Hybrid Nanoplatforms Comprising Organic Nanocompartments Encapsulating Inorganic Nanoparticles for Enhanced Drug Delivery and Bioimaging Applications
Abstract
:1. Introduction
2. Organic Nanoparticles/Nanocompartments
3. Inorganic Nanoparticles
4. Properties of Nanoparticles with Encapsulation
5. Biomedical Applications of Hybrid Nanoparticles
5.1. Liposomes-Based Hybrid Platforms
5.2. Micelle-Based Hybrid Platforms
5.3. PLGA-Based Hybrid Platforms
5.4. Dendrimer-Based Hybrid Platforms
5.5. Chitosan-Based Hybrid Platforms
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gabizon, A.; Peretz, T.; Sulkes, A.; Amselem, S.; Ben-Yosef, R.; Ben-Baruch, N.; Catane, R.; Biran, S.; Barenholz, Y. Systemic administration of doxorubicin-containing liposomes in cancer patients: A phase I study. Eur. J. Cancer Clin. Oncol. 1989, 25, 1795–1803. [Google Scholar] [CrossRef] [PubMed]
- Tom, R.T.; Suryanarayanan, V.; Reddy, P.G.; Baskaran, S.; Pradeep, T. Ciprofloxacin-protected gold nanoparticles. Langmuir 2004, 20, 1909–1914. [Google Scholar] [CrossRef] [PubMed]
- Rudokas, M.; Najlah, M.; Alhnan, M.A.; Elhissi, A. Liposome Delivery Systems for Inhalation: A Critical Review Highlighting Formulation Issues and Anticancer Applications. Med. Princ. Pract. 2016, 25 (Suppl 2), 60–72. [Google Scholar] [CrossRef] [PubMed]
- Hajos, F.; Stark, B.; Hensler, S.; Prassl, R.; Mosgoeller, W. Inhalable liposomal formulation for vasoactive intestinal peptide. Int. J. Pharm. 2008, 357, 286–294. [Google Scholar] [CrossRef]
- Liu, J.; Gong, T.; Fu, H.; Wang, C.; Wang, X.; Chen, Q.; Zhang, Q.; He, Q.; Zhang, Z. Solid lipid nanoparticles for pulmonary delivery of insulin. Int. J. Pharm. 2008, 356, 333–344. [Google Scholar] [CrossRef]
- Vieira, D.B.; Gamarra, L.F. Getting into the brain: Liposome-based strategies for effective drug delivery across the blood–brain barrier. Int. J. Nanomed. 2016, 11, 5381–5414. [Google Scholar] [CrossRef] [Green Version]
- Farokhzad, O.C.; Langer, R. Impact of nanotechnology on drug delivery. ACS Nano 2009, 3, 16–20. [Google Scholar] [CrossRef]
- Salata, O. Applications of nanoparticles in biology and medicine. J. Nanobiotechnology 2004, 2, 3. [Google Scholar] [CrossRef] [Green Version]
- Jiang, Y.; Krishnan, N.; Heo, J.; Fang, R.H.; Zhang, L. Nanoparticle–hydrogel superstructures for biomedical applications. J. Control. Release 2020, 324, 505–521. [Google Scholar] [CrossRef]
- Park, W.; Shin, H.; Choi, B.; Rhim, W.-K.; Na, K.; Han, D.K. Advanced hybrid nanomaterials for biomedical applications. Prog. Mater. Sci. 2020, 114, 100686. [Google Scholar] [CrossRef]
- Sun, Y.; Zheng, L.; Yang, Y.; Qian, X.; Fu, T.; Li, X.; Yang, Z.; Yan, H.; Cui, C.; Tan, W. Metal–organic framework nanocarriers for drug delivery in biomedical applications. Nano-Micro Lett. 2020, 12, 103. [Google Scholar] [CrossRef]
- Zhou, H.; Ge, J.; Miao, Q.; Zhu, R.; Wen, L.; Zeng, J.; Gao, M. Biodegradable Inorganic Nanoparticles for Cancer Theranostics: Insights into the Degradation Behavior. Bioconjugate Chem. 2020, 31, 315–331. [Google Scholar] [CrossRef] [PubMed]
- Barenholz, Y. (Chezy) Doxil®—The first FDA-approved nano-drug: Lessons learned. J. Control. Release 2012, 160, 117–134. [Google Scholar] [CrossRef]
- Yanar, F.; Mosayyebi, A.; Nastruzzi, C.; Carugo, D.; Zhang, X. Continuous-Flow Production of Liposomes with a Millireactor under Varying Fluidic Conditions. Pharmaceutics 2020, 12, 1001. [Google Scholar] [CrossRef]
- Carugo, D.; Bottaro, E.; Owen, J.; Stride, E.; Nastruzzi, C. Liposome production by microfluidics: Potential and limiting factors. Sci. Rep. 2016, 6, 25876. [Google Scholar] [CrossRef] [Green Version]
- Kibria, G.; Hatakeyama, H.; Ohga, N.; Hida, K.; Harashima, H. The effect of liposomal size on the targeted delivery of doxorubicin to Integrin αvβ3-expressing tumor endothelial cells. Biomaterials 2013, 34, 5617–5627. [Google Scholar] [CrossRef]
- Wang, X.; Wang, Y.; Chen, Z.G.; Shin, D.M. Advances of Cancer Therapy by Nanotechnology. Cancer Res. Treat. 2009, 41, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ishida, T.; Harashima, H.; Kiwada, H. Liposome clearance. Biosci. Rep. 2002, 22, 197–224. [Google Scholar] [CrossRef] [PubMed]
- Abuchowski, A.; McCoy, J.R.; Palczuk, N.C.; van Es, T.; Davis, F.F. Effect of covalent attachment of polyethylene glycol on immunogenicity and circulating life of bovine liver catalase. J. Biol. Chem. 1977, 252, 3582–3586. [Google Scholar] [CrossRef] [PubMed]
- Perumal, S.; Atchudan, R.; Lee, W. A Review of Polymeric Micelles and Their Applications. Polymers 2022, 14, 2510. [Google Scholar] [CrossRef]
- Daza, E.A.; Schwartz-Duval, A.S.; Volkman, K.; Pan, D. Facile Chemical Strategy to Hydrophobically Modify Solid Nanoparticles Using Inverted Micelle-Based Multicapsule for Efficient Intracellular Delivery. ACS Biomater. Sci. Eng. 2018, 4, 1357–1367. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Zeng, F.; Allen, C. Influence of serum protein on polycarbonate-based copolymer micelles as a delivery system for a hydrophobic anti-cancer agent. J. Control. Release 2005, 103, 481–497. [Google Scholar] [CrossRef] [PubMed]
