Improving Blueberry Anthocyanins’ Stability Using a Ferritin Nanocarrier
Abstract
:1. Introduction
2. Results and Discussion
2.1. Identification of Main Anthocyanin Composition of BAEs
2.2. The Stability of Blueberry Anthocyanins
2.2.1. Effects of pH, Temperature, Light Type, and Redox Agents on the Stability of BAEs
2.2.2. Effects of Different Metal Ions and Concentrations on the Stability of BAEs
2.3. The Improvement of BAE Stability using Ferritin Nanocarriers
2.3.1. Examination of Encapsulated BAE Nanoparticles with Ferritin Carriers
2.3.2. Effects of Ferritin Nanocarriers on the Stability of BAEs
3. Materials and Methods
3.1. Materials, Chemicals, and Reagents
3.2. HPLC Analysis
3.3. Preparation of Encapsulated BAEs with the Protein Nanocarrier
3.4. Transmission Electron Microscope Observation
3.5. Determination of the Total Anthocyanin Content and Retention
3.6. Stability Test
3.7. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Duan, Y.M.; Tarafdar, A.; Chaurasia, D.; Singh, A.; Bhargava, P.C.; Yang, J.F.; Li, Z.L.; Ni, X.H.; Tian, Y.; Li, H.K.; et al. Blueberry fruit valorization and valuable constituents: A review. Int. J. Food Microbiol. 2022, 381, 109890. [Google Scholar] [CrossRef] [PubMed]
- Miller, K.; Feucht, W.; Schmid, M. Bioactive compounds of strawberry and blueberry and their potential health effects based on human intervention studies: A brief overview. Nutrients 2019, 11, 1510. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fernandes, I.; Marques, F.; Freitas, V.D.; Mateus, N. Antioxidant and antiproliferative properties of methylated metabolites of anthocyanins. Food. Chem. 2013, 141, 2923–2933. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.F.; Lan, W.; Wang, J.; Wang, X.Q.; Qiu, L.N. Research on the nutrition and unique health functions of blueberry. North. Hortic. 2020, 21, 138–145. [Google Scholar]
- Lee, Y.-M.; Yoon, Y.; Yoon, H.; Park, H.-M.; Song, S.; Yeum, K.-J. Dietary anthocyanins against obesity and inflammation. Nutrients 2017, 9, 1089. [Google Scholar] [CrossRef] [Green Version]
- Shishir, M.R.I.; Xie, L.H.; Sun, C.D.; Zheng, X.D.; Chen, W. Advances in micro and nano-encapsulation of bioactive compounds using biopolymer and lipid-based transporters. Trends Food Sci. Technol. 2018, 78, 34–60. [Google Scholar] [CrossRef]
- Fang, J. Bioavailability of anthocyanins. Drug. Metab. Rev. 2014, 46, 508–520. [Google Scholar] [CrossRef]
- Sunil, L.; Shetty, N.P. Biosynthesis and regulation of anthocyanin pathway genes. Appl. Microbiol. Biotechnol. 2022, 106, 1783–1798. [Google Scholar] [CrossRef]
- Ge, J.; Yue, P.X.; Chi, J.P.; Liang, J.; Gao, X.L. Formation and stability of anthocyanins-loaded nanocomplexes prepared with chitosan hydrochloride and carboxymethyl chitosan. Food Hydrocoll. 2018, 74, 23–31. [Google Scholar] [CrossRef]
- Sui, X.N.; Dong, X.; Zhou, W.B. Combined effect of pH and high temperature on the stability and antioxidant capacity of two anthocyanins in aqueous solution. Food Chem. 2014, 163, 163–170. [Google Scholar] [CrossRef]
- He, W.J.; Mu, H.B.; Liu, Z.M.; Lu, M.; Hang, F.; Chen, J.; Zeng, M.M.; Qin, F.; He, Z.Y. Effect of preheat treatment of milk proteins on their interactions with cyanidin-3-O-glucoside. Food Res. Int. 2018, 107, 394–405. [Google Scholar] [CrossRef] [PubMed]
- Herrera-Balandrano, D.D.; Chai, Z.; Beta, T.; Feng, J.; Huang, W.Y. Blueberry anthocyanins: An updated review on approaches to enhancing their bioavailability. Trends Food. Sci. Technol. 2021, 118, 808–821. [Google Scholar] [CrossRef]
