Recent Advances in Fluorescent Nanoprobes for Food Safety Detection
Abstract
:1. Introduction
2. Fluorescent Nanoprobes
3. Applications in Food Safety Detection
3.1. Pesticides
3.2. Veterinary Drugs
3.3. Heavy Metals
3.4. Microorganisms
3.5. Mycotoxins
3.6. Others
4. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Chen, H.; Zhang, L.; Hu, Y.; Zhou, C.; Lan, W.; Fu, H.; She, Y. Nanomaterials as optical sensors for application in rapid detection of food contaminants, quality and authenticity. Sens. Actuators B-Chem. 2021, 329, 129135. [Google Scholar] [CrossRef]
- Mishra, S.; Mishra, S.; Patel, S.S.; Singh, S.P.; Kumar, P.; Khan, M.A.; Awasthi, H.; Singh, S. Carbon nanomaterials for the detection of pesticide residues in food: A review. Environ. Pollut. 2022, 310, 119804. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Ying, G.-G.; Deng, W.-J. Antibiotic Residues in Food: Extraction, Analysis, and Human Health Concerns. J. Agric. Food. Chem. 2019, 67, 7569–7586. [Google Scholar] [CrossRef]
- Li, Y. Migration of metals from ceramic food contact materials. 1: Effects of pH, temperature, food simulant, contact duration and repeated-use. Food Packag. Shelf 2020, 24, 100493. [Google Scholar] [CrossRef]
- Ferrero, A.; Zanchini, R.; Ferrocino, I.; D’Ambrosio, S.; Nucera, D.M. Consumers and food safety: Application of m Tableetataxonomic analyses and multivariate statistics in order to identify behaviours affecting microbial contaminations in household kitchens. Food Control 2022, 141, 109158. [Google Scholar] [CrossRef]
- Kalita, J.J.; Sharma, P.; Bora, U. Recent developments in application of nucleic acid aptamer in food safety. Food Control 2023, 145, 109406. [Google Scholar] [CrossRef]
- Wang, X.; Nag, R.; Brunton, N.P.; Siddique, M.A.B.; Harrison, S.M.; Monahan, F.J.; Cummins, E. A probabilistic approach to model bisphenol A (BPA) migration frompackaging to meat products. Sci. Total Environ. 2023, 854, 158815. [Google Scholar] [CrossRef]
- Girame, R.; Shabeer, T.P.A.; Ghosh, B.; Hingmire, S.; Natarajan, R.; Dubey, P.N. Multi-residue method validation and safety evaluation of pesticide residues in seed spices cumin (Cuminum cyminum) and coriander (Coriandrum sativum) by gas chromatography tandem mass spectrometry (GC-MS/MS). Food Chem. 2022, 374, 131782. [Google Scholar] [CrossRef] [PubMed]
- Saito-Shida, S.; Saito, M.; Nemoto, S.; Tsutsumi, T. GC-MS/MS method for determining quizalofop ethyl, quizalofop tefuryl, and their metabolites in foods. J. Food Compos. Anal. 2023, 115, 105011. [Google Scholar] [CrossRef]
- Du, Y.; Wang, Q.; Yang, G.; Han, F. Determination of 43 pesticide residues in intact grape berries (Vitis vinifera L.) by using an ultrasound-assisted acetonitrile extraction method followed by LC-MS/MS. Food Control 2022, 140, 109123. [Google Scholar] [CrossRef]
- Jung, Y.S.; Kim, D.-B.; Nam, T.G.; Seo, D.; Yoo, M. Identification and quantification of multi-class veterinary drugs and their metabolites in beef using LC-MS/MS. Food Chem. 2022, 382, 132313. [Google Scholar] [CrossRef] [PubMed]
- Al Tamim, A.; Alzahrani, S.; Al-Subaie, S.; Almutairi, M.A.; Al Jaber, A.; Alowaifeer, A.M. Fast simultaneous determination of 23 veterinary drug residues in fish, poultry, and red meat by liquid chromatography/tandem mass spectrometry. Arab. J. Chem. 2022, 15, 104116. [Google Scholar] [CrossRef]