- Letchford, K.; Zastre, J.; Liggins, R.; Burt, H. Synthesis and micellar characterization of short block length methoxy poly(ethylene glycol)-block-poly(caprolactone) diblock copolymers. Colloids Surf. B Biointerfaces 2004, 35, 81–91. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Wu, X.; Liu, F.; Duan, Y.; Li, S. Novel Biodegradable Polylactide/poly(ethylene glycol) Micelles Prepared by Direct Dissolution Method for Controlled Delivery of Anticancer Drugs. Pharm. Res. 2009, 26, 2332–2342. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.; Bandara, N. Applications of reverse micelles technique in food science: A comprehensive review. Trends Food Sci. Technol. 2019, 91, 106–115. [Google Scholar] [CrossRef]
- Lee, R.-S.; Lin, C.-H.; Aljuffali, I.A.; Hu, K.-Y.; Fang, J.-Y. Passive targeting of thermosensitive diblock copolymer micelles to the lungs: Synthesis and characterization of poly(N-isopropylacrylamide)-block-poly(ε-caprolactone). J. Nanobiotechnology 2015, 13, 42. [Google Scholar] [CrossRef] [Green Version]
- Tabatabaei Mirakabad, F.S.; Nejati-Koshki, K.; Akbarzadeh, A.; Yamchi, M.R.; Milani, M.; Zarghami, N.; Zeighamian, V.; Rahimzadeh, A.; Alimohammadi, S.; Hanifehpour, Y.; et al. PLGA-Based Nanoparticles as Cancer Drug Delivery Systems. Asian Pac. J. Cancer Prev. 2014, 15, 517–535. [Google Scholar] [CrossRef] [Green Version]
- Hernández-Giottonini, K.Y.; Rodríguez-Córdova, R.J.; Gutiérrez-Valenzuela, C.A.; Peñuñuri-Miranda, O.; Zavala-Rivera, P.; Guerrero-Germán, P.; Lucero-Acuña, A. PLGA nanoparticle preparations by emulsification and nanoprecipitation techniques: Effects of formulation parameters. RSC Adv. 2020, 10, 4218–4231. [Google Scholar] [CrossRef]
- Huang, W.; Zhang, C. Tuning the size of poly(lactic-co-glycolic acid) (PLGA) nanoparticles fabricated by nanoprecipitation. Biotechnol. J. 2018, 13, 1700203. [Google Scholar] [CrossRef]
- Reis, C.P.; Neufeld, R.J.; Ribeiro, A.J.; Veiga, F.; Nanoencapsulation, I. Methods for preparation of drug-loaded polymeric nanoparticles. Nanomedicine 2006, 2, 8–21. [Google Scholar] [CrossRef] [Green Version]
- Hodge, P. Polymer science branches out. Nature 1993, 362, 18–19. [Google Scholar] [CrossRef]
- Mittal, P.; Saharan, A.; Verma, R.; Altalbawy, F.M.A.; Alfaidi, M.A.; Batiha, G.E.-S.; Akter, W.; Gautam, R.K.; Uddin, M.S.; Rahman, M.S. Dendrimers: A New Race of Pharmaceutical Nanocarriers. BioMed Res. Int. 2021, 2021, 8844030. [Google Scholar] [CrossRef]
- Nanjwade, B.K.; Bechra, H.M.; Derkar, G.K.; Manvi, F.V.; Nanjwade, V.K. Dendrimers: Emerging polymers for drug-delivery systems. Eur. J. Pharm. Sci. 2009, 38, 185–196. [Google Scholar] [CrossRef] [PubMed]
- Mohammed, M.A.; Syeda, J.T.M.; Wasan, K.M.; Wasan, E.K. An Overview of Chitosan Nanoparticles and Its Application in Non-Parenteral Drug Delivery. Pharmaceutics 2017, 9, 53. [Google Scholar] [CrossRef] [Green Version]
- Ladj, R.; Bitar, A.; Eissa, M.M.; Fessi, H.; Mugnier, Y.; Le Dantec, R.; Elaissari, A. Polymer encapsulation of inorganic nanoparticles for biomedical applications. Int. J. Pharm. 2013, 458, 230–241. [Google Scholar] [CrossRef] [PubMed]
- Mahmudin, L.; Suharyadi, E.; Utomo, A.B.S.; Abraha, K. Optical Properties of Silver Nanoparticles for Surface Plasmon Resonance (SPR)-Based Biosensor Applications. J. Mod. Phys. 2015, 06, 1071. [Google Scholar] [CrossRef] [Green Version]
- Link, S.; Wang, Z.L.; El-Sayed, M.A. Alloy Formation of Gold−Silver Nanoparticles and the Dependence of the Plasmon Absorption on Their Composition. J. Phys. Chem. B 1999, 103, 3529–3533. [Google Scholar] [CrossRef] [Green Version]
- Cobley, C.M.; Skrabalak, S.E.; Campbell, D.J.; Xia, Y. Shape-Controlled Synthesis of Silver Nanoparticles for Plasmonic and Sensing Applications. Plasmonics 2009, 4, 171–179. [Google Scholar] [CrossRef]
- Guerrero, A.R.; Hassan, N.; Escobar, C.A.; Albericio, F.; Kogan, M.J.; Araya, E. Gold nanoparticles for photothermally controlled drug release. Nanomedicine 2014, 9, 2023–2039. [Google Scholar] [CrossRef] [PubMed]
- Xing, S.; Zhang, X.; Luo, L.; Cao, W.; Li, L.; He, Y.; An, J.; Gao, D. Doxorubicin/gold nanoparticles coated with liposomes for chemo-photothermal synergetic antitumor therapy. Nanotechnology 2018, 29, 405101. [Google Scholar] [CrossRef] [PubMed]
- Slepička, P.; Slepičková Kasálková, N.; Siegel, J.; Kolská, Z.; Švorčík, V. Methods of Gold and Silver Nanoparticles Preparation. Materials 2019, 13, 1. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iga, A.M.; Robertson, J.H.P.; Winslet, M.C.; Seifalian, A.M. Clinical Potential of Quantum Dots. BioMed Res. Int. 2008, 2007, e76087. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bera, D.; Qian, L.; Tseng, T.-K.; Holloway, P.H. Quantum Dots and Their Multimodal Applications: A Review. Materials 2010, 3, 2260–2345. [Google Scholar] [CrossRef] [Green Version]