- Lin, Y.; Li, C.; Shi, L.J.; Wang, L.X. Anthocyanins: Modified new technologies and challenges. Foods 2023, 12, 1368. [Google Scholar] [CrossRef] [PubMed]
- Jiang, M.H.; Zhang, Y. Biopolymer-based encapsulation of anthocyanins as reinforced natural colorants for food applications. J. Agr. Food Res. 2023, 11, 100488. [Google Scholar] [CrossRef]
- Cai, X.R.; Du, X.F.; Cui, D.M.; Wang, X.N.; Yang, Z.K.; Zhu, G.L. Improvement of stability of blueberry anthocyanins by carboxymethyl starch/xantham gum combinations microencapsulation. Food Hydrocoll. 2019, 91, 238–245. [Google Scholar] [CrossRef]
- Wang, W.J.; Jung, J.; Zhao, Y.Y. Chitosan-cellulose nanocrystal microencapsulation to improve encapsulation efficiency and stability of entrapped fruit anthocyanins. Carbohydr. Polym. 2017, 157, 1246–1253. [Google Scholar] [CrossRef]
- Flores, G.; del Castillo, M.L.R.; Costabile, A.; Klee, A.; Bigetti, K.B.; Gibson, G.R. In vitro fermentation of anthocyanins encapsulated with cyclodextrins: Release, metabolism and influence on gut microbiota growth. J. Funct. Foods 2015, 16, 50–57. [Google Scholar] [CrossRef]
- Koh, J.; Xu, Z.M.; Wicker, L. Blueberry pectin and increased anthocyanins stability under in vitro digestion. Food Chem. 2020, 302, 125343. [Google Scholar] [CrossRef]
- Zang, Z.H.; Chou, S.R.; Tian, J.L.; Lang, Y.X.; Shen, Y.X.; Ran, X.L.; Gao, N.X.; Li, B. Effect of whey protein isolate on the stability and antioxidant capacity of blueberry anthocyanins: A mechanistic and in vitro simulation study. Food Chem. 2021, 336, 127700. [Google Scholar] [CrossRef]
- Ribnicky, D.M.; Roopchand, D.E.; Oren, A.; Grace, M.; Poulev, A.; Lila, M.A.; Havenaar, R.; Raskin, I. Effects of a high fat meal matrix and protein complexation on the bioaccessibility of blueberry anthocyanins using the TNO gastrointestinal model (TIM-1). Food Chem. 2014, 142, 349–357. [Google Scholar] [CrossRef] [Green Version]
- Aref, S.; Habiba, R.; Morsy, N.; Abdel-Daim, M.; Zayet, F. Improvement of the shelf life of grey mullet (Mugil cephalus) fish steaks using edible coatings containing chitosan, nanochitosan, and clove oil during refrigerated storage. Food Prod. Process Nutr. 2022, 4, 27. [Google Scholar] [CrossRef]
- He, B.; Ge, J.; Yue, P.X.; Yue, X.Y.; Fu, R.Y.; Liang, J.; Gao, X.L. Loading of anthocyanins on chitosan nanoparticles influences anthocyanin degradation in gastrointestinal fluids and stability in a beverage. Food Chem. 2017, 221, 1671–1677. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.S.; Temelli, F.; Chen, L.Y. Encapsulation of anthocyanin in liposomes using supercritical carbon dioxide: Effects of anthocyanin and sterol concentrations. J. Funct. Foods 2017, 34, 159–167. [Google Scholar] [CrossRef]
- Xie, C.J.; Wang, Q.; Ying, R.F.; Wang, Y.S.; Wang, Z.J.; Huang, M.G. Binding a chondroitin sulfate-based nanocomplex with kappa-carrageenan to enhance the stability of anthocyanins. Food Hydrocoll. 2020, 100, 105448. [Google Scholar] [CrossRef]
- Bamba, B.S.B.; Shi, J.; Tranchant, C.C.; Xue, J.S.; Forney, C.F.; Lim, L.; Xu, W.L.; Xu, G.H. Coencapsulation of Polyphenols and Anthocyanins from Blueberry Pomace by Double Emulsion Stabilized by Whey Proteins: Effect of Homogenization Parameters. Molecules 2018, 23, 2525. [Google Scholar] [CrossRef] [Green Version]
- Arosio, P.; Ingrassia, R.; Cavadini, P. Ferritins: A family of molecules for iron storage, antioxidation and more. Biochim. Biophys. Acta. 2009, 1790, 589–599. [Google Scholar] [CrossRef]
- Wang, W.M.; Wang, L.L.; Li, G.B.; Zhao, G.H.; Zhao, X.; Wang, H.F. AB loop engineered ferritin nanocages for drug loading under benign experimental conditions. Chem. Commun. 2019, 55, 12344–12347. [Google Scholar] [CrossRef]
