Differentiation of Body Fluid Stains Using a Portable, Low-Cost Ion Mobility Spectrometry Device—A Pilot Study
Abstract
:1. Introduction
2. Results and Discussion
2.1. Venturi Pump Configuration
2.2. Microchamber Thermal Extractor Configuration
2.3. Dual-Disc Pump Configuration
3. Materials and Methods
3.1. Materials
3.2. Sample Preparation
3.3. IMS and Interface Conditions
3.3.1. Venturi Pump Interface—Mass Spectrometry
3.3.2. IMS Conditions
3.3.3. Venturi Pump Interface—Ion Mobility Spectrometry
3.3.4. Microchamber Thermal Extractor Configuration—Ion Mobility Spectrometry
3.3.5. Dual-Disc Pump–Probe Interface—Ion Mobility Spectrometry
3.4. Data Processing
4. Conclusions
Future Work
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Stroud, A.; Gamblin, A.; Birchall, P.; Harbison, S.; Opperman, S.A. Comprehensive study into false positive rates for ‘other’ biological samples using common presumptive testing methods. Sci. Justice 2023, 63, 414–420. [Google Scholar] [CrossRef]
- Jackson, A.R.W.; Jackson, J.M. Chapter 5: The examination of body fluids, including bloodstain pattern analysis. In Forensic Science, 4th ed.; Pearson: London, UK, 2016; pp. 148–168. [Google Scholar]
- Bleay, S.; Sears, V.; Downham, R.; Bandey, H.; Gibson, A.; Bowman, V.; Fitzgerald, L.; Ciuksza, T.; Ramadani, J.; Selway, C. Fingerprint Source Book v2.0, 2nd ed.; CAST Publication: Lynnfield, MA, USA, 2017; pp. 1–666. [Google Scholar]
- Bandey, H.L.; Bleay, S.M.; Bowman, V.J.; Downham, R.P.; Sears, V.G. Fingermark Visualisation Manual; The Home Office: London, UK, 2014; pp. 1–932.
- Koen, W.J.; Halkides, C.; Lott, K. Presumptive and Confirmatory Blood Testing, in Chapter 8—Presumptive and Confirmatory Blood Testing. In Forensic Science Reform; Academic Press: Cambridge, MA, USA, 2017; pp. 239–269. [Google Scholar] [CrossRef]
- Nelson, M. Making sense of DNA backlogs—Myths vs. reality. NIJ J. 2010, 266, 20–25. [Google Scholar]
- Medintz, I.; Chiriboga, L.; McCurdy, L.; Kobilinsky, L. DNA analysis of urine stained material. Anal. Lett. 1995, 28, 1937–1945. [Google Scholar] [CrossRef]
- Nakazono, T.; Kashimura, S.; Hayashiba, Y.; Hara, K.; Matsusue, A.; Augustin, C. Dual Examinations for Identification of Urine as Being of Human Origin and for DNA-Typing from Small Stains of Human Urine. J. Forensic Sci. 2008, 53, 359–363. [Google Scholar] [CrossRef] [PubMed]
- Haas, C.; Hanson, E.; Anjos, M.J.; Banemann, R.; Berti, A.; Borges, E.; Carracedo, A.; Carvalho, M.; Courts, C.; De Cock, G.; et al. RNA/DNA co-analysis from human saliva and semen stains–Results of a third collaborative EDNAP exercise. Forensic Sci. Int. Genet. 2013, 7, 230–239. [Google Scholar] [CrossRef]
- Aoki, K.; Tanaka, H.; Ueki, M. DNA typing for personal identification of urine after long-term preservation for testing in doping control: DNA typing for personal identification of urine in doping control. Drug Test. Anal. 2017, 9, 1116–1123. [Google Scholar] [CrossRef]
- Ambers, A.; Wiley, R.; Novroski, N.; Budowle, B. Direct PCR amplification of DNA from human bloodstains, saliva, and touch samples collected with microFLOQ® swabs. Forensic Sci. Int. Genet. 2018, 32, 80–87. [Google Scholar] [CrossRef]