- Tiris, G.; Yanikoglu, R.S.; Ceylan, B.; Egeli, D.; Tekkeli, E.K.; Onal, A. A review of the currently developed analytical methods for the determination of biogenic amines in food products. Food Chem. 2023, 398, 133919. [Google Scholar] [CrossRef]
- Zhang, J.; Cheng, F.; Li, J.; Zhu, J.-J.; Lu, Y. Fluorescent nanoprobes for sensing and imaging of metal ions: Recent advances and future perspectives. Nano Today 2016, 11, 309–329. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gidwani, B.; Sahu, V.; Shukla, S.S.; Pandey, R.; Joshi, V.; Jain, V.K.; Vyas, A. Quantum dots: Prospectives, toxicity, advances and applications. J. Drug Deliv. Sci. Technol. 2021, 61, 102308. [Google Scholar] [CrossRef]
- Chen, G.; Qju, H.; Prasad, P.N.; Chen, X. Upconversion Nanoparticles: Design, Nanochemistry, and Applications in Theranostics. Chem. Rev. 2014, 114, 5161–5214. [Google Scholar] [CrossRef]
- Dubey, N.; Chandra, S. Upconversion nanoparticles: Recent strategies and mechanism based applications. J. Rare Earths 2022, 40, 1343–1359. [Google Scholar] [CrossRef]
- Chen, C.; Lei, H.; Liu, N.; Yan, H. An aptasensor for ampicillin detection in milk by fluorescence resonance energy transfer between upconversion nanoparticles and Au nanoparticles. Food Chem. X 2022, 15, 100439. [Google Scholar] [CrossRef]
- Hua, Z.; Yu, T.; Liu, D.; Xianyu, Y. Recent advances in gold nanoparticles-based biosensors for food safety detection. Biosens. Bioelectron. 2021, 179, 113076. [Google Scholar] [CrossRef]
- Yang, T.; Luo, Z.; Tian, Y.; Qian, C.; Duan, Y. Design strategies of AuNPs-based nucleic acid colorimetric biosensors. TrAC-Trends Anal. Chem. 2020, 124, 115795. [Google Scholar] [CrossRef]
- Renz, M. Fluorescence microscopy-A historical and technical perspective. Cytom. Part A 2013, 83, 767–779. [Google Scholar] [CrossRef] [PubMed]
- Bui The, H.; Thangadurai, D.T.; Sharipov, M.; Nghia, N.N.; Nguyen Van, C.; Lee, Y.-I. Recent advances in turn off-on fluorescence sensing strategies for sensitive biochemical analysis- A mechanistic approach. Microchem. J. 2022, 179, 107511. [Google Scholar] [CrossRef]
- Zhang, Y.; Tang, H.; Chen, W.; Zhang, J. Nanomaterials Used in Fluorescence Polarization Based Biosensors. Int. J. Mol. Sci. 2022, 23, 8625. [Google Scholar] [CrossRef] [PubMed]
- Ng, S.M.; Koneswaran, M.; Narayanaswamy, R. A review on fluorescent inorganic nanoparticles for optical sensing applications. RSC Adv. 2016, 6, 21624–21661. [Google Scholar] [CrossRef]
- Selvin, P.R. The renaissance of fluorescence resonance energy transfer. Nat. Struct. Biol. 2000, 7, 730–734. [Google Scholar] [CrossRef]
- Muhr, V.; Wuerth, C.; Kraft, M.; Buchner, M.; Baeumner, A.J.; Resch-Genger, U.; Hirsch, T. Particle-Size-Dependent Forster Resonance Energy Transfer from Upconversion Nanoparticles to Organic Dyes. Anal. Chem. 2017, 89, 4868–4874. [Google Scholar] [CrossRef]
- Sharma, S.; Ghosh, K.S. Recent advances (2017–20) in the detection of copper ion by using fluorescence sensors working through transfer of photo-induced electron (PET), excited-state intramolecular proton (ESIPT) and Forster resonance energy (FRET). Spectroc. Acta Pt. A-Molec. Biomolec. Spectr. 2021, 254, 119610. [Google Scholar] [CrossRef]