- Matea, C.T.; Mocan, T.; Tabaran, F.; Pop, T.; Mosteanu, O.; Puia, C.; Iancu, C.; Mocan, L. Quantum dots in imaging, drug delivery and sensor applications. Int. J. Nanomed. 2017, 12, 5421–5431. [Google Scholar] [CrossRef] [Green Version]
- Selvarajan, V.; Obuobi, S.; Ee, P.L.R. Silica Nanoparticles—A Versatile Tool for the Treatment of Bacterial Infections. Front. Chem. 2020, 8, 602. [Google Scholar] [CrossRef]
- Parra, M.; Gil, S.; Gaviña, P.; Costero, A.M. Mesoporous Silica Nanoparticles in Chemical Detection: From Small Species to Large Bio-Molecules. Sensors 2021, 22, 261. [Google Scholar] [CrossRef]
- Gul, S.; Khan, S.B.; Rehman, I.U.; Khan, M.A.; Khan, M.I. A Comprehensive Review of Magnetic Nanomaterials Modern Day Theranostics. Front. Mater. 2019, 6, 179. [Google Scholar] [CrossRef] [Green Version]
- Ali, A.; Shah, T.; Ullah, R.; Zhou, P.; Guo, M.; Ovais, M.; Tan, Z.; Rui, Y. Review on Recent Progress in Magnetic Nanoparticles: Synthesis, Characterization, and Diverse Applications. Front. Chem. 2021, 9, 629054. [Google Scholar] [CrossRef]
- Vilas-Boas, V.; Carvalho, F.; Espiña, B. Magnetic Hyperthermia for Cancer Treatment: Main Parameters Affecting the Outcome of In Vitro and In Vivo Studies. Molecules 2020, 25, 2874. [Google Scholar] [CrossRef]
- Macchione, M.A.; Biglione, C.; Strumia, M. Design, Synthesis and Architectures of Hybrid Nanomaterials for Therapy and Diagnosis Applications. Polymers 2018, 10, 527. [Google Scholar] [CrossRef] [Green Version]
- Ding, X.; Zhao, J.; Liu, Y.; Zhang, H.; Wang, Z. Silica nanoparticles encapsulated by polystyrene via surface grafting and in situ emulsion polymerization. Mater. Lett. 2004, 58, 3126–3130. [Google Scholar] [CrossRef]
- Deng, Y.; Wang, L.; Yang, W.; Fu, S.; Elaıssari, A. Preparation of magnetic polymeric particles via inverse microemulsion polymerization process. J. Magn. Magn. Mater. 2003, 257, 69–78. [Google Scholar] [CrossRef]
- Landfester, K.; Weiss, C. Encapsulation by Miniemulsion Polymerization. Mod. Tech. Nano-Microreactors/-React. 2010, 229, 1–49. [Google Scholar] [CrossRef]
- Noble, G.T.; Stefanick, J.F.; Ashley, J.D.; Kiziltepe, T.; Bilgicer, B. Ligand-targeted liposome design: Challenges and fundamental considerations. Trends Biotechnol. 2014, 32, 32–45. [Google Scholar] [CrossRef]
- Hua, S. Targeting sites of inflammation: Intercellular adhesion molecule-1 as a target for novel inflammatory therapies. Front. Pharmacol. 2013, 4, 127. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adepu, S.; Ramakrishna, S. Controlled Drug Delivery Systems: Current Status and Future Directions. Molecules 2021, 26, 5905. [Google Scholar] [CrossRef]
- Ryvolova, M.; Chomoucka, J.; Drbohlavova, J.; Kopel, P.; Babula, P.; Hynek, D.; Adam, V.; Eckschlager, T.; Hubalek, J.; Stiborova, M.; et al. Modern Micro and Nanoparticle-Based Imaging Techniques. Sensors 2012, 12, 14792–14820. [Google Scholar] [CrossRef]
- Han, X.; Xu, K.; Taratula, O.; Farsad, K. Applications of Nanoparticles in Biomedical Imaging. Nanoscale 2019, 11, 799–819. [Google Scholar] [CrossRef]
- Caspani, S.; Magalhães, R.; Araújo, J.P.; Sousa, C.T. Magnetic Nanomaterials as Contrast Agents for MRI. Materials 2020, 13, 2586. [Google Scholar] [CrossRef]
- Li, L.; Guan, Y.; Xiong, H.; Deng, T.; Ji, Q.; Xu, Z.; Kang, Y.; Pang, J. Fundamentals and applications of nanoparticles for ultrasound-based imaging and therapy. Nano Sel. 2020, 1, 263–284. [Google Scholar] [CrossRef]
- Taratula, O.; Doddapaneni, B.S.; Schumann, C.; Li, X.; Bracha, S.; Milovancev, M.; Alani, A.W.G.; Taratula, O. Naphthalocyanine-Based Biodegradable Polymeric Nanoparticles for Image-Guided Combinatorial Phototherapy. Chem. Mater. 2015, 27, 6155–6165. [Google Scholar] [CrossRef]
- Tomitaka, A.; Arami, H.; Huang, Z.; Raymond, A.; Rodriguez, E.; Cai, Y.; Febo, M.; Takemura, Y.; Nair, M. Hybrid magneto-plasmonic liposomes for multimodal image-guided and brain-targeted HIV treatment. Nanoscale 2018, 10, 184–194. [Google Scholar] [CrossRef] [PubMed]
- Galliani, M.; Signore, G. Poly(Lactide-Co-Glycolide) Nanoparticles Co-Loaded with Chlorophyllin and Quantum Dots as Photodynamic Therapy Agents. ChemPlusChem 2019, 84, 1653–1658. [Google Scholar] [CrossRef] [PubMed]
- Koga, K.; Tagami, T.; Ozeki, T. Gold nanoparticle-coated thermosensitive liposomes for the triggered release of doxorubicin, and photothermal therapy using a near-infrared laser. Colloids Surf. A Physicochem. Eng. Asp. 2021, 626, 127038. [Google Scholar] [CrossRef]
- Sarkar, A.; Carvalho, E.; D’souza, A.A.; Banerjee, R. Liposome-encapsulated fish oil protein-tagged gold nanoparticles for intra-articular therapy in osteoarthritis. Nanomedicine 2019, 14, 871–887. [Google Scholar] [CrossRef]