- He, J.Y.; Fan, K.L.; Yan, X.Y. Ferritin drug carrier (FDC) for tumor targeting therapy. J. Control. Release 2019, 311, 288–300. [Google Scholar] [CrossRef]
- Hutabarat, R.P.; Xiao, Y.D.; Wu, H.; Wang, J.; Li, D.J.; Huang, W.Y. Identification of anthocyanins and optimization of their extraction from rabbiteye blueberry fruits in Nanjing. J. Food Qual. 2019, 2019, 6806790. [Google Scholar] [CrossRef]
- Chai, Z.; Herrera-Balandrano, D.D.; Yu, H.; Beta, T.; Zeng, Q.L.; Zhang, X.X.; Tian, L.L.; Niu, L.Y.; Huang, W.Y. A comparative analysis on the anthocyanin composition of 74 blueberry cultivars from China. J. Food Compos. Anal. 2021, 102, 104051. [Google Scholar] [CrossRef]
- Lv, W.Y.; Jia, D.M.; Hu, Y.F.; Chen, J.R. Effects of storage and transportation conditions on the stability of main pigment components in strawberry. J. Agron. 2021, 11, 73–77. [Google Scholar]
- Zhang, C.Y.; Xie, Y.L.; Yang, Y.H. Study on the effect of pH value of buffer system on the determination of anthocyanin content and antioxidant activity in black bean skin. J. Henan Uni. Tech. (Nat. Sci.) 2020, 41, 35–40+46. [Google Scholar]
- Zhang, G.D.; Qiu, X.D.; Hu, B.R. Optimization of microwave assisted extraction process and stability of mulberry red pigment. China Food Addit. 2014, 6, 107–111. [Google Scholar]
- Ren, Y.L.; Li, H.; Bing, G.D.; Jin, Q.H.; Lu, J.H. Natural food pigment anthocyanins. Food Sci. 1995, 7, 22–27. [Google Scholar]
- Du, Y.J.; Qin, Y.T. Study on the stability of grape procyanidins in foods. Intro. Food Saf. 2022, 34, 83–85+89. [Google Scholar]
- Li, H.F.; Yang, Y.; Qi, Y.R.; Li, J.L.; Wang, L.; Ran, M.; Yang, H.X.; Gao, H.; Huang, D.W.; Wang, Z.B. Ultrasonic-assisted extraction of anthocyanins from aronia melanocarpa with acidic natural deep eutectic solvents and its stability and antioxidant activity. Sci. Technol. Food Ind. 2023, 44, 259–269. [Google Scholar]
- Fu, X.Z.; Wang, D.; Belwal, T.; Xie, J.; Xu, Y.Q.; Li, L.; Zou, L.G.; Zhang, L.X.; Luo, Z.S. Natural deep eutectic solvent enhanced pulse-ultrasonication assisted extraction as a multi-stability protective and efficient green strategy to extract anthocyanin from blueberry pomace. LWT-Food Sci Technol. 2021, 144, 111220. [Google Scholar] [CrossRef]
- Sun, Q.Y.; Ren, S.; Lu, B.J.; Zhang, J. Study on the stability of blueberry anthocyanins. J. Nutr. 2017, 39, 400–404. [Google Scholar]
- Yan, H.G.; Hang, W.H.; Ding, Z.E. Study on the stability of anthocyanins from rabbit’s eye blueberry. Sci. Technol. Food Ind. 2013, 34, 119–124. [Google Scholar]
- Pan, F.G.; Liu, Y.J.; Liu, J.B.; Wang, E. Stability of blueberry anthocyanin, anthocyanidin and pyranoanthocyanidin pigments and their inhibitory effects and mechanisms in human cervical cancer HeLa cells. RSC. Adv. 2019, 9, 10842–10853. [Google Scholar] [CrossRef]
- Wang, L.; Wang, L.L.; Wang, X.; Lu, B.J.; Zhang, J. Preparation of blueberry anthocyanin liposomes and changes of vesicle properties, physicochemical properties, in vitro release, and antioxidant activity before and after chitosan modification. Food. Sci. Nutr. 2021, 10, 75–87. [Google Scholar] [CrossRef] [PubMed]
- Guo, S.X.; Zhang, W.; Lv, Y.P. The effect of metal ions on the color stability of anthocyanins from purple cabbage. China Condiment 2017, 42, 152–158. [Google Scholar]
- Zhang, Y.H.; Liu, N.; Zhu, W.M.; Guo, S.R. Screening of extraction conditions and stability analysis of purple tomato anthocyanins. J. Food Biotechnol. 2018, 37, 88–92. [Google Scholar]