- Xiong, Y.; Zhou, L.; Peng, X.; Li, H.; Wang, H.; He, L.; Huang, P. A specific short peptide-assisted enhanced chemiluminescence resonance energy transfer (CRET) for label-free and ratiometric detection of copper ions in complex samples. Sens. Actuators B-Chem. 2020, 320, 128411. [Google Scholar] [CrossRef]
- Jo, E.-J.; Mun, H.; Kim, S.-J.; Shim, W.-B.; Kim, M.-G. Detection of ochratoxin A (OTA) in coffee using chemiluminescence resonance energy transfer (CRET) aptasensor. Food Chem. 2016, 194, 1102–1107. [Google Scholar] [CrossRef]
- Hu, M.-H. Pyrazine-based G-quadruplex fluorescent probes: Transformation between aggregation-induced emission and disaggregation-induced emission via slight variations in structures. Sens. Actuators B-Chem. 2021, 328, 128990. [Google Scholar] [CrossRef]
- Fahimi-Kashani, N.; Hormozi-Nezhad, M.R. A smart-phone based ratiometric nanoprobe for label-free detection of methyl parathion. Sens. Actuators B-Chem. 2020, 322, 128580. [Google Scholar] [CrossRef]
- Shahdost-fard, F.; Fahimi-Kashani, N.; Hormozi-nezhad, M.R. A ratiometric fluorescence nanoprobe using CdTe QDs for fast detection of carbaryl insecticide in apple. Talanta 2021, 221, 121467. [Google Scholar] [CrossRef]
- Guo, Y.; Zou, R.; Si, F.; Liang, W.; Zhang, T.; Chang, Y.; Qiao, X.; Zhao, J. A sensitive immunoassay based on fluorescence resonance energy transfer from up-converting nanoparticles and graphene oxide for one-step detection of imidacloprid. Food Chem. 2021, 335, 127609. [Google Scholar] [CrossRef] [PubMed]
- Sheng, W.; Shi, Y.; Ma, J.; Wang, L.; Zhang, B.; Chang, Q.; Duan, W.; Wang, S. Highly sensitive atrazine fluorescence immunoassay by using magnetic separation and upconversion nanoparticles as labels. Microchim. Acta 2019, 186, 564. [Google Scholar] [CrossRef] [PubMed]
- Lu, X.; Fan, Z. RecJf exonuclease-assisted fluorescent self-assembly aptasensor for supersensitive detection of pesticides in food. J. Lumin. 2020, 226, 117469. [Google Scholar] [CrossRef]
- Bala, R.; Swami, A.; Tabujew, I.; Peneva, K.; Wangoo, N.; Sharma, R.K. Ultra-sensitive detection of malathion using quantum dots-polymer based fluorescence aptasensor. Biosens. Bioelectron. 2018, 104, 45–49. [Google Scholar] [CrossRef]
- Jia, L.; Zhang, Y.; Zhu, T.; Xu, J. Study on visual multicolor intelligent detection of tetracycline antibiotics in various environmental samples by palygorskite-based fluorescent nano-probe. Colloids Surf. Physicochem. Eng. Aspects 2022, 642, 128690. [Google Scholar] [CrossRef]
- Lian, N.; Zhang, Y.; Liu, D.; Tang, J.; Wu, H. Copper nanoclusters as a turn-on fluorescent probe for sensitive and selective detection of quinolones. Microchem. J. 2021, 164, 105989. [Google Scholar] [CrossRef]
- Bunkoed, O.; Raksawong, P.; Chaowana, R.; Nurerk, P. A nanocomposite probe of graphene quantum dots and magnetite nanoparticles embedded in a selective polymer for the enrichment and detection of ceftazidime. Talanta 2020, 218, 121168. [Google Scholar] [CrossRef]
- Liu, Y.; Lu, Q.; Hu, X.; Wang, H.; Li, H.; Zhang, Y.; Yao, S. A Nanosensor Based on Carbon Dots for Recovered Fluorescence Detection Clenbuterol in Pork Samples. J. Fluoresc. 2017, 27, 1847–1853. [Google Scholar] [CrossRef]
- Narimani, S.; Samadi, N. Rapid trace analysis of ceftriaxone using new fluorescent carbon dots as a highly sensitive turn-off nanoprobe. Microchem. J. 2021, 168, 106372. [Google Scholar] [CrossRef]