- Grafals-Ruiz, N.; Rios-Vicil, C.I.; Lozada-Delgado, E.L.; Quiñones-Díaz, B.I.; Noriega-Rivera, R.A.; Martínez-Zayas, G.; Santana-Rivera, Y.; Santiago-Sánchez, G.S.; Valiyeva, F.; Vivas-Mejía, P.E. Brain Targeted Gold Liposomes Improve RNAi Delivery for Glioblastoma. Int. J. Nanomed. 2020, 15, 2809–2828. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Charest, G.; Tippayamontri, T.; Shi, M.; Wehbe, M.; Anantha, M.; Bally, M.; Sanche, L. Concomitant Chemoradiation Therapy with Gold Nanoparticles and Platinum Drugs Co-Encapsulated in Liposomes. Int. J. Mol. Sci. 2020, 21, 4848. [Google Scholar] [CrossRef]
- Li, W.; Hou, W.; Guo, X.; Luo, L.; Li, Q.; Zhu, C.; Yang, J.; Zhu, J.; Du, Y.; You, J. Temperature-controlled, phase-transition ultrasound imaging-guided photothermal-chemotherapy triggered by NIR light. Theranostics 2018, 8, 3059–3073. [Google Scholar] [CrossRef]
- Zhang, W.; Yu, W.; Ding, X.; Yin, C.; Yan, J.; Yang, E.; Guo, F.; Sun, D.; Wang, W. Self-assembled thermal gold nanorod-loaded thermosensitive liposome-encapsulated ganoderic acid for antibacterial and cancer photochemotherapy. Artif. Cells Nanomed. Biotechnol. 2019, 47, 406–419. [Google Scholar] [CrossRef] [Green Version]
- Zhu, L.; Kuang, Z.; Song, P.; Li, W.; Gui, L.; Yang, K.; Ge, F.; Tao, Y.; Zhang, W. Gold nanorod-loaded thermosensitive liposomes facilitate the targeted release of ruthenium(II) polypyridyl complexes with anti-tumor activity. Nanotechnology 2021, 32, 455103. [Google Scholar] [CrossRef]
- Ding, X.; Yin, C.; Zhang, W.; Sun, Y.; Zhang, Z.; Yang, E.; Sun, D.; Wang, W. Designing Aptamer-Gold Nanoparticle-Loaded pH-Sensitive Liposomes Encapsulate Morin for Treating Cancer. Nanoscale Res. Lett. 2020, 15, 68. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Y.; He, D.; Tu, J.; Wang, R.; Zu, C.; Chen, Y.; Yang, W.; Shi, D.; Webster, T.J.; Shen, Y. The comparative effect of wrapping solid gold nanoparticles and hollow gold nanoparticles with doxorubicin-loaded thermosensitive liposomes for cancer thermo-chemotherapy. Nanoscale 2018, 10, 8628–8641. [Google Scholar] [CrossRef] [PubMed]
- Prasad, R.; Jain, N.K.; Yadav, A.S.; Chauhan, D.S.; Devrukhkar, J.; Kumawat, M.K.; Shinde, S.; Gorain, M.; Thakor, A.S.; Kundu, G.C.; et al. Liposomal nanotheranostics for multimode targeted in vivo bioimaging and near-infrared light mediated cancer therapy. Commun. Biol. 2020, 3, 284. [Google Scholar] [CrossRef] [PubMed]
- Lv, S.; Jing, R.; Liu, X.; Shi, H.; Shi, Y.; Wang, X.; Zhao, X.; Cao, K.; Lv, Z. One-Step Microfluidic Fabrication of Multi-Responsive Liposomes for Targeted Delivery of Doxorubicin Synergism with Photothermal Effect. Int. J. Nanomed. 2021, 16, 7759–7772. [Google Scholar] [CrossRef] [PubMed]
- Hashemi, M.; Mohammadi, J.; Omidi, M.; Smyth, H.D.C.; Muralidharan, B.; Milner, T.E.; Yadegari, A.; Ahmadvand, D.; Shalbaf, M.; Tayebi, L. Self-assembling of graphene oxide on carbon quantum dot loaded liposomes. Mater. Sci. Eng. C Mater. Biol. Appl. 2019, 103, 109860. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.; Huang, H.; Pan, Y.; Li, Z.; Ouyang, S.; Ren, C.; Zhao, Q. Preparation of layering-structured magnetic fluorescent liposomes and labeling of HepG2 cells. Biomed. Mater. Eng. 2022, 33, 147–158. [Google Scholar] [CrossRef]
- Tang, T.; Huang, B.; Liu, F.; Cui, R.; Zhang, M.; Sun, T. Enhanced delivery of theranostic liposomes through NO-mediated tumor microenvironment remodeling. Nanoscale 2022, 14, 7473–7479. [Google Scholar] [CrossRef]
- Awad, N.S.; Haider, M.; Paul, V.; AlSawaftah, N.M.; Jagal, J.; Pasricha, R.; Husseini, G.A. Ultrasound-Triggered Liposomes Encapsulating Quantum Dots as Safe Fluorescent Markers for Colorectal Cancer. Pharmaceutics 2021, 13, 2073. [Google Scholar] [CrossRef]
- Anilkumar, T.S.; Lu, Y.-J.; Chen, J.-P. Optimization of the Preparation of Magnetic Liposomes for the Combined Use of Magnetic Hyperthermia and Photothermia in Dual Magneto-Photothermal Cancer Therapy. Int. J. Mol. Sci. 2020, 21, 5187. [Google Scholar] [CrossRef]
- Sun, Q.; You, Q.; Wang, J.; Liu, L.; Wang, Y.; Song, Y.; Cheng, Y.; Wang, S.; Tan, F.; Li, N. Theranostic Nanoplatform: Triple-Modal Imaging-Guided Synergistic Cancer Therapy Based on Liposome-Conjugated Mesoporous Silica Nanoparticles. ACS Appl. Mater. Interfaces 2018, 10, 1963–1975. [Google Scholar] [CrossRef]
- Singh, A.K.; Singh, S.S.; Rathore, A.S.; Singh, S.P.; Mishra, G.; Awasthi, R.; Mishra, S.K.; Gautam, V.; Singh, S.K. Lipid-Coated MCM-41 Mesoporous Silica Nanoparticles Loaded with Berberine Improved Inhibition of Acetylcholine Esterase and Amyloid Formation. ACS Biomater. Sci. Eng. 2021, 7, 3737–3753. [Google Scholar] [CrossRef]
- Jayachandran, P.; Ilango, S.; Suseela, V.; Nirmaladevi, R.; Shaik, M.R.; Khan, M.; Khan, M.; Shaik, B. Green Synthesized Silver Nanoparticle-Loaded Liposome-Based Nanoarchitectonics for Cancer Management: In Vitro Drug Release Analysis. Biomedicines 2023, 11, 217. [Google Scholar] [CrossRef] [PubMed]
