Immunomodulatory Effect of Flammulina rossica Fermentation Extract on Healthy and Immunosuppressed Mice
Abstract
:1. Introduction
2. Results and Discussion
2.1. Physicochemical Properties of the Fermentation Extract FREP
2.2. Effect of FREP on the Immune Organ Index in Mice
2.3. Effect of FREP on Spleen Lymphocyte Proliferation in Healthy Mice
2.4. Effects of FREP on CD4+ and CD8+ T Lymphocytes in Healthy Mice
2.5. Effects of FREP on Serum Cytokines
2.6. Effects of FREP on Haemopoietic Function in Immunosuppressive Mice
2.7. Effect of FREP on Serum Antibody-Forming Cells
2.8. Effect of FREP on Serum Haemolysin Formation
2.9. Effect of FREP on Secretory Immunoglobulin A (SIgA) in Intestinal Contents
3. Materials and Methods
3.1. Microorganism and Culture Conditions
3.2. Preparation of the Fermentation Extract
3.3. Measurement of the FREP Components
3.3.1. Main Components
3.3.2. Amino Acids
3.4. FTIR Spectra Analysis
3.5. Molecular Weight
3.6. Monosaccharide Composition of the FREP
3.7. Animals
3.8. The Effects of FREP on Healthy Mice
3.9. The Effects of FREP on Immunosuppressive Mice
3.10. Immune Organ Index Measurement
3.11. Spleen Cell Proliferation Experiment
3.11.1. Preparation of Spleen Cells
3.11.2. Effect of FREP on Spleen Lymphocyte Proliferation
3.12. Effects of FREP on CD4+ and CD8+ T Lymphocytesin Healthy Mice
3.13. Effects of FREP on Peripheral White Blood Cell and Red Blood Cell Counts in Immunosuppressive Mice
3.14. Determination of Cytokines in Serum
3.15. Measurement of Serum Haemolysin
3.16. Antibody-Forming Cells
3.17. Detection of Secretory Immunoglobulin A in Intestinal Contents
3.18. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Zhang, S.; Nie, S.; Huang, D.; Feng, Y.; Xie, M. A Novel Polysaccharide from Ganoderma atrum Exerts Antitumor Activity by Activating Mitochondria-Mediated Apoptotic Pathway and Boosting the Immune System. J. Agric. Food Chem. 2014, 62, 1581–1589. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Hu, M.; Xu, L.; Yang, X.; Chang, Y.; Zhu, Y. Effect of edible fungal polysaccharides on improving influenza vaccine protection in mice. Food Agric. Immunol. 2017, 28, 981–992. [Google Scholar] [CrossRef] [Green Version]
- Sheu, S.-C.; Lyu, Y.; Lee, M.-S.; Cheng, J.-H. Immunomodulatory effects of polysaccharides isolated from Hericium erinaceus on dendritic cells. Process Biochem. 2013, 48, 1402–1408. [Google Scholar] [CrossRef]
- Ren, D.; Wang, N.; Guo, J.; Yuan, L.; Yang, X. Chemical characterization of Pleurotus eryngii polysaccharide and its tumor-inhibitory effects against human hepatoblastoma HepG-2 cells. Carbohydr. Polym. 2016, 138, 123–133. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Wang, Q.; Wang, G.; Wu, J.-Y. Contents and Antioxidant Activities of Polysaccharides in 14 Wild Mushroom Species from the Forest of Northeastern China. Int. J. Med. Mushrooms 2015, 17, 1161–1170. [Google Scholar] [CrossRef]
- Navegantes, K.C.; Albuquerque, R.F.V.; Dalla-Santa, H.S.; Soccol, C.R.; Monteiro, M.C. Agaricus brasiliensis mycelium and its polysaccharide modulate the parameters of innate and adaptive immunity. Food Agric. Immunol. 2013, 24, 393–408. [Google Scholar] [CrossRef] [Green Version]