- Hao, A.-Y.; Wang, X.-Q.; Mei, Y.-Z.; Nie, J.-F.; Yang, Y.-Q.; Dai, C.-C. A smartphone-combined ratiometric fluorescence probe for specifically and visibly detecting cephalexin. Spectroc. Acta Pt. A-Molec. Biomolec. Spectr. 2021, 249, 119310. [Google Scholar] [CrossRef] [PubMed]
- Jiao, Z.; Zhang, P.; Chen, H.; Li, C.; Chen, L.; Fan, H.; Cheng, F. Differentiation of heavy metal ions by fluorescent quantum dot sensor array in complicated samples. Sens. Actuators B-Chem. 2019, 295, 110–116. [Google Scholar] [CrossRef]
- Yuan, Y.; Chen, X.; Chen, Q.; Jiang, G.; Wang, H.; Wang, J. New switch on fluorescent probe with AIE characteristics for selective and reversible detection of mercury ion in aqueous solution. Anal. Biochem. 2019, 585, 113403. [Google Scholar] [CrossRef]
- Hou, L.; Song, Y.; Xiao, Y.; Wu, R.; Wang, L. ZnMOF-74 responsive fluorescence sensing platform for detection of Fe3+. Microchem. J. 2019, 150, 104154. [Google Scholar] [CrossRef]
- Yang, S.; Fan, W.; Wang, D.; Gong, Z.; Fan, M. Fluorescence analysis of cobalt(ii) in water with beta-cyclodextrin modified Mn-doped ZnS quantum dots. Anal. Methods 2019, 11, 3829–3836. [Google Scholar] [CrossRef]
- Song, Y.; Wang, L.; Zhao, J.; Li, H.; Yang, X.; Fu, S.; Qin, X.; Chen, Q.; Jiang, Y.; Man, C. A novel colorimetric sensor using aptamers to enhance peroxidase-like property of gold nanoclusters for detection of Escherichia coli O157:H7 in milk. Int. Dairy J. 2022, 128, 105318. [Google Scholar] [CrossRef]
- Li, L.; Li, Q.; Liao, Z.; Sun, Y.; Cheng, Q.; Song, Y.; Song, E.; Tan, W. Magnetism-Resolved Separation and Fluorescence Quantification for Near-Simultaneous Detection of Multiple Pathogens. Anal. Chem. 2018, 90, 9621–9628. [Google Scholar] [CrossRef]
- Fu, L.; Chen, Q.; Jia, L. Carbon dots and gold nanoclusters assisted construction of a ratiometric fluorescent biosensor for detection of Gram-negative bacteria. Food Chem. 2022, 374, 131750. [Google Scholar] [CrossRef]
- Chen, Q.; Gao, R.; Jia, L. Enhancement of the peroxidase-like activity of aptamers modified gold nanoclusters by bacteria for colorimetric detection of Salmonella typhimurium. Talanta 2021, 221, 121476. [Google Scholar] [CrossRef]
- Dehghani, Z.; Mohammadnejad, J.; Hosseini, M.; Bakhshi, B.; Rezayan, A.H. Whole cell FRET immunosensor based on graphene oxide and graphene dot for Campylobacter jejuni detection. Food Chem. 2020, 309, 125690. [Google Scholar] [CrossRef] [PubMed]
- Jia, B.; Liao, X.; Sun, C.; Fang, L.; Zhou, L.; Kong, W. Development of a quantum dot nanobead-based fluorescent strip immunosensor for on-site detection of aflatoxin B1 in lotus seeds. Food Chem. 2021, 356, 129614. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Li, W.; Shen, P.; Liu, R.; Li, Y.; Xu, J.; Zheng, Q.; Zhang, Y.; Li, J.; Zheng, T. Aptamer fluorescence signal recovery screening for multiplex mycotoxins in cereal samples based on photonic crystal microsphere suspension array. Sens. Actuators B-Chem. 2017, 248, 351–358. [Google Scholar] [CrossRef]
- Chen, Q.; Hu, W.; Sun, C.; Li, H.; Ouyang, Q. Synthesis of improved upconversion nanoparticles as ultrasensitive fluorescence probe for mycotoxins. Anal. Chim. Acta 2016, 938, 137–145. [Google Scholar] [CrossRef]
- Tianyi, Q.; Xiongfei, Z.; Chao, S.; Taoyuze, L.; Shihong, C.; Zhiqiang, X.; Zhongyong, X.; Zhixiang, Z.; Hanhong, X.; Chen, Z.; et al. A ratiometric supramolecular fluorescent probe for on-site determination of cyfluthrin in real food samples. Chem. Eng. J. 2023, 451, 139022. [Google Scholar] [CrossRef]
