Multivariate Exploratory Analysis of the Bulgarian Soil Quality Monitoring Network
Abstract
:1. Introduction
2. Results
2.1. Basic Statistics
2.2. Chemometric Data Interpretation
2.3. Mapping of Principal Components
3. Discussion
3.1. Basic Statistics
3.2. Chemometric Data Interpretation
3.3. Mapping of Principal Components
4. Materials and Methods
4.1. Sampling and Chemical Analysis
4.2. Data Analysis Methods
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Karlen, D.L.; Mausbach, M.J.; Doran, J.W.; Cline, R.G.; Harris, R.F.; Schuman, G.E. Soil quality: A concept, definition, and framework for evaluation (a guest editorial). Soil Sci. Soc. Am. J. 1997, 61, 4–10. [Google Scholar] [CrossRef]
- Van Leeuwen, J.P.; Saby, N.P.A.; Jones, A.; Louwagie, G.; Micheli, E.; Rutgers, M.; Schulte, R.P.O.; Spiegel, H.; Toth, G.; Creamer, R.E. Gap assessment in current soil monitoring networks across Europe for measuring soil functions. Environ. Res. Lett. 2017, 12, 124007. [Google Scholar] [CrossRef]
- Morvan, X.; Saby, N.P.A.; Arrouays, D.; Le Bas, C.; Jones, R.J.A.; Verheijen, F.G.A.; Bellamy, P.H.; Stephens, M.; Kibblewhite, M.G. Soil monitoring in Europe: A review of existing systems and requirements for harmonization. Sci. Total Environ. 2008, 391, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Batjes, N.H. Options for Harmonising Soil Data Obtained from Different Sources; ISRIC—World Soil Information: Wageningen, The Netherlands, 2023. [Google Scholar]
- Cornu, S.; Keesstra, S.; Bispo, A.; Fantappie, M.; Smreczak, B.; Wawer, R.; Pavlů, L.; Sobocká, J.; Bakacsi, Z.; Farkas-Iványi, K.; et al. National soil data in EU countries, where do we stand? Eur. J. Soil Sci. 2023, e13398. [Google Scholar] [CrossRef]
- Reimann, C.; Fabian, K.; Birke, M.; Filzmoser, P.; Demetriades, A.; Négrel, P.; Sadeghi, M. GEMAS: Establishing geochemical background and threshold for 53 chemical elements in European agricultural soil. Appl. Geochem. 2018, 88, 302–318. [Google Scholar] [CrossRef]
- Yotova, G.; Zlateva, B.; Ganeva, S.; Simeonov, V.; Kudlak, B.; Namiesnik, J.; Tsakovski, S. Phytoavailability of potentially toxic elements from industrially contaminated soils to wild grass. Ecotoxicol. Environ. Saf. 2018, 164, 317–324. [Google Scholar] [CrossRef]
- Antoniadis, V.; Shaheen, S.M.; Boersch, J.; Frohne, T.; Laing, G.D.; Rinklebe, J. Bioavailability and risk assessment of potentially toxic elements in garden edible vegetables and soil around a highly contaminated former mining area in Germany. J. Environ. Manag. 2017, 186 Pt 2, 192–200. [Google Scholar] [CrossRef]
- Andrade, J.M.; Kubista, M.; Carlosena, A.; Prada, D. 3-Way characterization of soils by Procrustes rotation, matrix-augmented principal components analysis and parallel factor analysis. Anal. Chim. Acta 2007, 603, 20–29. [Google Scholar] [CrossRef]
- Bitencourt, D.G.B.; Barros, W.S.; Timm, L.C.; She, D.; Penning, L.H.; Parfitt, J.M.B.; Reichardt, K. Multivariate and geostatistical analyses to evaluate lowland soil levelling effects on physico-chemical properties. Soil Tillage Res. 2016, 156, 63–73. [Google Scholar] [CrossRef]
- Ćujić, M.; Dragović, S.; Đorđević, M.; Dragović, R.; Gajić, B. Environmental assessment of heavy metals around the largest coal fired power plant in Serbia. Catena 2016, 139, 44–52. [Google Scholar] [CrossRef]
- Nosrati, K. Assessing soil quality indicator under different land use and soil erosion using multivariate statistical techniques. Environ. Monit. Assess. 2013, 185, 2895–2907. [Google Scholar] [CrossRef] [PubMed]
- Pandey, B.; Agrawal, M.; Singh, S. Ecological risk assessment of soil contamination by trace elements around coal mining area. J. Soils Sediments 2016, 16, 159–168. [Google Scholar] [CrossRef]
