Selective Noble Gas Inclusion in Pentagon-Dodecahedral X20-Cages †
Abstract
:1. Introduction
2. Computational Details
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kroto, H.W.; Heath, J.R.; O’Brien, S.C.; Curl, R.F.; Smalley, R.E. C60: Buckminsterfullerene. Nature 1985, 318, 162–163. [Google Scholar] [CrossRef]
- Ternansky, R.J.; Balogh, D.W.; Paquette, L.A. Dodecahedrane. J. Am. Chem. Soc. 1982, 104, 4503–4504. [Google Scholar] [CrossRef]
- Paquette, L.A.; Ternansky, R.J.; Balogh, D.W.; Kentgen, G. Total synthesis of dodecahedrane. J. Am. Chem. Soc. 1983, 105, 5446–5450. [Google Scholar] [CrossRef]
- Gallucci, J.C.; Taylor, R.T.; Kobayashi, T.; Weber, J.C.; Krause, J.; Paquette, L.A. X-ray crystallographic analysis of the structural distortions induced by substitution and annulation of the dodecahedrane nucleus. Acta Crystallogr. Sect. C Cryst. Struct. Commun. 1989, 45, 893–898. [Google Scholar] [CrossRef]
- Strout, D.L.J. Why Isn’t the N20 Dodecahedron Ideal for Three-Coordinate Nitrogen? Phys. Chem. A 2005, 109, 1478–1480. [Google Scholar] [CrossRef]
- Wang, Y.; Xu, J.; Cao, Z.; Zhang, Q.J. Spherical double electric layer structure and unprecedented high stability of the P20O20 cage and its anionic endohedral complex Na-@ P20O20. Phys. Chem. B 2004, 108, 4579–4581. [Google Scholar] [CrossRef]
- Baruah, T.; Zope, R.R.; Richardson, S.L.; Pederson, M.R. Electronic structure and rebonding in the onionlike As@Ni12@As20 cluster. Phys. Rev. B 2003, 68, 241404. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Moses-DeBusk, M.; Stevens, L.; Hu, J.; Zavalij, P.; Bowen, K.; Dunlap, B.I.; Glaser, E.R.; Eichhorn, B.J. Sb@Ni12@Sb20−/+ and Sb@Pd12@Sb20n cluster anions, where n = +1,− 1,− 3,− 4: Multi-oxidation-state clusters of interpenetrating platonic solids. J. Am. Chem. Soc. 2017, 139, 619–622. [Google Scholar] [CrossRef]
- Zdetsis, A.D.J. Theoretical predictions of a new family of stable bismuth and other group 15 fullerenes. Phys. Chem. C 2010, 114, 10775–10781. [Google Scholar] [CrossRef]
- Alsbaiee, A.; Smith, B.J.; Xiao, L.; Ling, Y.; Helbling, D.E.; Dichtel, W.R. Rapid removal of organic micropollutants from water by a porous β-cyclodextrin polymer. Nature 2016, 529, 190–194. [Google Scholar] [CrossRef]
- Chaix, A.; Mouchaham, G.; Shkurenko, A.; Hoang, P.; Moosa, B.; Bhatt, P.M.; Adil, K.; Salama, K.N.; Eddaoudi, M.; Khashab, N.M.J. Trianglamine-based supramolecular organic framework with permanent intrinsic porosity and tunable selectivity. J. Am. Chem. Soc. 2018, 140, 14571–14575. [Google Scholar] [CrossRef]
- Yang, W.; Greenaway, A.; Lin, X.; Matsuda, R.; Blake, A.J.; Wilson, C.; Lewis, W.; Hubberstey, P.; Kitagawa, S.; Champness, N.R.; et al. Exceptional thermal stability in a supramolecular organic framework: Porosity and gas storage. J. Am. Chem. Soc. 2010, 132, 14457–14469. [Google Scholar] [CrossRef]
- Yang, J.-M.; Yu, Y.; Rebek, J.J. Selective macrocycle formation in cavitands. J. Am. Chem. Soc. 2021, 143, 2190–2193. [Google Scholar] [CrossRef]
- Li, F.; Yang, H.; Zhuo, Q.; Zhou, D.; Wu, X.; Zhang, P.; Yao, Z.; Sun, L. A cobalt@ cucurbit [5] uril complex as a highly efficient supramolecular catalyst for electrochemical and photoelectrochemical water splitting. Angew. Chem. Int. Ed. Engl. 2021, 60, 1976–1985. [Google Scholar] [CrossRef] [PubMed]
- Hettiarachchi, G.; Nguyen, D.; Wu, J.; Lucas, D.; Ma, D.; Isaacs, L.; Briken, V. Toxicology and drug delivery by cucurbit [n] uril type molecular containers. PLoS ONE 2010, 5, e10514. [Google Scholar] [CrossRef] [Green Version]
- Cross, R.J.; Saunders, M.; Prinzbach, H. Putting helium inside dodecahedrane. Org. Lett. 1999, 1, 1479–1481. [Google Scholar] [CrossRef]
- Saunders, M.; Cross, R.J.; Jiménez-Vázquez, H.A.; Shimshi, R.; Khong, A. Noble gas atoms inside fullerenes. Science 1996, 271, 1693–1697. [Google Scholar] [CrossRef]