- Celeste Rodriguez, M.; Hugo Sanchez, G.; Silvina Sobrero, M.; Violeta Schenone, A.; Raquel Marsili, N. Determination of mycotoxins (aflatoxins and ochratoxin A) using fluorescence emission-excitation matrices and multivariate calibration. Microchem. J. 2013, 110, 480–484. [Google Scholar] [CrossRef]
- Wang, X.; Long, C.; Jiang, Z.; Qing, T.; Zhang, K.; Zhang, P.; Feng, B. In situ synthesis of fluorescent copper nanoclusters for rapid detection of ascorbic acid in biological samples. Anal. Methods 2019, 11, 4580–4585. [Google Scholar] [CrossRef]
- Yan, X.; He, L.; Zhou, C.; Qian, Z.-J.; Hong, P.; Sun, S.; Li, C. Fluorescent detection of ascorbic acid using glutathione stabilized Au nanoclusters. Chem. Phys. 2019, 522, 211–213. [Google Scholar] [CrossRef]
- Liu, X.; Tian, M.; Li, C.; Tian, F. Polyvinylpyrrolidone-stabilized Pt nanoclusters as robust oxidase mimics for selective detection of ascorbic acid. Colloids Surf. Physicochem. Eng. Asp. 2021, 625, 126985. [Google Scholar] [CrossRef]
- Zhu, J.; Zhao, Z.-J.; Li, J.-J.; Zhao, J.W. Fluorescent detection of ascorbic acid based on the emission wavelength shift of CdTe quantum dots. J. Lumin. 2017, 192, 47–55. [Google Scholar] [CrossRef]
- Yue, X.; Pan, Q.; Zhou, J.; Ren, H.; Peng, C.; Wang, Z.; Zhang, Y. A simplified fluorescent lateral flow assay for melamine based on aggregation induced emission of gold nanoclusters. Food Chem. 2022, 385, 132670. [Google Scholar] [CrossRef]
- Qu, F.; Xu, X.; You, J. A new dual-emission fluorescence sensor based on carbon nanodots and gold nanoclusters for the detection of melamine. New J. Chem. 2017, 41, 9438–9443. [Google Scholar] [CrossRef]
- Kalaiyarasan, G.; Anusuya, K.; Joseph, J. Melamine dependent fluorescence of glutathione protected gold nanoclusters and ratiometric quantification of melamine in commercial cow milk and infant formula. Appl. Surf. Sci. 2017, 420, 963–969. [Google Scholar] [CrossRef]
- Wang, Q.; Zhang, D. A novel fluorescence sensing method based on quantum dot-graphene and a molecular imprinting technique for the detection of tyramine in rice wine. Anal. Methods 2018, 10, 3884–3889. [Google Scholar] [CrossRef]
- Li, W.; Shi, Y.; Hu, X.; Li, Z.; Huang, X.; Holmes, M.; Gong, Y.; Shi, J.; Zou, X. Visual detection of nitrite in sausage based on a ratiometric fluorescent system. Food Control 2019, 106, 106704. [Google Scholar] [CrossRef]
- Sheng, W.; Liu, Y.; Li, S.; Lu, Y.; Chang, Q.; Zhang, Y.; Wang, S. Lateral Flow Quantum-Dot-Based Immunochromatographic Assay and Fluorescence Quenching Immunochromatographic Assay with Quantum Dots as Fluorescence Donors to Visually Detect Bisphenol A in Food and Water Samples. Food Anal. Meth. 2018, 11, 675–685. [Google Scholar] [CrossRef]
- Chen, Y.; Fan, Q.-L.; Wang, P.; Zhang, B.; Huang, Y.-Q.; Zhang, G.-W.; Lu, X.-M.; Chan, H.S.O.; Huang, W. A bipyridine-containing water-soluble conjugated polymer: Highly efficient fluorescence chemosensor for convenient transition metal ion detection in aqueous solution. Polymer 2006, 47, 5228–5232. [Google Scholar] [CrossRef]
- Delatour, T.; Racault, L.; Bessaire, T.; Desmarchelier, A. Screening of veterinary drug residues in food by LC-MS/MS. Background and challenges. Food Addit. Contam. Part A-Chem. 2018, 35, 632–645. [Google Scholar] [CrossRef] [PubMed]
