Heterologous Protein Production in Escherichia coli. Molecules. 2023; 28(14):5594. https://doi.org/10.3390/molecules28145594
Chicago/Turabian StyleJomrit, Juntratip, Suhardi Suhardi, and Pijug Summpunn. 2023. "Effects of Signal Peptide and Chaperone Co-Expression on Heterologous Protein Production in Escherichia coli" Molecules 28, no. 14: 5594. https://doi.org/10.3390/molecules28145594
APA StyleJomrit, J., Suhardi, S., & Summpunn, P. (2023). Effects of Signal Peptide and Chaperone Co-Expression on Heterologous Protein Production in Escherichia coli. Molecules, 28(14), 5594. https://doi.org/10.3390/molecules28145594