- Jimenez-Vazquez, H.A.; Tamariz, J. Binding energy in and equilibrium constant of formation for the dodecahedrane compounds He@C20H20 and Ne@C20H20. J. Phys. Chem. A 2001, 105, 1315–1319. [Google Scholar] [CrossRef]
- Puchta, R.; Walther, D.; März, M.; Begel, S.; van Eldik, R.Z. Host-Guest Complexes of Dodeka (ethylene) octamine: Prediction of Ion Selectivity by Quantum Chemical Calculations IX. Z. Anorg. Allg. Chem. 2019, 645, 701–705. [Google Scholar] [CrossRef]
- Chai, J.-D.; Head-Gordon, M. Long-range corrected hybrid density functionals with damped atom–atom dispersion corrections. Phys. Chem. Chem. Phys. 2008, 10, 6615–6620. [Google Scholar] [CrossRef] [Green Version]
- Řezáč, J.; Greenwell, C.; Beran, G.J.O. Accurate noncovalent interactions via dispersion-corrected second-order Møller–Plesset perturbation theory. J. Chem. Theory Comput. 2018, 14, 4711–4721. [Google Scholar] [CrossRef]
- Jan Řezáč, J.; Hobza, P. Benchmark calculations of interaction energies in noncovalent complexes and their applications. Chem. Rev. 2016, 116, 5038–5071. [Google Scholar] [CrossRef]
- Weigend, F.; Ahlrichs, R. Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy. Phys. Chem. Chem. Phys. 2005, 7, 3297–3305. [Google Scholar] [CrossRef]
- Eichkorn, K.; Treutler, O.; Ohm, H.; Haser, M.; Ahlrichs, R. Auxiliary basis sets to approximate Coulomb potentials. Chem. Phys. Lett. 1995, 240, 283–290. [Google Scholar] [CrossRef]
- Eichkorn, K.; Weigend, F.; Treutler, O.; Ahlrichs, R. Auxiliary basis sets for main row atoms and transition metals and their use to approximate Coulomb potentials. Theor. Chem. Acc. 1997, 97, 119–124. [Google Scholar] [CrossRef]
- Biswas, B.; Singh, P.C. Effect of hydration on the organo-noble gas molecule HKrCCH: Role of krypton in the stabilization of hydrated HKrCCH complexes. Phys. Chem. Chem. Phys. 2015, 17, 30632–30641. [Google Scholar] [CrossRef]
- Wu, L.-Y.; Li, J.-F.; Zhao, R.-F.; Luo, L.; Wang, Y.-C.; Yin, B. Exploring the structure, bonding and stability of noble gas compounds promoted by superhalogens. A case study on HNgMX 3 (Ng = Ar–Rn, M = Be–Ca, X = F–Br) via combined high-level ab initio and DFT calculations. Phys. Chem. Chem. Phys. 2019, 21, 19104–19114. [Google Scholar] [CrossRef] [PubMed]
- Ćoćić, D.; Puchta, R.; van Eldik, R. Noble guests in organic cages—Encapsulation of noble gases by cryptophane. J. Coord. Chem. 2020, 73, 2602–2613. [Google Scholar] [CrossRef]
- Austin, A.; Petersson, G.; Frisch, M.J.; Dobek, F.J.; Scalmani, G.; Throssell, K. A density functional with spherical atom dispersion terms. J. Chem. Theory Comput. 2012, 8, 4989–5007. [Google Scholar] [CrossRef]
- Becke, A.D. Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 1993, 98, 5648–5652. [Google Scholar] [CrossRef] [Green Version]
- Lee, C.; Yang, W.; Parr, R.G. Development of the Colle-Salvetti Correlation-Energy Formula into a Functional of the Electron Density. Phys. Rev. B 1988, 37, 785–789. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stephens, P.J.; Devlin, F.J.; Chabalowski, C.F.; Frisch, M.J. Ab Initio Calculation of Vibrational Absorption and Circular Dichroism Spectra Using Density Functional Force Fields. J. Phys. Chem. 1994, 98, 11623–11629. [Google Scholar] [CrossRef]
- Grimme, S.; Ehrlich, S.; Goerigk, L. Effect of the damping function in dispersion corrected density functional theory. J. Comput. Chem. 2011, 32, 1456–1465. [Google Scholar] [CrossRef]
- Weigend, F.; Haser, M.; Patzelt, H.; Anlrichs, R. RI-MP2: Optimized auxiliary basis sets and demonstration of efficiency. Chem. Phys. Lett. 1998, 294, 143–152. [Google Scholar] [CrossRef]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G.A.; et al. Gaussian 09, Revision C.01; Gaussian, Inc.: Wallingford, CT, USA, 2010.