- Yusuf, A.; Brophy, A.; Gorey, B.; Casey, A. Liposomal encapsulation of silver nanoparticles enhances cytotoxicity and causes induction of reactive oxygen species-independent apoptosis. J. Appl. Toxicol. 2018, 38, 616–627. [Google Scholar] [CrossRef]
- Valdivia, V.; Gimeno-Ferrero, R.; Pernia Leal, M.; Paggiaro, C.; Fernández-Romero, A.M.; González-Rodríguez, M.L.; Fernández, I. Biologically Relevant Micellar Nanocarrier Systems for Drug Encapsulation and Functionalization of Metallic Nanoparticles. Nanomaterials 2022, 12, 1753. [Google Scholar] [CrossRef]
- Fan, X.; Luo, Z.; Ye, E.; You, M.; Liu, M.; Yun, Y.; Loh, X.J.; Wu, Y.-L.; Li, Z. AuNPs Decorated PLA Stereocomplex Micelles for Synergetic Photothermal and Chemotherapy. Macromol. Biosci. 2021, 21, 2100062. [Google Scholar] [CrossRef] [PubMed]
- Li Volsi, A.; Fiorica, C.; D’Amico, M.; Scialabba, C.; Palumbo, F.S.; Giammona, G.; Licciardi, M. Hybrid Gold/Silica/Quantum-Dots supramolecular-nanostructures encapsulated in polymeric micelles as potential theranostic tool for targeted cancer therapy. Eur. Polym. J. 2018, 105, 38–47. [Google Scholar] [CrossRef]
- Mahajan, K.D.; Ruan, G.; Vieira, G.; Porter, T.; Chalmers, J.J.; Sooryakumar, R.; Winter, J.O. Biomolecular detection, tracking, and manipulation using a magnetic nanoparticle-quantum dot platform. J. Mater. Chem. B 2020, 8, 3534–3541. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Wu, Y.; Gan, Z.; Yang, Y.; Liu, Y.; Tang, P.; Wu, D. Accurate intracellular and in vivo temperature sensing based on CuInS2/ZnS QD micelles. J. Mater. Chem. B 2019, 7, 2835–2844. [Google Scholar] [CrossRef]
- Fan, Q.; Dehankar, A.; Porter, T.K.; Winter, J.O. Effect of Micelle Encapsulation on Toxicity of CdSe/ZnS and Mn-Doped ZnSe Quantum Dots. Coatings 2021, 11, 895. [Google Scholar] [CrossRef]
- Li, B.; Cai, M.; Lin, L.; Sun, W.; Zhou, Z.; Wang, S.; Wang, Y.; Zhu, K.; Shuai, X. MRI-visible and pH-sensitive micelles loaded with doxorubicin for hepatoma treatment. Biomater. Sci. 2019, 7, 1529–1542. [Google Scholar] [CrossRef] [PubMed]
- Luo, L.; Yang, J.; Zhu, C.; Jiang, M.; Guo, X.; Li, W.; Yin, X.; Yin, H.; Qin, B.; Yuan, X.; et al. Sustained release of anti-PD-1 peptide for perdurable immunotherapy together with photothermal ablation against primary and distant tumors. J. Control. Release 2018, 278, 87–99. [Google Scholar] [CrossRef]
- Liang, J.; Huang, Q.; Hua, C.; Hu, J.; Chen, B.; Wan, J.; Hu, Z.; Wang, B. pH-Responsive Nanoparticles Loaded with Graphene Quantum Dots and Doxorubicin for Intracellular Imaging, Drug Delivery and Efficient Cancer Therapy. ChemistrySelect 2019, 4, 6004–6012. [Google Scholar] [CrossRef]
- Fang, Y.; Lin, S.; Yang, F.; Situ, J.; Lin, S.; Luo, Y. Aptamer-Conjugated Multifunctional Polymeric Nanoparticles as Cancer-Targeted, MRI-Ultrasensitive Drug Delivery Systems for Treatment of Castration-Resistant Prostate Cancer. BioMed Res. Int. 2020, 2020, e9186583. [Google Scholar] [CrossRef]
- Jin, Z.; Chang, J.; Dou, P.; Jin, S.; Jiao, M.; Tang, H.; Jiang, W.; Ren, W.; Zheng, S. Tumor Targeted Multifunctional Magnetic Nanobubbles for MR/US Dual Imaging and Focused Ultrasound Triggered Drug Delivery. Front. Bioeng. Biotechnol. 2020, 8, 586874. [Google Scholar] [CrossRef]
- Kumar, R.; Belz, J.; Markovic, S.; Jadhav, T.; Fowle, W.; Niedre, M.; Cormack, R.; Makrigiorgos, M.G.; Sridhar, S. Nanoparticle-Based Brachytherapy Spacers for Delivery of Localized Combined Chemoradiation Therapy. Int. J. Radiat. Oncol. *Biol. *Phys. 2015, 91, 393–400. [Google Scholar] [CrossRef] [Green Version]
- Chaubey, N.; Sahoo, A.K.; Chattopadhyay, A.; Ghosh, S.S. Silver nanoparticle loaded PLGA composite nanoparticles for improving therapeutic efficacy of recombinant IFNγ by targeting the cell surface. Biomater. Sci. 2014, 2, 1080–1089. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, S.; Ghosal, K.; Mohammad, S.A.; Sarkar, K. Dendrimer functionalized carbon quantum dot for selective detection of breast cancer and gene therapy. Chem. Eng. J. 2019, 373, 468–484. [Google Scholar] [CrossRef]
- Otis, J.B.; Zong, H.; Kotylar, A.; Yin, A.; Bhattacharjee, S.; Wang, H.; Jr, J.R.B.; Wang, S.H. Dendrimer antibody conjugate to target and image HER-2 overexpressing cancer cells. Oncotarget 2016, 7, 36002–36013. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, X.; Lü, S.; Gao, C.; Wang, X.; Bai, X.; Gao, N.; Liu, M. Facile preparation of pH-sensitive and self-fluorescent mesoporous silica nanoparticles modified with PAMAM dendrimers for label-free imaging and drug delivery. Chem. Eng. J. 2015, 266, 171–178. [Google Scholar] [CrossRef]
- Lu, S.; Li, X.; Zhang, J.; Peng, C.; Shen, M.; Shi, X. Dendrimer-Stabilized Gold Nanoflowers Embedded with Ultrasmall Iron Oxide Nanoparticles for Multimode Imaging–Guided Combination Therapy of Tumors. Adv Sci (Weinh) 2018, 5, 1801612. [Google Scholar] [CrossRef] [Green Version]
