Enhanced Assembling of N-and-K-Riched Macroalgae as Carbon Adsorbent for CO2 Capture with Ni(NO3)2/KOH as Co-Catalysts
Abstract
:1. Introduction
2. Results and Discussion
2.1. Material Characterization
2.1.1. Component Analysis of the Samples
2.1.2. Morphological Analysis of the Samples
2.1.3. Characterization of the Samples Using Fourier-Transform Infrared Spectra
2.1.4. Characterization of the Samples Using X-ray Photoelectron Spectroscopy
2.1.5. Characterization of the Samples Using X-ray Diffraction
2.1.6. Characterization of the Samples Using Raman Spectroscopy
2.2. Characters of CO2 Capture
2.2.1. CO2 Uptake Capacity
2.2.2. Adsorption Kinetics
2.2.3. Adsorbent Regeneration
3. Materials and Methods
3.1. Materials
3.2. Preparation of Activated Carbon
3.3. Characterization
3.4. CO2 Adsorption Experiments
3.5. CO2 Adsorption Kinetic Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Song, M.; Hyean, Y.P.; Dae-Soo, Y.; Dhrubajyoti, B.; Yu, J. Seaweed-derived heteroatom-doped highly porous carbon as an electrocatalyst for the oxygen reduction reaction. ChemSusChem 2014, 7, 1755–1763. [Google Scholar] [CrossRef]
- Escobar, B.; Pérez-Salcedo, K.Y.; Alonso-Lemus, I.L.; Pacheco, D.; Barbosa, R. N-Doped Porous Carbon from Sargassum spp. as Metal-Free Electrocatalysts for Oxygen Reduction Reaction in Alkaline Media. Int. J. Hydrog. Energy 2017, 42, 30274–30283. [Google Scholar] [CrossRef]
- Ajdari, Z.; Rahman, H.; Shameli, K.; Abdullah, R.; Ghani, M.A.; Yeap, S.; Abbasiliasi, S.; Ajdari, D.; Ariff, A. Novel Gold Nanoparticles Reduced by Sargassum Glaucescens: Preparation, Characterization and Anticancer Activity. Molecules 2016, 21, 123. [Google Scholar] [CrossRef]
- Mukesh, S.; Dibyendu, M.; Nripat, S.; Kapil, U.; Akhilesh, R.; Ranjitsinh, V.D.; Rosy, A.S.; Kamalesh, P. Seaweed-derived nontoxic functionalized graphene sheets as sustainable materials for the efficient removal of fluoride from high fluoride containing drinking water. Sustain. Chem. Eng. 2017, 5, 3488–3498. [Google Scholar]
- Dibyendu, M.; Mukesh, S.; Wang, C.; Lin, Y.C.; Huang, H.; Arka, S.; Sanna, K.N.; Kamalesh, P. Deep eutectic solvent promoted one step sustainable conversion of fresh seaweed biomass to functionalized graphene as a potential electrocatalyst. Green Chem. 2016, 18, 2819–2826. [Google Scholar]
- Smetacek, V.; Zingone, A. Green and golden seaweed tides on the rise. Nature 2013, 504, 84–88. [Google Scholar] [CrossRef]
- Xing, Q.; Guo, R.; Wu, L.; An, D.; Cong, M.; Qin, S.; Li, X. High-resolution satellite observations of a new hazard of golden tides caused by floating Sargassum in winter in the Yellow Sea. IEEE Geosci. Remote Sens. Lett. 2017, 14, 1815–1819. [Google Scholar] [CrossRef]
- Lapointe, B.E.; Brewton, R.A.; Herren, L.W.; Wang, M.; Hu, C.; McGillicuddy, D., Jr.; Lindell, S.; Hernandez, F.J.; Morton, P.L. Nutrient content and stoichiometry of pelagic Sargassum reflects increasing nitrogen availability in the Atlantic Basin. Nat. Commun. 2021, 12, 3060. [Google Scholar] [CrossRef]