- Johnson, E.R.; Keinan, S.; Mori− Sánchez, P.; Contreras−García, J.; Cohen, A.J.; Yang, W. Revealing noncovalent interactions. J. Am. Chem. Soc. 2010, 132, 6498–6506. [Google Scholar] [CrossRef] [Green Version]
- Tian, L.; Feiwu, C.J. Multiwfn: A multifunctional wavefunction analyzer. Comput. Chem. 2012, 33, 580–592. [Google Scholar]
- Puchta, R.; Cocic, D.; Michel, M.; van Eldik, R. Host-guest complexes of the Beer-Can-cryptand: Prediction of ion selectivity by quantum chemical calculations XI. J. Coord. Chem. 2019, 72, 2106–2114. [Google Scholar] [CrossRef]
- Puchta, R.; Begel, S.; van Eldik, R. Prediction of ion selectivity by quantum chemical calculations X: A recent (personal) review. Adv. Inorg. Chem. 2019, 73, 445–505. [Google Scholar]
- Aylward, G.H.; Findlay, T.J.V. Datensammlung Chemie in SI-Einheiten; Wiley-VCH: Weinheim, Germany, 1986. [Google Scholar]
- Dubost, E.; Dognon, J.-P.; Rousseau, B.; Milanole, G.; Dugave, C.; Boulard, Y.; Leonce, E.; Boutin, C.; Berthault, P. Understanding a Host–Guest Model System through 129Xe NMR Spectroscopic Experiments and Theoretical Studies. Angew. Chem. Int. Ed. Engl. 2014, 53, 9837–9840. [Google Scholar] [CrossRef] [PubMed]
Host/Ecom (BSSE) a [kcal/mol] | ||||||
---|---|---|---|---|---|---|
Noble Gas | R [Å] | C | Si | Ge | Sn | Pb |
He | 0.31 | 36.94 (0.54) | 0.72 (0.37) | −0.01 (0.53) | −1.09 (0.29) | −1.31 (0.27) |
Ne | 0.38 | 103.50 (1.33) | 3.31 (0.93) | −0.29 (1.24) | −3.86 (0.72) | −4.34 (0.65) |
Ar | 0.71 | 311.71 (1.59) | 14.86 (1.07) | 7.64 (1.59) | −5.63 (0.66) | −7.69 (0.59) |
Kr | 0.88 | 437.35 (1.71) | 24.34 (1.14) | 14.94 (1.83) | −6.41 (0.63) | −9.68 (0.51) |
Xe | 1.08 | 623.12 (0.58) | 42.88 (0.62) | 32.43 (1.45) | −2.20 (0.27) | −8.65 (0.18) |
Rn | 1.20 | 709.69 (0.70) | 49.80 (0.57) | 39.28 (1.49) | −2.34 (0.26) | −10.55 (0.17) |
Host/Ecom (BSSE) a [kcal/mol] | ||||||
---|---|---|---|---|---|---|
Noble Gas | R [Å] | N | P | As | Sb | Bi |
He | 0.31 | 57.18 (1.47) | 5.62 (0.39) | 0.66 (0.41) | −0.57 (0.27) | −0.73 (0.26) |
Ne | 0.38 | 165.05 (2.47) | 12.70 (0.94) | 3.34 (1.32) | −1.64 (0.66) | −2.78 (0.63) |
Ar | 0.71 | 474.46 (2.55) | 46.16 (1.25) | 17.13 (2.14) | −0.76 (0.74) | −5.24 (0.69) |
Kr | 0.88 | 659.58 (2.77) | 72.46 (1.47) | 30.57 (2.86) | 1.36 (0.83) | −6.13 (0.69) |
Xe | 1.08 | 907.21 (1.80) | 120.56 (1.06) | 59.43 (2.78) | 10.22 (0.71) | −2.50 (0.60) |
Rn | 1.20 | 989.41 (1.62) | 143.90 (1.05) | 73.03 (2.81) | 12.90 (0.70) | −2.72 (0.61) |
Host/Ecom [kcal/mol] | |||||
---|---|---|---|---|---|
Noble Gas | R [Å] | Pb20H20 a | Bi20 a | Pb20H20 b | Bi20 b |