- Liu, Z.; Zhou, D.; Yan, X.; Xiao, L.; Wang, P.; Wei, J.; Liao, L. Gold Nanoparticle-Incorporated Chitosan Nanogels as a Theranostic Nanoplatform for CT Imaging and Tumour Chemotherapy. IJN 2022, 17, 4757–4772. [Google Scholar] [CrossRef]
- Wei, C.; Dong, X.; Zhang, Y.; Liang, J.; Yang, A.; Zhu, D.; Liu, T.; Kong, D.; Lv, F. Simultaneous fluorescence imaging monitoring of the programmed release of dual drugs from a hydrogel-carbon nanotube delivery system. Sens. Actuators B Chem. 2018, 273, 264–275. [Google Scholar] [CrossRef]
- Gholami, L.; Tafaghodi, M.; Abbasi, B.; Daroudi, M.; Kazemi Oskuee, R. Preparation of superparamagnetic iron oxide/doxorubicin loaded chitosan nanoparticles as a promising glioblastoma theranostic tool. J. Cell. Physiol. 2019, 234, 1547–1559. [Google Scholar] [CrossRef]
- Bulatao, B.P.; Nalinratana, N.; Jantaratana, P.; Vajragupta, O.; Rojsitthisak, P.; Rojsitthisak, P. Lutein-loaded chitosan/alginate-coated Fe3O4 nanoparticles as effective targeted carriers for breast cancer treatment. Int. J. Biol. Macromol. 2023, 242, 124673. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Hong, W.; Duan, S.; Li, Y.; Wang, J.; Zhu, J. Graphene quantum dots mediated magnetic chitosan drug delivery nanosystems for targeting synergistic photothermal-chemotherapy of hepatocellular carcinoma. Cancer Biol. Ther. 2022, 23, 281–293. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Wang, X.; Lu, Z.; Chang, C.; Zhang, Y.; Lu, B. Dual-responsive targeted hollow mesoporous silica nanoparticles for cancer photodynamic therapy and chemotherapy. J. Macromol. Sci. Part. A 2023, 60, 474–483. [Google Scholar] [CrossRef]
Organic NPs | Inorganic NPs | Payload | Application | Target Condition | Highlights | Ref. |
---|---|---|---|---|---|---|
Liposomes | AuNPs | Dox | Controlled release/PTT | HeLa and U14 cell line/mice | The platform showed excellent anticancer effects, with up to 78.28% inhibition rate of tumour cells. | [40] |
Liposomes | AuNPs | Dox | Controlled release/PTT | A549 cell line | NIR irradiation resulted in >80% drug release within 1 min. | [64] |
Liposomes | AuNPs | Fish oil protein (tagged with AuNPs) | Sustained release and targeted delivery | HIG-82 cell line/Osteoarthritic rat model | The first study to report on the anti-osteoarthritic activity of fish oil protein and AuNP encapsulating liposomes. | [65] |
Liposomes (conjugated with apo E) | AuNPs | miRNA inhibitors (integrated with AuNPs) | Targeted delivery | U87 cell line/mice | Greater accumulation in brain tumour tissue compared to controls. | [66] |
Liposomes (cationic) | AuNPs | Carboplatin | Chemo-radiation therapy | HCT116 cell line/mice | Combination of carboplatin and the hybrid platform was found to be remarkably more efficient in terms of radiosensitization effect. | [67] |
Liposomes | Hollow AuNPs | Perfluorocarbon and Dox (stearic acid conjugated) | US-guided fluorescence imaging/PTT | MCF-7, 4T1 and HEK293 cell line/mice | Tumour accumulation of the platform was observed by in vivo fluorescence imaging and the antitumour effect was verified. | [68] |
Liposomes | Au Nanorods | Ganoderic acid A | PTT, chemotherapy, antibacterial therapy | E. coli and S. aureus/MCF-7 cell line/mice | NIR irradiation exhibited broad-spectrum antibacterial effects against drug-resistant E. coli and S. aureus. Strong anticancer activity was observed against MCF-7 cells. | [69] |
Liposomes | Au Nanorods | Ruthenium (II) polypyridyl complexes | Targeted release/PTT | SGC-7901 cell line/mice | NIR irradiation in combination with the nanoplatform could alter the morphology of cells in vitro and could inhibit tumour growth significantly. | [70] |
Liposomes | AuNPs-aptamers | Morin | pH-sensitive targeted release | SGC-7901 cell line/mouse | The platform exhibited tumour targeting properties and could inhibit tumour growth. | [71] |
Liposomes | Solid AuNPs or hollow AuNPs | Dox | Targeted release/PTT | HDF and MCF-7 cell line/mice | Hollow AuNPs presented eight-fold anticancer efficacy compared with solid AuNPs. | [72] |
Liposomes (with FA) | AuNPs and graphene QDs | Dox | Targeted release/bioimaging/PTT/PDT | 4T1 and MCF-7 cell line/mice | The platform exhibited in vivo tumour diagnosis capabilities through imaging along with successful PDT. | [73] |
Liposomes (folate modified) | Au nanorods and MNPs | Dox | Magnetic and photothermal responsive targeted delivery | 5637 and A549 cell line | The hybrid nanoplatform was synthesized using microfluidics-based production; 95% of the drug was released after 3 h. | [74] |
Liposomes (with reduced graphene oxide sheets) | Carbon QDs | Dox | Stimuli-sensitive delivery/PTT | MD-MB-231 cell line/mice | Monitoring drug release was accomplished using the emission intensity of the theranostic platform. | [75] |