- Zhao, W.; Yuan, P.; She, X.; Xia, Y.; Komarneni, S.; Xi, K.; Che, Y.; Yao, X.; Yang, D. Sustainable seaweed-based one-dimensional (1D) nanofibers as high-performance electrocatalysts for fuel cells. J. Mater. Chem. A 2015, 3, 14188–14194. [Google Scholar] [CrossRef]
- Zeng, G.; Lou, S.; Ying, H.; Wu, X.; Dou, X.; Ai, N.; Wang, J. Preparation of microporous carbon from Sargassum horneri by hydrothermal carbonization and KOH activation for CO2 capture. J. Chem. 2018, 2018, 4319149. [Google Scholar] [CrossRef]
- Ai, N.; Lou, S.; Lou, F.; Xu, C.; Wang, Q.; Zeng, G. Facile synthesis of macroalgae-derived graphene adsorbents for efficient CO2 capture. Process Saf. Environ. Prot. 2021, 148, 1048–1059. [Google Scholar] [CrossRef]
- Wang, K.; Cao, Y.; Wang, X.; Kharel, P.R.; Gibbons, W.; Luo, B.; Gu, Z.; Fan, Q.; Metzger, L. Nickel catalytic graphitized porous carbon as electrode material for high performance supercapacitors. Energy 2016, 101, 9–15. [Google Scholar] [CrossRef]
- Zeng, G.; Lou, S.; Lou, F.; Du, M.; Luo, H.; Ai, N. Insights into forming behavior and CO2 adsorption properties of graphene from Sargassum horneri by Fe (NO3)3/KOH activation. J. Chem. Technol. Biotechnol. 2022, 97, 2844–2851. [Google Scholar] [CrossRef]
- Mincer, T.J.; Bos, R.P.; Zettler, E.R.; Zhao, S.; Asbun, A.A.; Orsi, W.D.; Guzzetta, V.S.; Amaral-Zettler, L.A. Sargasso Sea Vibrio bacteria: Underexplored potential pathovars in a perturbed habitat. Water Res. 2023, 242, 120033. [Google Scholar] [CrossRef]
- Komatsu, T.; Tatsukawa, K.; Filippi, J.B.; Sagawa, T.; Matsunaga, D.; Mikami, A.; Ishida, K.; Ajisaka, T.; Tanaka, K.; Aoki, M.; et al. Distribution of drifting seaweeds in eastern East China Sea. J. Mar. Syst. 2007, 67, 245–252. [Google Scholar] [CrossRef]
- Wang, J.; Kaskel, S. KOH activation of carbon-based materials for energy storage. J. Mater. Chem. 2012, 22, 23710–23725. [Google Scholar] [CrossRef]
- Purkait, T.; Singh, G.; Singh, M.; Kumar, D.; Dey, R.S. Large area few-layer graphene with scalable preparation from waste biomass for high-performance supercapacitor. Sci. Rep. 2017, 7, 15239. [Google Scholar] [CrossRef]
- Ekhlasi, L.; Younesi, H.; Rashidi, A.; Bahramifar, N. Populus wood biomass-derived graphene for high CO2 capture at atmospheric pressure and estimated cost of production. Process. Saf. Environ. Prot. 2018, 113, 97–108. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, C.; Zhao, Y.; Amiinu, I.S.; Zhou, H.; Liu, X.; Tang, Y.; Mu, S. Three dimensional few-layer porous carbon nanosheets towards oxygen reduction. Appl. Catal. B Environ. 2017, 211, 148–156. [Google Scholar] [CrossRef]
- Jin, H.; Wang, X.; Gu, Z.; Fan, Q.; Luo, B. A facile method for preparing nitrogen-doped graphene and its application in supercapacitors. J. Power Sources 2015, 273, 1156–1162. [Google Scholar] [CrossRef]
- Brockner, W.; Ehrhardt, C.; Gjikaj, M. Thermal decomposition of nickel nitrate hexahydrate, Ni(NO3)2·6H2O, in comparison to Co(NO3)2·6H2O and Ca(NO3)2·4H2O. Thermochimica Acta 2017, 456, 64–68. [Google Scholar] [CrossRef]
- Sevilla, M.; Fuertes, A. Graphitic carbon nanostructures from cellulose. Chem. Phys. Lett. 2010, 490, 63–68. [Google Scholar] [CrossRef]