- Liu, Q.; Tian, G.; Yan, H.; Geng, X.; Cao, Q.; Wang, H.; Ng, T.B. Characterization of Polysaccharides with Antioxidant and Hepatoprotective Activities from the Wild Edible Mushroom Russula vinosa Lindblad. J. Agric. Food Chem. 2014, 62, 8858–8866. [Google Scholar] [CrossRef]
- Zhang, S.; Pang, G.; Chen, C.; Qin, J.; Yu, H.; Liu, Y.; Zhang, X.; Song, Z.; Zhao, J.; Wang, F.; et al. Effective cancer immunotherapy by Ganoderma lucidum polysaccharide-gold nanocomposites through dendritic cell activation and memory T cell response. Carbohydr. Polym. 2019, 205, 192–202. [Google Scholar] [CrossRef]
- Li, L.; Guo, Y.; Huang, Q.; Shi, X.; Liu, Q.; Wang, F.; Liu, Q.; Yu, K.; Wang, Z. GPP (composition of Ganoderma lucidum polysaccharides and Polyporus umbellatus polysaccharides) protects against DSS-induced murine colitis by enhancing immune function and regulating intestinal flora. Food Sci. Hum. Wellness 2022, 11, 795–805. [Google Scholar] [CrossRef]
- Liu, Y.; Zheng, D.; Wang, D.; Su, L.; Wang, Q.; Li, Y. Immunomodulatory Activities of Polysaccharides from White Button Mushroom, Agaricus bisporus (Agaricomycetes), Fruiting Bodies and Cultured Mycelia in Healthy and Immunosuppressed Mice. Int. J. Med. Mushrooms 2019, 21, 13–27. [Google Scholar] [CrossRef]
- Lin, L.; Cui, F.; Zhang, J.; Gao, X.; Zhou, M.; Xu, N.; Zhao, H.; Liu, M.; Zhang, C.; Jia, L. Antioxidative and renoprotective effects of residue polysaccharides from Flammulina velutipes. Carbohydr. Polym. 2016, 146, 388–395. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.-T.; Huang, K.-S.; Shaw, J.-F.; Chen, J.-R.; Kuo, W.-S.; Shen, G.; Grumezescu, A.M.; Holban, A.M.; Wang, Y.-T.; Wang, J.-S.; et al. Trends in the Immunomodulatory Effects of Cordyceps militaris: Total Extracts, Polysaccharides and Cordycepin. Front. Pharmacol. 2020, 11, 575704. [Google Scholar] [CrossRef] [PubMed]
- Ge, Z.W.; Yang, Z.L.; Zhang, P.; Matheny, P.B.; Hibbett, D.S. Flammulina species from China inferred by morphological and molecular data. Fungal Divers. 2008, 32, 59–68. [Google Scholar]
- Peng, L.; Yang, J.; Wang, W.; Wang, Q. Optimization of Fermentation Conditions and Extraction Technology of Mycelium Polysaccharide of Flammulina rossica. Edible Fungi 2017, 39, 24–28. [Google Scholar]
- Baca-Bocanegra, B.; Martinez-Lapuente, L.; Nogales-Bueno, J.; Hernandez-Hierro, J.M.; Ferrer-Gallego, R. Feasibility study on the use of ATR-FTIR spectroscopy as a tool for the estimation of wine polysaccharides. Carbohydr. Polym. 2022, 287, 119365. [Google Scholar] [CrossRef]
- Nawrocka, A.; Krekora, M.; Niewiadomski, Z.; Mis, A. FTIR studies of gluten matrix dehydration after fibre polysaccharide addition. Food Chem. 2018, 252, 198–206. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Huang, Y.; Zhou, C.; Xu, T.; Chen, X.; Wu, Q.; Zhang, K.; Li, Y.; Li, D.; Chen, Y. Effects of ultra-high pressure treatment on structure and bioactivity of polysaccharides from large leaf yellow tea. Food Chem. 2022, 387, 132862. [Google Scholar] [CrossRef]
- Li, X.; Wang, L.; Wang, Z. Structural characterization and antioxidant activity of polysaccharide from Hohenbuehelia serotina. Int. J. Biol. Macromol. 2017, 98, 59–66. [Google Scholar] [CrossRef] [PubMed]
- Chiou, S.H.; Sheu, B.C.; Chang, W.C.; Huang, S.C.; Ho, H.N. Current concepts of tumor-infiltrating lymphocytes in human malignancies. J. Reprod. Immunol. 2005, 67, 35–50. [Google Scholar] [CrossRef]