- Qu, M.K.; Li, W.D.; Zhang, C.R.; Wang, S.Q.; Yang, Y.; He, L.Y. Source apportionment of heavy metals in soils using multivariate statistics and geostatistics. Pedosphere 2013, 23, 437–444. [Google Scholar] [CrossRef]
- Sağlam, M.; Dengiz, O.; Saygın, F. Assessment of horizantal and vertical variabilities of soil quality using multivariate statistics and geostatistical methods. Commun. Soil Sci. Plant Anal. 2015, 46, 1677–1697. [Google Scholar] [CrossRef]
- Singh, S.; Raju, N.J.; Nazneen, S. Environmental risk of heavy metal pollution and contamination sources using multivariate analysis in the soils of Varanasi environs, India. Environ. Monit. Assess. 2015, 187, 345. [Google Scholar] [CrossRef]
- Stefanoski, D.C.; De Figueiredo, C.C.; Santos, G.G.; Marchão, R.L. Selecting soil quality indicators for different soil management systems in the Brazilian Cerrado. Pesq. Agropec. Bras. 2016, 51, 1643–1651. [Google Scholar] [CrossRef]
- Wang, G.; Zhang, S.; Xiao, L.; Zhong, Q.; Li, L.; Xu, G.; Deng, O.; Pu, Y. Heavy metals in soils from a typical industrial area in Sichuan, China: Spatial distribution, source identification, and ecological risk assessment. Environ. Sci. Pollut. Res. Int. 2017, 24, 16618–16630. [Google Scholar] [CrossRef]
- Wu, C.; Zhang, L. Heavy metal concentrations and their possible sources in paddy soils of a modern agricultural zone, southeastern China. Environ. Earth Sci. 2010, 60, 45–56. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, Y.; Liu, J.; Liu, Q.; Zhou, Q. Multivariate and geostatistical analyses of the sources and spatial distribution of heavy metals in agricultural soil in Gongzhuling, Northeast China. J. Soils Sediments 2016, 16, 634–644. [Google Scholar] [CrossRef]
- Zhao, L.; Xu, Y.; Hou, H.; Shangguan, Y.; Li, F. Source identification and health risk assessment of metals in urban soils around the Tanggu chemical industrial district, Tianjin, China. Sci. Total Environ. 2014, 468–469, 654–662. [Google Scholar] [CrossRef]
- Diodato, N.; Ceccarelli, M. Multivariate indicator Kriging approach using a GIS to classify soil degradation for Mediterranean agricultural lands. Ecol. Indic. 2004, 4, 177–187. [Google Scholar] [CrossRef]
- Lado, L.R.; Hengl, T.; Reuter, H.I. Heavy metals in European soils: A geostatistical analysis of the FOREGS Geochemical database. Geoderma 2008, 148, 189–199. [Google Scholar] [CrossRef]
- Nazzal, Y.H.; Al-Arif, N.S.N.; Jafri, M.K.; Kishawy, H.A.; Ghrefat, H.; El-Waheidi, M.M.; Batayneh, A.; Zumlot, T. Multivariate statistical analysis of urban soil contamination by heavy metals at selected industrial locations in the Greater Toronto area, Canada. Geol. Croat. 2015, 68, 147–159. [Google Scholar] [CrossRef]
- Rodriguez-Iruretagoiena, A.; De Vallejuelo, S.F.O.; Gredilla, A.; Ramos, C.G.; Oliveira, M.L.S.; Arana, G.; De Diego, A.; Madariaga, J.M.; Silva, L.F.O. Fate of hazardous elements in agricultural soils surrounding a coal power plant complex from Santa Catarina (Brazil). Sci. Total Environ. 2015, 508, 374–382. [Google Scholar] [CrossRef]
- Sun, C.; Zhao, W.; Zhang, Q.; Yu, X.; Zheng, X.; Zhao, J.; Lv, M. Spatial distribution, sources apportionment and health risk of metals in topsoil in Beijing, China. Int. J. Environ. Res. Public Health 2016, 13, 727. [Google Scholar] [CrossRef]
- Ha, H.; Olson, J.R.; Bian, L.; Rogerson, P.A. Analysis of heavy metal sources in soil using kriging interpolation on principal components. Environ. Sci. Technol. 2014, 48, 4999–5007. [Google Scholar] [CrossRef]
- Filcheva, E. Characteristics of Bulgarian Soils on: Content, Composition and Stocks of Organic Matter. Grouping of Bulgarian Soils; Minerva: Sofia, Bulgaria, 2007. [Google Scholar]
- Regulation No3, 1 August 2008. On the Permissible Limits of Toxic Substances in the Soils. Available online: http://eea.government.bg/bg/legislation/soil/normipochvi.doc/view (accessed on 15 May 2023).