- Wang, Y.-S.; Zhang, B.-W.; Li, Y.-F.; Liu, D.-J.; He, X.-Q.; Si, Z.-J. Nitrogen-doped graphene-supported Co/CoNx nanohybrid as a highly efficient electrocatalyst for oxygen reduction reaction in an alkaline medium. RSC Adv. 2014, 4, 62272–62280. [Google Scholar] [CrossRef]
- Kong, A.; Zhu, X.; Han, Z.; Yu, Y.; Zhang, Y.; Dong, B.; Shan, Y. Ordered hierarchically mi-cro-and mesoporous FeNx-embedded graphitic architectures as efficient electrocatalysts for oxygen reduction reaction. ACS Catal. 2014, 4, 1793–1800. [Google Scholar] [CrossRef]
- Su, B.; Ge, B.; Li, M.; Chen, Y.; Chen, Y.; Zhang, J.; Chen, H.; Li, J. Extraction, Characterization and Deoxy-Liquefaction of Crude Polysaccharide from Enteromorpha Prolifera to High-Quality Liquid Oil. Fuel 2018, 237, 763–768. [Google Scholar] [CrossRef]
- Toor, S.S.; Jasiunas, L.; Xu, C.; Sintamarean, I.M.; Yu, D.; Nielsen, A.H.; Rosendahl, L.A. Reduction of Inorganics from Macroalgae Laminaria Digitata and Spent Mushroom Compost (SMC) by Acid Leaching and Selective Hydrothermal Lique-faction. Biomass Convers. Biorefinery 2018, 8, 369–377. [Google Scholar]
- Lin, B.-J.; Silveira, E.A.; Colin, B.; Chen, W.-H.; Lin, Y.-Y.; Leconte, F.; Pétrissans, A.; Rousset, P.; Pétrissans, M. Modeling and Prediction of Devolatilization and Elemental Composition of Wood during Mild Pyrolysis in a Pilot-Scale Reactor. Ind. Crop. Prod. 2019, 131, 357–370. [Google Scholar] [CrossRef]
- Sevilla, M.; Parra, J.B.; Fuertes, A.B. Assessment of the role of micropore size and N-doping in CO2 capture by porous carbons. ACS Appl. Mater. Interfaces 2013, 5, 6360–6368. [Google Scholar] [CrossRef]
- Niu, Q.; Gao, K.; Tang, Q.; Wang, L.; Han, L.; Fang, H.; Zhang, Y.; Wang, S.; Wang, L. Large-Size Graphene-like Porous Carbon Nanosheets with Controllable N-Doped Surface Derived from Sugarcane Bagasse Pith/Chitosan for High Performance Supercapacitors. Carbon 2017, 123, 290–298. [Google Scholar] [CrossRef]
- Ning, X.; Zhong, W.; Li, S.; Wang, Y.; Yang, W. High performance nitrogen-doped porous graphene/carbon frameworks for supercapacitors. J. Mater. Chem. Mater. A 2014, 2, 59–67. [Google Scholar] [CrossRef]
- Fan, Y.; Yang, X.; Zhu, B.; Liu, P.-F.; Lu, H.-T. Micro-mesoporous carbon spheres derived from carrageenan as electrode material for supercapacitors. J. Power Sources 2014, 268, 584–590. [Google Scholar] [CrossRef]
- Tan, X.F.; Liu, S.B.; Liu, Y.G.; Gu, Y.L.; Zeng, G.M.; Hu, X.J.; Jiang, L.H. Biochar as Potential Sustainable Precursors for Activated Carbon Production: Multiple Applications in Environmental Protection and Energy Storage. Bioresour. Technol. 2017, 227, 359–372. [Google Scholar] [CrossRef] [PubMed]
- Demir, M.; Kahveci, Z.; Aksoy, B.; Palapati, N.K.R.; Subramanian, A.; Cullinan, H.T.; El-Kaderi, H.M.; Harris, C.T.; Gupta, R.B. Graphitic Biocarbon from Metal-Catalyzed Hydrothermal Carbonization of Lignin. Ind. Eng. Chem. Res. 2015, 54, 10731–10739. [Google Scholar] [CrossRef]
- Chandrasekar, G.; Son, W.J.; Ahn, W.S. Synthesis of Mesoporous Materials SBA-15 and CMK-3 from Fly Ash and Their Ap-plication for CO2 Adsorption. J. Porous Mater. 2009, 16, 545–551. [Google Scholar] [CrossRef]