- Chen, Y.; Huang, Y.; Cui, Z.; Liu, J. Purification, characterization and biological activity of a novel polysaccharide from Inonotus obliquus. Int. J. Biol. Macromol. 2015, 79, 587–594. [Google Scholar] [CrossRef]
- Su, X.; Pei, Z.; Hu, S. Ginsenoside Re as an adjuvant to enhance the immune response to the inactivated rabies virus vaccine in mice. Int. Immunopharmacol. 2014, 20, 283–289. [Google Scholar] [CrossRef]
- Fan, Y.; Ma, X.; Ma, L.; Zhang, J.; Zhang, W.; Song, X. Antioxidative and immunological activities of ophiopogon polysaccharide liposome from the root of Ophiopogon japonicus. Carbohydr. Polym. 2016, 135, 110–120. [Google Scholar] [CrossRef]
- Kuang, H.; Xia, Y.; Liang, J.; Yang, B.; Wang, Q.; Wang, X. Structural characteristics of a hyperbranched acidic polysaccharide from the stems of Ephedra sinica and its effect on T-cell subsets and their cytokines in DTH mice. Carbohydr. Polym. 2011, 86, 1705–1711. [Google Scholar] [CrossRef]
- Kang, H.; Choi, T.-W.; Ahn, K.-S.; Lee, J.-Y.; Ham, I.-H.; Choi, H.-Y.; Shim, E.-S.; Sohn, N.-W. Upregulation of interferon-gamma and interleukin-4, Th cell-derived cytokines by So-Shi-Ho-Tang (Sho-Saiko-To) occurs at the level of antigen presenting cells, but not CD4 T cells. J. Ethnopharmacol. 2009, 123, 6–14. [Google Scholar] [CrossRef]
- Sim, G.C.; Radvanyi, L. The IL-2 cytokine family in cancer immunotherapy. Cytokine Growth Factor Rev. 2014, 25, 377–390. [Google Scholar] [CrossRef]
- Wang, J.; Ge, B.; Li, Z.; Guan, F.; Li, F. Structural analysis and immunoregulation activity comparison of five polysaccharides from Angelica sinensis. Carbohydr. Polym. 2016, 140, 6–12. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Nie, W.; Fan, S.; Zhang, J.; Wang, Y.; Lu, J.; Jin, L. A polysaccharide from Sargassum fusiforme protects against immunosuppression in cyclophosphamide-treated mice. Carbohydr. Polym. 2012, 90, 1114–1119. [Google Scholar] [CrossRef] [PubMed]
- Moore, K.A.; Lemischka, I.R. Stem cells and their niches. Science 2006, 311, 1880–1885. [Google Scholar] [CrossRef] [Green Version]
- Yu, Q.; Nie, S.-P.; Wang, J.-Q.; Liu, X.-Z.; Yin, P.-F.; Huang, D.-F.; Li, W.-J.; Gong, D.-M.; Xie, M.-Y. Chemoprotective effects of Ganoderrna atrum polysaccharide in cyclophosphamide-induced mice. Int. J. Biol. Macromol. 2014, 64, 395–401. [Google Scholar] [CrossRef]
- Zheng, Z.M.; Pan, X.L.; Luo, L.; Zhang, Q.L.; Huang, X.; Liu, Y.X.; Wang, K.P.; Zhang, Y. Advances in oral absorption of polysaccharides: Mechanism, affecting factors, and improvement strategies. Carbohydr. Polym. 2022, 282, 119110. [Google Scholar] [CrossRef]
- Hu, J.; Wu, H.; Guan, L. Effect of mushroom polysaccharide(Tiandixin) on erythrocyte immunology function of gastric carcinoma patients with chemical therapy. Guid. J. Tradit. Chin. Med. Pharm. 2003, 3, 49–50. [Google Scholar]
- Jiang, S.; Qiu, L.; Li, Y.; Li, L.; Wang, X.; Liu, Z.; Guo, Y.; Wang, H. Effects of Marsdenia tenacissima polysaccharide on the immune regulation and tumor growth in H-22 tumor-bearing mice. Carbohydr. Polym. 2016, 137, 52–58. [Google Scholar] [CrossRef]
- Davis, L.; Kuttan, G. Effect of Withania somnifera on cytokine production in normal and cyclophosphamide treated mice. Immunopharmacol. Immunotoxicol. 1999, 21, 695–703. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.-M.; Yu, W.; Ou, Z.-P.; Ma, H.-L.; Liu, W.-M.; Ji, X.-L. Antioxidant and Immunity Activity of Water Extract and Crude Polysaccharide from Ficus carica L. Fruit. Plant Foods Hum. Nutr. 2009, 64, 167–173. [Google Scholar] [CrossRef] [PubMed]