He | 0.31 | −1.62 | −1.25 | −1.09 | −0.78 |
Ne | 0.38 | −4.51 | −3.51 | −3.66 | −3.06 |
Ar | 0.71 | −12.34 | −10.28 | −10.77 | −9.01 |
Kr | 0.88 | −16.14 | −13.45 | −13.65 | −11.08 |
Xe | 1.08 | −20.32 | −16.46 | −16.42 | −11.86 |
Rn | 1.20 | −21.52 | −17.06 | −16.93 | −11.35 |
X20H20 Cage | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Noble Gas | C | Si | Ge | Sn | Pb | ||||||
R [Å] | d [Å] | b [Å] | d [Å] | b [Å] | d [Å] | b [Å] | d [Å] | b [Å] | d [Å] | b [Å] | |
He | 0.31 | 1.56 | 2.18 | 2.37 | 3.32 | 2.45 | 3.44 | 2.81 | 3.93 | 2.93 | 4.11 |
Ne | 0.38 | 1.57 | 2.20 | 2.37 | 3.32 | 2.45 | 3.44 | 2.80 | 3.93 | 2.93 | 4.11 |
Ar | 0.71 | 1.61 | 2.26 | 2.38 | 3.33 | 2.46 | 3.45 | 2.81 | 3.94 | 2.94 | 4.11 |
Kr | 0.88 | 1.63 | 2.29 | 2.39 | 3.34 | 2.47 | 3.46 | 2.81 | 3.94 | 2.94 | 4.12 |
Xe | 1.08 | 1.66 | 2.33 | 2.40 | 3.36 | 2.48 | 3.47 | 2.82 | 3.95 | 2.95 | 4.13 |
Rn | 1.20 | 1.68 | 2.35 | 2.40 | 3.36 | 2.49 | 3.48 | 2.83 | 3.96 | 2.95 | 4.14 |
Empty host | 1.55 | 2.37 | 2.45 | 2.81 | 2.93 |
X20 Cage | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Noble Gas | N | P | As | Sb | Bi | ||||||
R [Å] | d [Å] | b [Å] | d [Å] | b [Å] | d [Å] | b [Å] | d [Å] | b [Å] | d [Å] | b [Å] | |
He | 0.31 | 1.47 | 2.07 | 2.26 | 3.16 | 2.46 | 3.44 | 2.84 | 3.98 | 2.99 | 4.18 |
Ne | 0.38 | 1.50 | 2.11 | 2.26 | 3.17 | 2.46 | 3.45 | 2.84 | 3.98 | 2.99 | 4.18 |
Ar | 0.71 | 1.58 | 2.21 | 2.28 | 3.19 | 2.47 | 3.46 | 2.84 | 3.99 | 2.98 | 4.18 |
Kr | 0.88 | 1.62 | 2.27 | 2.29 | 3.21 | 2.48 | 3.48 | 2.85 | 3.99 | 2.99 | 4.19 |
Xe | 1.08 | 1.66 | 2.33 | 2.31 | 3.23 | 2.49 | 3.50 | 2.86 | 4.01 | 2.99 | 4.20 |
Rn | 1.20 | 1.68 | 2.35 | 2.32 | 3.25 | 2.50 | 3.51 | 2.86 | 4.01 | 3.00 | 4.21 |
Empty host | 1.47 | 2.25 | 2.46 | 2.84 | 2.99 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Weinert, C.; Ćoćić, D.; Puchta, R.; van Eldik, R. Selective Noble Gas Inclusion in Pentagon-Dodecahedral X20-Cages. Molecules 2023, 28, 5676. https://doi.org/10.3390/molecules28155676
Weinert C, Ćoćić D, Puchta R, van Eldik R. Selective Noble Gas Inclusion in Pentagon-Dodecahedral X20-Cages. Molecules. 2023; 28(15):5676. https://doi.org/10.3390/molecules28155676
Chicago/Turabian StyleWeinert, Christopher, Dušan Ćoćić, Ralph Puchta, and Rudi van Eldik. 2023. "Selective Noble Gas Inclusion in Pentagon-Dodecahedral X20-Cages" Molecules 28, no. 15: 5676. https://doi.org/10.3390/molecules28155676
APA StyleWeinert, C., Ćoćić, D., Puchta, R., & van Eldik, R. (2023). Selective Noble Gas Inclusion in Pentagon-Dodecahedral X20-Cages. Molecules, 28(15), 5676. https://doi.org/10.3390/molecules28155676