- Kumar, A.; Jena, H.M. Preparation and Characterization of High Surface Area Activated Carbon from Fox Nut (Euryale Ferox) Shell by Chemical Activation with H3PO4. Results Phys. 2016, 6, 651–658. [Google Scholar] [CrossRef]
- Dicko, M.; Guilmont, M.; Lamari, F. Adsorption and Biomass: Current Interconnections and Future Challenges. Curr. Sustain. Energy Rep. 2018, 5, 247–256. [Google Scholar] [CrossRef]
- Regufe, M.J.; Ferreira, A.F.P.; Loureiro, J.M.; Shi, Y.; Rodrigues, A.E.; Ribeiro, A.M. New Hybrid Composite Honeycomb Monolith with 13X Zeolite and Activated Carbon for CO2 Capture. Adsorption 2018, 24, 249–265. [Google Scholar] [CrossRef]
- Pham, T.D.; Xiong, R.; Sandler, S.I.; Lobo, R.F. Experimental and Computational Studies on the Adsorption of CO2 and N2 on Pure Silica Zeolites. Microporous Mesoporous Mater. 2014, 185, 157–166. [Google Scholar] [CrossRef]
- Loganathan, S.; Tikmani, M.; Mishra, A.; Ghoshal, A.K. Amine tethered pore-expanded MCM-41 for CO2 capture: Experimental, isotherm and kinetic modeling studies. Chem. Eng. J. 2016, 303, 89–99. [Google Scholar] [CrossRef]
- Kaur, S.; Rani, S.; Mahajan, R.K.; Asif, M.; Gupta, V.K. Synthesis and adsorption properties of mesoporous material for the removal of dye safranin: Kinetics, equilibrium, and thermodynamics. J. Ind. Eng. Chem. 2015, 22, 19–27. [Google Scholar] [CrossRef]
- Loganathan, S.; Tikmani, M.; Edubilli, S.; Mishra, A.; Ghoshal, A.K. CO2 adsorption kinetics on mesoporous silica under wide range of pressure and temperature. Chem. Eng. J. 2014, 256, 1–8. [Google Scholar] [CrossRef]
- Serna-Guerrero, R.; Sayari, A. Modeling adsorption of CO2 on amine-functionalized mesoporous silica. 2: Kinetics and breakthrough curves. Chem. Eng. J. 2010, 161, 182–190. [Google Scholar] [CrossRef]
- Blanchard, M.M.G.; Martin, G. Removal of heavy metals from waters by means of natural zeolites. Water Res. 1984, 18, 1501–1507. [Google Scholar] [CrossRef]
- Yousef, R.I.; El-Eswed, B.; Al-Muhtaseb, A.H. Adsorption characteristics of natural zeolites as solid adsorbents for phenol removal from aqueous solutions: Kinetics, mechanism, and thermodynamics studies. Chem. Eng. J. 2011, 171, 1143–1149. [Google Scholar] [CrossRef]
Biomass | C (wt.%) | H (wt.%) | N (wt.%) | K (mg·kg−1) | Reference |
---|---|---|---|---|---|
SH | 29.25 | 5.96 | 3.29 | 104,007.6 | This work |
Enteromorpha | 27.85 | 5.53 | 2.70 | 92,740 | [25] |
Laminariadigitata | 28.23 | 3.73 | 2.31 | - | [26] |
Beech | 49.10 | 5.70 | 0.15 | - | [26] |
Populus wood | 46.61 | 6.32 | 0.25 | 4300 | [27] |
Samples | C (wt.%) | H (wt.%) | N (wt.%) |
---|---|---|---|
SH | 29.25 | 5.96 | 3.29 |
SH-850 | 81.82 | 1.37 | 2.54 |
ASH-750 | 76.21 | 2.36 | 3.19 |
ASH-850 | 84.24 | 0.92 | 1.72 |
Sample | SBET/m2·g−1 | Vtotal/cm3·g−1 | Vmicro/cm3·g−1 | Average Pore Size/nm |
---|---|---|---|---|
SH | 0.43 | 0.01 | 0.00 | 21.77 |
SH-850 | 133.53 | 0.14 | 0.06 | 4.30 |
ASH-650 | 280.81 | 0.29 | 0.14 | 4.11 |
ASH-750 | 1307.30 | 2.27 | 0.64 | 6.97 |
ASH-850 | 1486.38 | 0.93 | 0.74 | 2.51 |
ASH-950 | 1149.20 | 0.87 | 0.47 | 3.04 |