- Nair, P.K.R.; Rodriguez, S.; Ramachandran, R.; Alamo, A.; Melnick, S.J.; Escalon, E.; Garcia, P.I., Jr.; Wnuk, S.F.; Ramachandran, C. Immune stimulating properties of a novel polysaccharide from the medicinal plant Tinospora cordifolia. Int. Immunopharmacol. 2004, 4, 1645–1659. [Google Scholar] [CrossRef]
- Zhao, R.; Hu, Q.; Ma, G.; Su, A.; Xie, M.; Li, X.; Chen, G.; Zhao, L. Effects of Flammulina velutipes polysaccharide on immune response and intestinal microbiota in mice. J. Funct. Foods 2019, 56, 255–264. [Google Scholar] [CrossRef]
- Perkins, N.D. Integrating cell-signalling pathways with NF-kappa B and IKK function. Nat. Rev. Mol. Cell Biol. 2007, 8, 49–62. [Google Scholar] [CrossRef]
- Karin, M.; Delhase, M. The I kappa B kinase (IKK) and NF-kappa B: Key elements of proinflammatory signalling. Semin. Immunol. 2000, 12, 85–98. [Google Scholar] [CrossRef]
- Zhao, C.; Zhao, K.; Liu, X.Y.; Huang, Y.F.; Liu, B. In Vitro Antioxidant and Antitumor Activities of Polysaccharides Extracted from the Mycelia of Liquid-Cultured Flammulina velutipes. Food Sci. Technol. Res. 2013, 19, 661–667. [Google Scholar] [CrossRef] [Green Version]
- Dubois, M.G.K.; Hamilton, J.K.; Rebers, P.A.; Smith, F. Colorimetric Method for Determination of Sugars and Related Substances. Anal. Chem. 1956, 28, 350–356. [Google Scholar] [CrossRef]
- Zhang, N.; Li, Q.; Wang, J.; Lu, J.; Yang, S.; Xie, J.; Meng, Q.; Quan, Y.; Wang, D.; Teng, L. Screening of Irpex lacteus mutant strains and optimizing fermentation conditions. J. Food Agric. Environ. 2014, 12, 1213–1219. [Google Scholar]
- Brown, R.E.; Jarvis, K.L.; Hyland, K.J. Protein measurement using bicinchoninic acid: Elimination of interfering substances. Anal. Biochem. 1989, 180, 136–139. [Google Scholar] [CrossRef]
- Ma, T.-W.; Lai, Y.; Yang, F.-C. Enhanced production of triterpenoid in submerged cultures of Antrodia cinnamomea with the addition of citrus peel extract. Bioprocess Biosyst. Eng. 2014, 37, 2251–2261. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Wang, J.; Li, L.; Hu, W.; Qu, Y.; Ding, Y.; Meng, L.; Teng, L.; Wang, D. Hepatoprotective Effects of Antrodia cinnamomea: The Modulation of Oxidative Stress Signaling in a Mouse Model of Alcohol-Induced Acute Liver Injury. Oxidative Med. Cell. Longev. 2017, 2017, 7841823. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wan, X.; Jin, X.; Xie, M.; Liu, J.; Gontcharov, A.A.; Wang, H.; Lv, R.; Liu, D.; Wang, Q.; Li, Y. Characterization of a polysaccharide from Sanghuangporus vaninii and its antitumor regulation via activation of the p53 signaling pathway in breast cancer MCF-7 cells. Int. J. Biol. Macromol. 2020, 163, 865–877. [Google Scholar] [CrossRef]
- Yokota, H.; Mori, K.; Yamaguchi, H.; Kaniwa, H.; Saisho, N. Monosaccharide composition analysis of pamiteplase by anion exchange chromatography with pulsed amperometric detection. J. Pharm. Biomed. Anal. 1999, 21, 767–774. [Google Scholar] [CrossRef]
- Charan, J.; Kantharia, N.D. How to calculate sample size in animal studies? J. Pharmacol. Pharmacother. 2013, 4, 303–306. [Google Scholar] [CrossRef] [Green Version]