- Filcheva, E. Characteristics of Soil Organic Matter of Bulgarian Soils; LAP Lambert Academic Publishing: Saarbrücken, Germany, 2015. [Google Scholar]
- Lee, S.Z.; Chang, L.; Yang, H.H.; Chen, C.M.; Liu, M.C. Adsorption characteristics of lead onto soils. J. Hazard. Mater. 1998, 63, 37–49. [Google Scholar] [CrossRef]
- Qiutong, X.; Mingkui, Z. Source identification and exchangeability of heavy metals accumulated in vegetable soils in the coastal plain of eastern Zhejiang province, China. Ecotoxicol. Environ. Saf. 2017, 142, 410–416. [Google Scholar] [CrossRef]
- Rodríguez, J.A.; Nanos, N.; Grau, J.M.; Gil, L.; López-Arias, M. Multiscale analysis of heavy metal contents in Spanish agricultural topsoils. Chemosphere 2008, 70, 1085–1096. [Google Scholar] [CrossRef]
- Loebenstein, J.R. The Materials Flow of Arsenic in the United States; U.S. Bureau of Mines Information: Washington, DC, USA, 1994. [Google Scholar]
- Tian, L.; Zhao, L.; Wu, X.; Fang, H.; Zhao, Y.; Yue, G.; Liu, G.; Chen, H. Vertical patterns and controls of soil nutrients in alpine grassland: Implications for nutrient uptake. Sci. Total Environ. 2017, 607–608, 855–864. [Google Scholar] [CrossRef]
- Panagos, P.; Van Liedekerke, M.; Jones, A.; Montanarella, L. European Soil Data Centre: Response to European policy support and public data requirements. Land Use Policy 2012, 29, 329–338. [Google Scholar] [CrossRef]
- Zagorchev, I.; Dabovski, C.; Nikolov, T. Geology of Bulgaria. Volume 2, Mesozoic Geology; Prof. M. Drinov Academic Publishing House: Sofia, Bulgaria, 2009. [Google Scholar]
- Yotova, G.; Padareva, M.; Hristova, M.; Astel, A.; Georgieva, M.; Dinev, N.; Tsakovski, S. Establishment of geochemical background and threshold values for 8 potential toxic elements in the Bulgarian soil qualitymonitoring network. Sci. Total Envioron. 2018, 643, 1297–1303. [Google Scholar] [CrossRef] [PubMed]
- Kamenov, B. Magmatic Petrology; University of Sofia Publishing House: Sofia, Bulgaria, 2003. [Google Scholar]
- Dimitrova, D.; Velitchkova, N.; Mladenova, V.; Kotsev, T.; Antonov, D. Heavy metal and metalloid mobilisation and rates of contamination of water, soil and bottom sediments in the Chiprovtsi mining district, Northwestern Bulgaria. Geol. Balc. 2016, 45, 47–63. [Google Scholar] [CrossRef]
- Gerginov, P.; Kerestedjian, T.; Toteva, A.; Mihaylova, B.; Benderev, A. Geological environment, groundwater quality and regulation. Water Aff. 2019, 5–6, 19–29. [Google Scholar]
- Ottesen, R.T.; Birke, M.; Finne, T.E.; Gosar, M.; Locutura, J.; Reimann, C.; Tarvainen, T. Mercury in European agricultural and grazing land soils. Appl. Geochem. 2013, 33, 1–12. [Google Scholar] [CrossRef]
- ISO 10381-2:2005; Soil Quality—Sampling—Part 2: Guidance on Sampling Techniques. ISO: Geneva, Switzerland, 2005.
- ISO 10381-4:2005; Soil Quality—Sampling—Part 4: Guidance on the Procedure for Investigation of Natural, Near-Natural and Cultivated Sites. ISO: Geneva, Switzerland, 2005.
- ISO 11464:2006; Soil Quality—Pretreatment of Samples for Physico-Chemical Analysis. ISO: Geneva, Switzerland, 2006.
- ISO 10390:2005; Soil quality—Determination of pH. ISO: Geneva, Switzerland, 2005.
- ISO 14235:2002; Soil Quality—Determination of Organic Carbon by Sulfochromic Oxidation. ISO: Geneva, Switzerland, 2002.
- ISO 11261:2002; Soil Quality—Determination of Total Nitrogen—Modified Kjeldahl Method. ISO: Geneva, Switzerland, 2002.
- ISO 11277:2009; Soil Quality—Determination of Particle Size Distribution in Mineral Soil Material—Method by Sieving and Sedimentation. ISO: Geneva, Switzerland, 2009.
- ISO 11466:1995; Soil Quality—Extraction of Trace Elements Soluble in Aqua Regia. ISO: Geneva, Switzerland, 1995.
- ISO 11047:1998; Soil Quality—Determination of Cadmium, Chromium, Cobalt, Copper, Lead, Manganese, Nickel and Zinc—Flame and Electrothermal Atomic Absorption Spectrometric Methods. ISO: Geneva, Switzerland, 1998.