- Li, Y.Y.; Peng, G.K.; Yang, J.S.; Ju, A.J.; Xu, Y.Q. Study on the extraction and stability of anthocyanins from the fruit of Dusi blueberry. Food. Res. Dev. 2016, 37, 46–49. [Google Scholar]
- Theil, E.C. Iron, ferritin, and nutrition. Annu. Rev. Nutr. 2004, 24, 327–343. [Google Scholar] [CrossRef] [Green Version]
- Arosio, P.; Levi, S. Ferritin, iron homeostasis, and oxidative damage. Free. Radic. Biol. Med. 2002, 33, 457–463. [Google Scholar] [CrossRef]
- Fan, K.; Cao, C.Q.; Pan, Y.X.; Lu, D.L.; Yang, D.; Feng, J.; Song, L.N.; Liang, M.M.; Yan, X.Y. Magnetoferritin nanoparticles for targeting and visualizing tumour tissues. Nat. Nanotechnol. 2012, 7, 459–464. [Google Scholar] [CrossRef]
- Zhang, T.; Lv, C.Y.; Chen, L.L.; Bai, G.L.; Zhao, G.H.; Xu, C.S. Encapsulation of anthocyanin molecules within a ferritin nanocage increases their stability and cell uptake efficiency. Food. Res. Int. 2014, 62, 183–192. [Google Scholar] [CrossRef]
- Yang, R.; Tian, J.; Liu, Y.Q.; Zhu, L. Interaction mechanism of ferritin protein with chlorogenic acid and iron ion: The structure, iron redox, and polymerization evaluation. Food. Chem. 2021, 349, 129144. [Google Scholar] [CrossRef]
- Chandramouli, B.; Bernacchioni, C.; Maio, D.D.; Turano, P.; Brancato, G. Electrostatic and structural bases of Fe2+ translocation through ferritin channels. J. Biol. Chem. 2016, 291, 25617–25628. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.N.; Yang, H.Y.; He, L.X.; Guo, Y.H.; Yun, S.J.; Feng, C.P. Preparation, characterization and antioxidant properties analysis of ferritin-resveratrol composite nanoparticles. Food Sci. 2023, 44, 34–41. [Google Scholar]
- Zhang, C.X.; Zhang, X.R.; Lv, C.Y.; Zhao, G.H. Ultrasound-assisted encapsulation of astaxanthin within ferritin nanocages with enhanced efficiency. Food Sci. 2021, 42, 94–101. [Google Scholar]
- Herrera-Balandrano, D.D.; Wang, J.; Chai, Z.; Zhang, X.X.; Wang, J.L.; Wang, N.; Huang, W.Y. Impact of in vitro gastrointestinal digestion on rabbiteye blueberry anthocyanins and their absorption efficiency in Caco-2. Food Biosci. 2023, 52, 102424. [Google Scholar] [CrossRef]
- Lowry, O.H.; Rosebrough, N.J.; Farr, A.L.; Randall, R.J. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 1951, 193, 265–275. [Google Scholar] [CrossRef] [PubMed]
- Giusti, M.M.; Wrolstad, R.E. Characterization and measurement of anthocyanins by UV-visible spectroscopy. In Current Protocols in Food Analytical Chemistry; John Wiley and Sons Inc.: Hoboken, NJ, USA, 2001; pp. F1.2.1–F1.2.13. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, W.; Zhao, X.; Chai, Z.; Herrera-Balandrano, D.D.; Li, B.; Yang, Y.; Lu, S.; Tu, Z. Improving Blueberry Anthocyanins’ Stability Using a Ferritin Nanocarrier. Molecules 2023, 28, 5844. https://doi.org/10.3390/molecules28155844
Huang W, Zhao X, Chai Z, Herrera-Balandrano DD, Li B, Yang Y, Lu S, Tu Z. Improving Blueberry Anthocyanins’ Stability Using a Ferritin Nanocarrier. Molecules. 2023; 28(15):5844. https://doi.org/10.3390/molecules28155844
Chicago/Turabian StyleHuang, Wuyang, Xingyu Zhao, Zhi Chai, Daniela D. Herrera-Balandrano, Bin Li, Yiyun Yang, Shan Lu, and Zhigang Tu. 2023. "Improving Blueberry Anthocyanins’ Stability Using a Ferritin Nanocarrier" Molecules 28, no. 15: 5844. https://doi.org/10.3390/molecules28155844
APA StyleHuang, W., Zhao, X., Chai, Z., Herrera-Balandrano, D. D., Li, B., Yang, Y., Lu, S., & Tu, Z. (2023). Improving Blueberry Anthocyanins’ Stability Using a Ferritin Nanocarrier. Molecules, 28(15), 5844. https://doi.org/10.3390/molecules28155844