- Li, F.; Yuan, Q.; Rashid, F. Isolation, purification and immunobiological activity of a new water-soluble bee pollen polysaccharide from Crataegus pinnatifida Bge. Carbohydr. Polym. 2009, 78, 80–88. [Google Scholar] [CrossRef]
- Jeff, I.B.; Fan, E.; Tian, M.; Song, C.; Yan, J.; Zhou, Y. In vivo anticancer and immunomodulating activities of mannogalactoglucan-type polysaccharides from Lentinus edodes (Berkeley) Singer. Cent. Eur. J. Immunol. 2016, 41, 47–53. [Google Scholar] [CrossRef]
- Xiong, Q.; Jiao, Y.; Zhao, X.; Chen, X.; Zhang, Q.; Jiang, C. Purification, characterization and immunostimulatory activity of polysaccharide from Cipangopaludina chinensis. Carbohydr. Polym. 2013, 98, 217–223. [Google Scholar] [CrossRef] [PubMed]
- Wen, X.-M.; Zhang, Y.-L.; Liu, X.-M.; Guo, S.-X.; Wang, H. Immune responses in mice to arecoline mediated by lymphocyte muscarinic acetylcholine receptor. Cell Biol. Int. 2006, 30, 1048–1053. [Google Scholar] [CrossRef] [PubMed]
Sample | FREP (%) |
---|---|
Total carbohydrate | 40.5 |
Total protein | 10.4 |
Reducing sugar | 16.67 |
Crude fat | 0.48 |
Molecular weight (kDa) | 28.52 |
Monosaccharied composition (mol %) | |
Mannose | 22.4 |
Glucose | 26.5 |
Galactose | 37.7 |
Arabinose | 12.3 |
Fucose | 1.1 |
Compounds | Contents (%) | Compounds | Contents (%) |
---|---|---|---|
Aspartic acid (Asp) | 0.18 | Isoleucine (Iso) | 0.13 |
L-Threonine (Thr) | 0.16 | Leucine (Leu) | 0.20 |
Serine (Ser) | 0.22 | Tyrosine (Tyr) | 0.10 |
Glutamic acid (Glu) | 1.12 | Phenylalanine (Phe) | 0.12 |
Glycine (Gly) | 0.30 | Lysine (Lys) | 0.15 |
Alanine (Ala) | 0.18 | Histidine (His) | 0.06 |
Valine (Val) | 0.15 | Arginine (Arg) | 0.19 |
DL-Methionine (Met) | 0.07 | Proline (Pro) | 0.16 |
Group | Dosage (mg/kg/d) | CD4+ (%) | CD8+ (%) | CD4+/CD8+ |
---|---|---|---|---|
Control | 28.20 ± 0.93 | 17.60 ± 0.47 | 1.62 ± 0.024 | |
AMP | 30 | 80.52 ± 6.25 ** | 11.83 ± 0.29 ** | 2.67 ± 0.075 ** |
FREP | 500 | 31.50 ± 0.38 * | 14.17 ± 0.22 ** | 2.23 ± 0.055 ** |
FREP | 250 | 33.50 ± 0.38 ** | 17.67 ± 0.29 | 1.89 ± 0.012 ** |
FREP | 125 | 31.60 ± 0.68 * | 19.50 ± 0.45 * | 1.62 ± 0.010 |
Indicators | Sensitivity (pg/mL) |
---|---|
IL-2 | 7.5 |
TNF-α | 6.25 |
IL-8 | 2 |
IL-10 | 7.5 |
IL-12 | 0.125 |
IFN-γ | 7.5 |
IL-1β | 0.625 |
IL-6 | 0.75 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dai, Y.; Ma, S.; Zhu, Y.; Gontcharov, A.A.; Liu, Y.; Wang, Q. Immunomodulatory Effect of Flammulina rossica Fermentation Extract on Healthy and Immunosuppressed Mice. Molecules 2023, 28, 5825. https://doi.org/10.3390/molecules28155825
Dai Y, Ma S, Zhu Y, Gontcharov AA, Liu Y, Wang Q. Immunomodulatory Effect of Flammulina rossica Fermentation Extract on Healthy and Immunosuppressed Mice. Molecules. 2023; 28(15):5825. https://doi.org/10.3390/molecules28155825
Chicago/Turabian StyleDai, Yingdi, Sijia Ma, Yanyan Zhu, Andrey A. Gontcharov, Yang Liu, and Qi Wang. 2023. "Immunomodulatory Effect of Flammulina rossica Fermentation Extract on Healthy and Immunosuppressed Mice" Molecules 28, no. 15: 5825. https://doi.org/10.3390/molecules28155825
APA StyleDai, Y., Ma, S., Zhu, Y., Gontcharov, A. A., Liu, Y., & Wang, Q. (2023). Immunomodulatory Effect of Flammulina rossica Fermentation Extract on Healthy and Immunosuppressed Mice. Molecules, 28(15), 5825. https://doi.org/10.3390/molecules28155825