- Hou, J.; Long, X.; Wang, X.; Li, L.; Mao, D.; Luo, Y.; Ren, H. Global trend of antimicrobial resistance in common bacterial pathogens in response to antibiotic consumption. J. Hazard. Mater. 2023, 442, 130042. [Google Scholar] [CrossRef] [PubMed]
- Li, G.; Zhang, X.; Zheng, F.; Liu, J.; Wu, D. Emerging nanosensing technologies for the detection of beta-agonists. Food Chem. 2020, 332, 127431. [Google Scholar] [CrossRef]
- Zheng, M.; Tan, H.; Xie, Z.; Zhang, L.; Jing, X.; Sun, Z. Fast Response and High Sensitivity Europium Metal Organic Framework Fluorescent Probe with Chelating Terpyridine Sites for Fe3+. ACS Appl. Mater. Interfaces 2013, 5, 1078–1083. [Google Scholar] [CrossRef]
- Qi, C.-X.; Xu, Y.-B.; Li, H.; Chen, X.-B.; Xu, L.; Liu, B. A highly sensitive and selective turn-off fluorescence sensor for Fe3+ detection based on a terbium metal-organic framework. J. Solid State Chem. 2021, 294, 121835. [Google Scholar] [CrossRef]
- Tang, J.; Li, Y.; Liu, X.; Yu, G.; Zheng, F.; Guo, Z.; Zhang, Y.; Shao, W.; Wu, S.; Li, H. Cobalt induces neurodegenerative damages through impairing autophagic flux by activating hypoxia-inducible factor-1α triggered ROS overproduction. Sci. Total Environ. 2023, 857, 159432. [Google Scholar] [CrossRef]
- Zhong, B.; Wang, X.; Mao, H.; Wan, Y.; Liu, Y.; Zhang, T.; Hu, C. A mechanism underlies fish GRP78 protection against Pb2+ toxicity. Fish Shellfish Immunol. 2017, 66, 185–188. [Google Scholar] [CrossRef]
- Paydar, S.; Feizi, F.; Shamsipur, M.; Barati, A.; Chehri, N.; Taherpour, A.; Jamshidi, M. An ideal ratiometric fluorescent probe provided by the surface modification of carbon dots for the determination of Pb2+. Sens. Actuators B-Chem. 2022, 369, 132243. [Google Scholar] [CrossRef]
- Fang, S.; Song, D.; Zhuo, Y.; Chen, Y.; Zhu, A.; Long, F. Simultaneous and sensitive determination of Escherichia coli O157:H7 and Salmonella Typhimurium using evanescent wave dual-color fluorescence aptasensor based on micro/nano size effect. Biosens. Bioelectron. 2021, 185, 113288. [Google Scholar] [CrossRef] [PubMed]
- Leng, N.; Ju, M.; Jiang, Y.; Guan, D.; Liu, J.; Chen, W.; Algharib, S.A.; Dawood, A.; Luo, W. The therapeutic effect of florfenicol-loaded carboxymethyl chitosan-gelatin shell nanogels against Escherichia coli infection in mice Running title: Therapeutic effect of florfenicol shell nanogels. J. Mol. Struct. 2022, 1269, 133847. [Google Scholar] [CrossRef]
- Fulham, M.; Webster, B.; Power, M.; Gray, R. Implications of Escherichia coli community diversity in free-ranging Australian pinniped pups. Infect. Genet. Evol. 2022, 104, 105351. [Google Scholar] [CrossRef] [PubMed]
- Freire, L.; Sant’Ana, A.S. Modified mycotoxins: An updated review on their formation, detection, occurrence, and toxic effects. Food Chem. Toxicol. 2018, 111, 189–205. [Google Scholar] [CrossRef]
- Hamad, G.M.; Mehany, T.; Simal-Gandara, J.; Abou-Alella, S.; Esua, O.J.; Abdel-Wahhab, M.A.; Hafez, E.E. A review of recent innovative strategies for controlling mycotoxins in foods. Food Control 2023, 144, 109350. [Google Scholar] [CrossRef]
- Guerre, P.; Matard-Mann, M.; Collen, P.N. Targeted sphingolipid analysis in chickens suggests different mechanisms of fumonisin toxicity in kidney, lung, and brain. Food Chem. Toxicol. 2022, 170, 113467. [Google Scholar] [CrossRef] [PubMed]