Liposomes | CdSe QDs (modified with oleic acid) and SPIONs (Fe3O4) | - | Targeted delivery/fluorescence imaging | HepG2 cell line | Magnetic fluorescent liposomes could be drifted by an external magnet that could further be characterized using a fluorescence microscope. | [76] |
Liposomes (with RGD peptide) | QDs | L-arginine | Fluorescence imaging-guided PTT | 4T1 cell line/mice | The theranostic platform demonstrated the generation of NO, which was toxic to tumour cells in vitro. The accumulation of liposomes in the tumour tissue could be tracked in vivo. | [77] |
Liposomes | Graphene QDs | - | US-triggered release | HCT116 cell line | Controlled delivery of QDs (as biomarkers) could be achieved by employing low-frequency US. | [78] |
Liposomes (cationic) | CMNPs | - | Magneto-PTT | U87 cell line | The study revealed efficient intracellular uptake of the nanoplatform and exhibited superior hyperthermia effects. | [79] |
Liposomes | MNPs | Tenofovir disoproxil fumarate | Multimodal imaging/targeted release | HIV-infected microglia cell line | The platform demonstrated the capability for brain-targeted delivery with assistance of image guidance in vitro. | [62] |
Liposomes (ICG loaded and FA modified) | Mesoporous SNPs (with gadolinium) | Dox | PDT/PTT/NIR fluorescence/MRI/PAI | 4T1 cell line/mice | The multifunctional theranostic platform demonstrated capability for multimodal imaging, enabled effective diagnostics, and presented Dox release upon NIR irradiation. | [80] |
Liposomes (as lipid coating) | Mesoporous SNPs | Berberine | Brain-targeted drug delivery | In vitro assay/mice | The hybrid nanoplatform achieved sustained release of berberine and inhibition of acetylcholine esterase, potentially contributing to the treatment of Alzheimer’s disease. | [81] |
Liposomes | AgNPs | - | Drug release analysis | Dialysis bag method | Greater AgNP release was observed at pH 5.5, which corresponds to the pH found in mature endosomes of tumour cells. | [82] |
Liposomes | AgNPs | - | Evaluation of cytotoxicity | THP1 cell line | The nanoplatform was found to increase reactive oxygen species-independent induction of apoptosis, suggesting that the encapsulation could potentially reduce the concentration of AgNP required to exert a biological effect. | [83] |
Organic NPs | Inorganic NPs | Payload | Application | Target Condition | Highlights | Ref. |
---|---|---|---|---|---|---|
Micelles (oleic acid and tetraethylene glycol) | AuNPs and IONPs | Dexa | Drug delivery/bioimaging | Dialysis bag | The micellar system was capable of encapsulating Dexa, AuNPs, IONPs, and demonstrated its potential for the delivery of multiple types of therapeutic and diagnostic agents. | [84] |
Micelles (polylacticacid stereocomplex) | AuNPs (tethered in the shell) | Dox | PTT/chemotherapy | HepG2 cell line/mice | The nanoplatform was able to provide accelerated drug release via PTE, and showed improved efficacy in tumour reduction. | [85] |
Micelles (PHEA-LA-PEG-FA) | Au core (with silica)/QDs shell | Dox | Drug delivery/PTT/bioimaging | MCF7 cell line | The platform was utilised as a theranostic device capable of real-time imaging. | [86] |
Micelles | QDs and/or SPIONs | Single stranded DNA (p53) or avidin | Biomolecular detection/tracking | - | The hybrid platform successfully performed rapid, sensitive, and specific separation and detection of DNA and/or protein from a small sample volume. | [87] |
Micelles | CuInS2/ZnS QDs | - | Intracellular temperature sensing | HeLa and PC3 cell line (mice) | The nanoplatform was efficient in microscale temperature sensing/hyperthermia monitoring through NIR emission with no cytotoxic effect. | [88] |
Micelles | CdSe/ZnS QDs | - | Evaluation of toxicity/biosensing | HepG2 cell line | CdSe/ZnS QDs coated with micelles showed minimal toxicity, suggesting that thicker protective polymer layers reduced cytotoxicity and were suitable for bioimaging applications. | [89] |
Micelles | SPIONs | Dox | pH-sensitive delivery/bioimaging | HepG2 cell line/mice | The platform successfully achieved drug release and could be imaged through MRI. | [90] |
Organic NPs | Inorganic NPs | Payload | Application | Target Condition | Highlights | Ref. |
---|---|---|---|---|---|---|
PLGA | Hollow Au nanoshell | Anti-PD-1 peptide | Sustained release/PTT | 4T1 and CT26 cell line/mice | Efficient PD-1 blocking was achieved through sustained release (for 40 days) of anti-PD-1 peptide by NIR irradiation. | [91] |
PLGA | Graphene QDs | Dox | pH-responsive delivery/bioimaging | HeLa cell line | Drug release was observed in a mild acidic environment in vitro. The platform showed its potential for bioimaging applications. | [92] |
PLGA | CdSe/ZnS QDs | Chlorophyllin copper complex | PDT | NIH-3T3 cell line | The nanoplatform could generate ROS when excited at 365 nm. | [63] |