ASH-1050 | 1071.41 | 1.13 | 0.39 | 4.20 |
Sample | Pyridinic-N (%) | Pyrrolic-N (%) | Graphitic-N (%) | Oxidized-N (%) |
---|---|---|---|---|
SH-850 | 17.39 | 46.75 | 16.54 | 19.31 |
ASH-750 | 14.59 | 53.28 | 18.20 | 13.93 |
ASH-850 | 17.51 | 46.08 | 22.62 | 13.79 |
Samples | CO2 Adsorption Capacity (qmax)/mg·g−1 (mmol·g−1) | ||
---|---|---|---|
30 °C | 45 °C | 60 °C | |
SH-850 | 45.32 (1.03) | 30.80 (0.70) | 28.60 (0.65) |
ASH-750 | 102.51 (2.33) | 91.09 (2.07) | 68.63 (1.56) |
ASH-850 | 110.35 (2.51) | 94.09 (2.13) | 72.62 (1.65) |
Material | T/K | CO2 Adsorption Capacity/mg·g−1 (mmol·g−1) | Ref. |
---|---|---|---|
Porous graphene nanosheet | 298 | 101.2 (2.30) | [32] |
Mesoporous sucrose-based activated | 298 | 76 (1.7) | [33] |
Metal-rich, wood-based activated carbon | 298 | 83 (1.9) | [34] |
A material composed of zeolite and activated carbon | 298 | 116 (2.63) | [35] |
Sargassum horneri-based porous carbon | 303 | 101.64 (2.31) | [10] |
Β-Zeolite | 303 | 77.44 (1.76) | [36] |
Waste ion-exchange resin-based activated carbon | 303 | 81.2 (1.8) | [37] |
Siliceous zeolites | 303 | 52.8 (1.20) | [38] |
ASH-750 | 303 | 102.51 (2.50) | This work |
ASH-850 | 303 | 110.34 (2.13) | This work |
Kinetic Parameters | Kinetic Models | |||
---|---|---|---|---|
Pseudo-First-Order Kinetic Model | Pseudo-Second-Order Kinetic Model | Double Exponential Model | Intraparticle Diffusion Model | |
qe (mmol·g−1) | 7.0234 | 7.3565 | 13.5715 | |
k | k1 = 0.2981 (min−1) | k2 = 0.0504 (mmol∙min−1) | k3 = 0.5515 (min−1) k4 = 0.0018 (mmol∙min−1) | k5 = 0.2500 (mmol∙(g·s0.5)−1) |
A (mmol∙g−1) | A1 = 6.1462 A2 = 7.7120 | |||
C | 4.6431 | |||
R2 (%) | 62.8624 | 79.1138 | 99.1483 | 74.6191 |
Double Exponential Model Parameter | CO2 Adsorption Temperature | ||
---|---|---|---|
30 °C | 45 °C | 60 °C | |
qe (mmol·g−1) | 2.53 | 2.15 | 1.68 |
k3 (min−1) | 0.5515 | 0.4699 | 0.247832 |
k4 (mmol∙min−1) | 0.0018 | 0.0039 | 0.002529 |
A1 (mmol∙g−1) | 6.1462 | 5.9662 | 3.387032 |
A2 (mmol∙g−1) | 7.7120 | 7.2156 | 4.997272 |
R2 (%) | 99.1483 | 99.5432 | 99.0814 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ying, H.; Zeng, G.; He, Y.; Hou, Y.; Ai, N. Enhanced Assembling of N-and-K-Riched Macroalgae as Carbon Adsorbent for CO2 Capture with Ni(NO3)2/KOH as Co-Catalysts. Molecules 2023, 28, 6242. https://doi.org/10.3390/molecules28176242
Ying H, Zeng G, He Y, Hou Y, Ai N. Enhanced Assembling of N-and-K-Riched Macroalgae as Carbon Adsorbent for CO2 Capture with Ni(NO3)2/KOH as Co-Catalysts. Molecules. 2023; 28(17):6242. https://doi.org/10.3390/molecules28176242
Chicago/Turabian StyleYing, Huijuan, Ganning Zeng, Yaohong He, Yanjun Hou, and Ning Ai. 2023. "Enhanced Assembling of N-and-K-Riched Macroalgae as Carbon Adsorbent for CO2 Capture with Ni(NO3)2/KOH as Co-Catalysts" Molecules 28, no. 17: 6242. https://doi.org/10.3390/molecules28176242
APA StyleYing, H., Zeng, G., He, Y., Hou, Y., & Ai, N. (2023). Enhanced Assembling of N-and-K-Riched Macroalgae as Carbon Adsorbent for CO2 Capture with Ni(NO3)2/KOH as Co-Catalysts. Molecules, 28(17), 6242. https://doi.org/10.3390/molecules28176242