- Bangar, S.P.; Sharma, N.; Kumar, M.; Ozogul, F.; Purewal, S.S.; Trif, M. Recent developments in applications of lactic acid bacteria against mycotoxin production and fungal contamination. Food Biosci. 2021, 44, 101444. [Google Scholar] [CrossRef]
- Li, J.; Bai, Y.; Ma, K.; Ren, Z.; Li, J.; Zhang, J.; Shan, A. Dihydroartemisinin alleviates deoxynivalenol induced liver apoptosis and inflammation in piglets. Ecotoxicol. Environ. Saf. 2022, 241, 113811. [Google Scholar] [CrossRef] [PubMed]
- Karaman, E.F.; Zeybel, M.; Ozden, S. Evaluation of the epigenetic alterations and gene expression levels of HepG2 cells exposed to zearalenone and alpha-zearalenol. Toxicol. Lett. 2020, 326, 52–60. [Google Scholar] [CrossRef] [PubMed]
- Dai, C.; Das Gupta, S.; Wang, Z.; Jiang, H.; Velkov, T.; Shen, J. T-2 toxin and its cardiotoxicity: New insights on the molecular mechanisms and therapeutic implications. Food Chem. Toxicol. 2022, 167, 113262. [Google Scholar] [CrossRef] [PubMed]
- Khan, I.M.; Niazi, S.; Yu, Y.; Mohsin, A.; Mushtaq, B.S.; Iqbal, M.W.; Rehman, A.; Alhtar, W.; Wang, Z. Aptamer Induced Multicolored AuNCs-WS2 “Turn on” FRET Nano Platform for Dual-Color Simultaneous Detection of AflatoxinB(1) and Zearalenone. Anal. Chem. 2019, 91, 14085–14092. [Google Scholar] [CrossRef]
- Shellaiah, M.; Sun, K.W. Review on Nanomaterial-Based Melamine Detection. Chemosensors 2019, 7, 9. [Google Scholar] [CrossRef] [Green Version]
- Chen, H.; Wang, S.; Fu, H.; Chen, F.; Zhang, L.; Lan, W.; Yang, J.; Yang, X.; She, Y. A colorimetric sensor array for recognition of 32 Chinese traditional cereal vinegars based on “turn-off/on” fluorescence of acid-sensitive quantum dots. Spectroc. Acta Pt. A-Molec. Biomolec. Spectr. 2020, 227, 117683. [Google Scholar] [CrossRef]
- Hu, O.; Xu, L.; Fu, H.; Yang, T.; Fan, Y.; Lan, W.; Tang, H.; Wu, Y.; Ma, L.; Wu, D.; et al. “Turn-off” fluorescent sensor based on double quantum dots coupled with chemometrics for highly sensitive and specific recognition of 53 famous green teas. Anal. Chim. Acta 2018, 1008, 103–110. [Google Scholar] [CrossRef]
Food Safety Detection | Target | Sample | Response Mechanism | Modified Elements | Limit of Detection | Reference |
---|---|---|---|---|---|---|
Pesticides | parathion-methyl | Rice, wheat flour | ET (electron transfer), Quantum confinement effect | cetyltrimethylammonium bromide | 1.2 ng/mL, 3.3 ng/mL, 0.02 μmol/L | [31] |
Carbaryl | Apple | Quantum confinement effect | N/A | 0.12 ng/mL | [32] | |
Imidacloprid | Water, cabbage, carrot, honey, tea | FRET | antigen and antibody against imidacloprid | 0.08 ng/mL | [33] | |
Atrazine | River water, sugarcane juice, corn, rice | upconversion | anti-atrazine antibody | 0.002 μg/L, 0.002 μg/L, 0.02 μg/kg, 0.02 μg/kg | [34] | |
Acetamiprid | Honey, orange juice | ET | Aptamer | 3 nmol/L | [35] | |
Malathion | Water, orange juice | Quantum confinement effect | Aptamer | 4 pM | [36] | |
Veterinary drugs | Tetracycline | Milk, honey, lake water, tap-water | Fluorescence change | 3-aminopropyltriethoxysilane | 19 nmol/L | [37] |
Ofloxacin | Human urine | ET | Fe3+ | 50 nmol/L | [38] | |
Norfloxacin | Human urine, | ET, Antenna effect, Conformational change | Fe3+ | 50 nmol/L | [38] | |
Ceftazidime | Milk | ET | Fe3O4, MIP | 0.05 μg/L | [39] | |
Clenbuterol Hydrochloride | Pork | FRET | N/A | 3 nmol/L | [40] | |