PLGA (with PEG and Wy5a aptamer) | SPIONs | Docetaxel | Controlled drug delivery/MRI | PC-3 cell line/mice | In vitro investigations demonstrated high-sensitivity MRI detection and enhanced cytotoxic effects. In vivo studies showed that NPs exhibited superior antitumour efficacy while causing minimal systemic toxicity. | [93] |
PLGA (with PEG-FA) | SPIONs | Dox | US/MRI/focused US-triggered drug delivery | 4T1 cell line/mice | The nanoplatform exhibited enhanced tumour targeting, effective US/MRI contrast, and focused US-triggered drug release. | [94] |
PLGA | SNPs (conjugated with Cy7.5) | Docetaxel | Chemo-radiation therapy | Mice | Tracking and sustained drug release from spacers (made of PLGA and loaded with SNPs) were achieved, demonstrating the combined therapeutic efficacy of chemo-radiation therapy. | [95] |
PLGA | AgNPs | IFNγ | Cancer therapy | HeLa and MCF-7 cell line | The nanoplatform induced apoptosis through the delivery of AgNPs and IFNγ. | [96] |
Organic NPs | Inorganic NPs | Payload | Application | Target Condition | Highlights | Ref. |
---|---|---|---|---|---|---|
Dendrimers (PAMAM) | Carbon QDs (conjugated with RGDS peptide) | - | Targeted delivery/bioimaging | MDA-MB-231 cell line (for TNBC) | Green synthesis of carbon QDs was successfully performed. The nanoplatform showed potential as a theranostic tool for TNBC, with the capability of detecting and monitoring the presence of Cu (II) ions. | [97] |
Dendrimers (conjugated with PEG and Herceptin) | AuNPs | Gadolinium | Targeted delivery/bioimaging | HER-2 overexpressing cell lines | Successful in vitro internalization was achieved with no cytotoxicity. The nanoplatform worked as a nanoimaging agent as well as a nanocarrier for targeted delivery of cytotoxic drugs. | [98] |
Dendrimers (PAMAM) | Mesoporous SNPs | Curcumin | Fluorescence imaging/pH-responsive drug delivery | HeLa cell line | The study demonstrated the first-time use of PAMAM dendrimers as pH-sensitive capping and self-fluorescent agents. | [99] |
Dendrimer–stabilized Au nanoflowers | Ultrasmall IONPs | - | MRI/CT/PAI-guided combination of PTT and RT | 4T1 cell line/subcutaneous tumour model | The multifunctional theranostic platform presented enhanced photothermal conversion efficiency and compatibility with multiple imaging modalities. | [100] |
Organic NPs | Inorganic NPs | Payload | Application | Target Condition | Highlights | Ref. |
---|---|---|---|---|---|---|
Chitosan/tripolyphosphate nanogels | Cysteine-functionalized AuNPs | Dox | CT imaging/targeted delivery | OSCC cell line/mice | The hybrid nanogel exhibited high drug-loading capacity (87%) and controlled drug release at acidic pH. AuNPs enabled the monitoring of drug delivery and accumulation in tumours. | [101] |
Thermosensitive hydrogel with chitosan | Multiwalled carbon nanotubes | Dox and rhodamine B | Sustained drug delivery/fluorescence imaging | BEL-7402 cell line/mice | Dual drug delivery could be successfully monitored using fluorescence imaging. | [102] |
Chitosan | SPION | Dox | Drug delivery/bioimaging | C6 glioma cell line | The nanoplatform could be used as an MRI contrast agent as well as a theranostic tool for glioblastoma. | [103] |
Chitosan/alginate | Fe3O4 | Lutein | Magnetic targeting delivery | MDA-MB-231 and MCF-7 cell line | The platform showed enhanced cytotoxicity upon exposure to a magnetic field. | [104] |
Magnetic chitosan | Aptamer-modified graphene QDs | Dox | Photothermal chemotherapy | Hepatoma cell line H22/mice | There was no evidence of substantial biological toxicity or adverse effects in either in vivo or in vitro experiments. | [105] |
Chitosan | Mesoporous SNP | Dox and indocyanine green | Chemotherapy/PDT | HepG2 cell line | The platform could successfully target and kill cells via chemotherapy combined with PDT. | [106] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yanar, F.; Carugo, D.; Zhang, X. Hybrid Nanoplatforms Comprising Organic Nanocompartments Encapsulating Inorganic Nanoparticles for Enhanced Drug Delivery and Bioimaging Applications. Molecules 2023, 28, 5694. https://doi.org/10.3390/molecules28155694
Yanar F, Carugo D, Zhang X. Hybrid Nanoplatforms Comprising Organic Nanocompartments Encapsulating Inorganic Nanoparticles for Enhanced Drug Delivery and Bioimaging Applications. Molecules. 2023; 28(15):5694. https://doi.org/10.3390/molecules28155694
Chicago/Turabian StyleYanar, Fatih, Dario Carugo, and Xunli Zhang. 2023. "Hybrid Nanoplatforms Comprising Organic Nanocompartments Encapsulating Inorganic Nanoparticles for Enhanced Drug Delivery and Bioimaging Applications" Molecules 28, no. 15: 5694. https://doi.org/10.3390/molecules28155694
APA StyleYanar, F., Carugo, D., & Zhang, X. (2023). Hybrid Nanoplatforms Comprising Organic Nanocompartments Encapsulating Inorganic Nanoparticles for Enhanced Drug Delivery and Bioimaging Applications. Molecules, 28(15), 5694. https://doi.org/10.3390/molecules28155694