- CEN/TS 16171:2012; Sludge, Treated Biowaste and Soil—Determination of Elements Using Inductively Coupled Plasma Mass Spectrometry (ICP-MS). CEN/TS: Brussels, Belgium, 2012.
- Massart, D.L.; Kaufman, L. The Interpretation of Analytical Chemical Data by the Use of Cluster Analysis; Wiley Interscience: New York, NY, USA, 1983. [Google Scholar]
- Vandeginste, B.; Massart, D.L.; Buydens, L.; De Jong, S.; Lewi, P.; Smeyers-Verbeke, J. Handbook of Chemometrics and Qualimetrics; Elsevier: Amsterdam, The Netherlands, 1998. [Google Scholar]
Dimension | Mean | St. Dev. | Median | Minimum | Maximum | |
---|---|---|---|---|---|---|
C | g kg−1 | 18.8 | 10.7 | 16.0 | 0.31 | 113 |
N | g kg−1 | 1.81 | 0.96 | 1.60 | 0.40 | 9.91 |
P | mg kg−1 | 881 | 585 | 740 | 199 | 4634 |
Physical clay | % | 51.6 | 19.6 | 57.5 | 9.79 | 83.0 |
pH | - | 6.78 | 0.98 | 6.80 | 3.80 | 8.80 |
Cu | mg kg−1 | 31.4 | 30.8 | 23.7 | 3.60 | 351 |
Zn | mg kg−1 | 63.5 | 22.3 | 64.3 | 1.26 | 162 |
Cd | mg kg−1 | 0.23 | 0.31 | 0.16 | 0.02 | 4.32 |
Pb | mg kg−1 | 20.5 | 17.8 | 16.8 | 3.07 | 200 |
Ni | mg kg−1 | 35.8 | 20.2 | 35.4 | 1.20 | 208 |
Cr | mg kg−1 | 53.0 | 34.7 | 45.4 | 2.30 | 213 |
As | mg kg−1 | 8.21 | 11.3 | 6.70 | 0.04 | 159 |
Hg | mg kg−1 | 0.15 | 0.13 | 0.12 | 0.01 | 0.97 |
PC1 | PC2 | PC3 | PC4 | PC5 | |
---|---|---|---|---|---|
C | 0.63 a | −0.04 | 0.00 | −0.59 | 0.20 |
N | 0.73 b | 0.00 | 0.09 | −0.52 | 0.00 |
P | −0.02 | 0.00 | 0.08 | −0.83 | −0.08 |
Physical Clay | −0.02 | 0.50 | 0.05 | 0.06 | −0.39 |
pH | 0.10 | 0.24 | 0.04 | 0.16 | −0.79 |
Cu | −0.05 | 0.24 | 0.72 | 0.06 | 0.08 |
Zn | 0.16 | 0.14 | 0.70 | −0.28 | −0.04 |
Cd | 0.78 | −0.01 | −0.03 | 0.15 | −0.08 |
Pb | 0.64 | −0.09 | 0.26 | −0.01 | 0.07 |
Ni | −0.05 | 0.90 | 0.05 | −0.03 | −0.11 |
Cr | −0.04 | 0.87 | 0.10 | 0.00 | 0.13 |
As | 0.13 | −0.12 | 0.70 | 0.02 | −0.07 |
Hg | 0.15 | 0.18 | 0.03 | 0.30 | 0.68 |
Expl.Var.% | 15.73 | 15.37 | 12.21 | 11.74 | 10.25 |
Conditional name | Mountain soil | Geogenic | Ore deposits | Low nutrition | Hg-specific |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yotova, G.; Hristova, M.; Padareva, M.; Simeonov, V.; Dinev, N.; Tsakovski, S. Multivariate Exploratory Analysis of the Bulgarian Soil Quality Monitoring Network. Molecules 2023, 28, 6091. https://doi.org/10.3390/molecules28166091
Yotova G, Hristova M, Padareva M, Simeonov V, Dinev N, Tsakovski S. Multivariate Exploratory Analysis of the Bulgarian Soil Quality Monitoring Network. Molecules. 2023; 28(16):6091. https://doi.org/10.3390/molecules28166091
Chicago/Turabian StyleYotova, Galina, Mariana Hristova, Monika Padareva, Vasil Simeonov, Nikolai Dinev, and Stefan Tsakovski. 2023. "Multivariate Exploratory Analysis of the Bulgarian Soil Quality Monitoring Network" Molecules 28, no. 16: 6091. https://doi.org/10.3390/molecules28166091
APA StyleYotova, G., Hristova, M., Padareva, M., Simeonov, V., Dinev, N., & Tsakovski, S. (2023). Multivariate Exploratory Analysis of the Bulgarian Soil Quality Monitoring Network. Molecules, 28(16), 6091. https://doi.org/10.3390/molecules28166091