Cefatriaxone | Human urine | IFE (internal filtration effect) | N/A | 4.4 × 1010 mol/L | [41] | |
Cephalexin | Milk | Fluorescence change | Cephalexin antibody | 0.7 μmol/L | [42] | |
Heavy metals | Ag+ | Water | Fluorescence change | mercaptopropionic acid | 0.3–2.7 pg/mL | [43] |
Hg2+ | Water | AIE | citric acid | 0.3–2.7 pg/mL, 45.4 nmol/L | [43,44] | |
Cd2+ | Water | Fluorescence change | triammonium-N-dithiocarboxyiminodiacetate | 0.3–2.7 pg/mL | [43] | |
Fe3+ | Water | Conformational change | 2,5-dihydroxyterephthalic acid | 40 nmol/L | [45] | |
Co2+ | Water | FRET | β-Cyclodextrin | 0.26 μmol/L | [46] | |
Microorganisms | Escherichia coli O157:H7 | Milk with different sterilization methods (UHT sterilized, pasteurized, and raw milk) | Fluorescence change | Aptamer | 5.6 × 102 CFU/mL, 5 × 102 CFU/mL, 4.9 × 102 CFU/mL | [47] |
Escherichia coli | Eggshell, chinese cabbage, milk | Fluorescence change | Bovine serum albumin, Aptamer | 150 CFU/mL, 100 CFU/mL | [48,49] | |
P. aeruginosa | Eggshell, chinese cabbage | Fluorescence change | Bovine serum albumin | 112 CFU/mL | [49] | |
S. typhimurium | Eggshell, chinese cabbage, milk, eggshell, egg white | Fluorescence change | Bovine serum albumin, Aptamer | 792 CFU/mL, 150 CFU/mL, 1 CFU/mL | [48,49,50] | |
C. jejuni | Poultry liver sample | FRET | Poly clonal antibody | 10 CFU/mL | [51] | |
Mycotoxins | AflatoxinB1 | Corn, cereal, peanut oil, lotus seeds | FRET | Aptamer | 0.3437 pg/mL, 15.96 fg/mL, 0.001 ng/mL, 1 ng/mL | [52,53,54] |
Zearalenone | Corn | FRET | Aptamer | 0.5384 pg/mL | [28] | |
Ochratoxin A | Cereal | Aptamer | 3.96 fg/mL, 0.73 μg/L | [53,55] | ||
Fumonisin B1 | Cereal | Aptamer | 11.04 pg/mL | [53] | ||
Deoxynivalenol | Peanut oil | Antibody, antigen | 0.001 ng/mL | [54] | ||
Aflatoxins | Sorghum grains | 0.53 μg/L | [56] | |||
Others | Ascorbic acid | Commercial vitamin C tablets, vitamin C effervescent tablet, lemon soda | Glutathione, Polyvinylpyrrolidone | 1.3 μmol/L, 41.9 μmol/L, 200 μmol/L, 1.17 μmol/L | [57,58,59,60] | |
Melamine | Milk, baby formulas spiked, raw milk, cow milk, infant formulas | AIE | 6-Aza-2-thiothymine, glutathione | 217 nmol/L, 29.3 nmol/L, 28.2 μmol/L | [61,62,63] | |
Tyramine | Rice wine | 0.021 mg/mL | [64] | |||
Nitrite | Sausage | FRET | AuNCs | 0.67 nmol/L | [65] | |
Bisphenol A | Cabbage, grass carp, river water | FRET | Antibody | 4 μg/L | [66] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yuan, H.; Li, Y.; Lv, J.; An, Y.; Guan, D.; Liu, J.; Tu, C.; Wang, X.; Zhou, H. Recent Advances in Fluorescent Nanoprobes for Food Safety Detection. Molecules 2023, 28, 5604. https://doi.org/10.3390/molecules28145604
Yuan H, Li Y, Lv J, An Y, Guan D, Liu J, Tu C, Wang X, Zhou H. Recent Advances in Fluorescent Nanoprobes for Food Safety Detection. Molecules. 2023; 28(14):5604. https://doi.org/10.3390/molecules28145604
Chicago/Turabian StyleYuan, Huanxiang, Yutong Li, Jiaqi Lv, Yunhe An, Di Guan, Jia Liu, Chenxiao Tu, Xiaoyu Wang, and Huijuan Zhou. 2023. "Recent Advances in Fluorescent Nanoprobes for Food Safety Detection" Molecules 28, no. 14: 5604. https://doi.org/10.3390/molecules28145604
APA StyleYuan, H., Li, Y., Lv, J., An, Y., Guan, D., Liu, J., Tu, C., Wang, X., & Zhou, H. (2023). Recent Advances in Fluorescent Nanoprobes for Food Safety Detection. Molecules, 28(14), 5604. https://doi.org/10.3390/molecules28145604