- Faleeva, T.G.; Ivanov, I.N.; Mishin, E.S.; Podporinova, E.E.; Pravodelova, A.O.; Kornienko, I.V. Possibilities of DNA Identification of Foreign Sweat and Grease Substance on Human Skin. Russ. J. Genet. 2018, 54, 746–752. [Google Scholar] [CrossRef]
- Ng, H.H.; Ang, H.C.; Hoe, S.Y.; Lim, M.-L.; Tai, H.E.; Soh, R.C.H.; Syn, C.K.-C. Simple DNA extraction of urine samples: Effects of storage temperature and storage time. Forensic Sci. Int. 2018, 287, 36–39. [Google Scholar] [CrossRef]
- Sleeman, R.; Fletcher, I.; Burton, A.; Carter, J.F.; Roberts, D.J. Rapid screening of banknotes for the presence of controlled substances by thermal desorption atmospheric pressure chemical ionisation tandem mass spectrometry. Analyst 1999, 124, 103–108. [Google Scholar] [CrossRef]
- Sisco, E.; Verkouteren, J.; Staymates, J.; Lawrence, J. Rapid detection of fentanyl, fentanyl analogues, and opioids for on-site or laboratory based drug seizure screening using thermal desorption DART-MS and ion mobility spectrometry. Forensic Chem. 2017, 4, 108–115. [Google Scholar] [CrossRef] [PubMed]
- Popov, I.A.; Chen, H.; Kharybin, O.N.; Nikolaev, E.N.; Cooks, R.G. Detection of explosives on solid surfaces by thermal desorption and ambient ion/molecule reactions. Chem. Commun. 2005, 15, 1953–1955. [Google Scholar] [CrossRef]
- Forbes, T.P.; Sisco, E.; Staymates, M. Detection of Nonvolatile Inorganic Oxidizer-Based Explosives from Wipe Collections by Infrared Thermal Desorption-Direct Analysis in Real Time Mass Spectrometry. Anal. Chem. 2018, 90, 6419–6425. [Google Scholar] [CrossRef] [PubMed]
- Forbes, T.P.; Verkouteren, J.R. Forensic Analysis and Differentiation of Black Powder and Black Powder Substitute Chemical Signatures by Infrared Thermal Desorption–DART-MS. Anal. Chem. 2019, 91, 1089–1097. [Google Scholar] [CrossRef] [PubMed]
- Fabritius, M.M.; Broillet, A.; König, S.; Weinmann, W. Analysis of volatiles in fire debris by combination of activated charcoal strips (ACS) and automated thermal desorption–gas chromatography–mass spectrometry (ATD/GC–MS). Forensic Sci. Int. 2018, 289, 232–237. [Google Scholar] [CrossRef]
- Sabo, M.; Malásková, M.; Matejík, Š. Ion mobility spectrometry-mass spectrometry studies of ion processes in air at atmospheric pressure and their application to thermal desorption of 2,4,6-trinitrotoluene. Plasma Sources Sci. Technol. 2014, 23, 15025–15027. [Google Scholar] [CrossRef]
- Lian, R.; Wu, Z.; Lv, X.; Rao, Y.; Li, H.; Li, J.; Wang, R.; Ni, C.; Zhang, Y. Rapid screening of abused drugs by direct analysis in real time (DART) coupled to time-of-flight mass spectrometry (TOF-MS) combined with ion mobility spectrometry (IMS). Forensic Sci. Int. 2017, 279, 268–280. [Google Scholar] [CrossRef]
- Karpas, Z. Forensic Science Applications of Ion Mobility Spectrometry. Forensic Sci. Int. 1989, 1, 103–119. [Google Scholar]
- Joshi, M. Ion Mobility Spectrometry in Forensic Science in Encyclopedia of Analytical Chemistry: Applications, Theory and Instrumentation, 2nd ed.; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2017; pp. 1–22. [Google Scholar] [CrossRef]
- Giannoukos, S.; Brkić, B.; Taylor, S.; Marshall, A.; Verbeck, G.F. Chemical Sniffing Instrumentation for Security Applications. Chem. Rev. 2016, 116, 8146–8172. [Google Scholar] [CrossRef]
- Virgen, C.A.; Fox, J.D.; Santariello, P.; Winfield, J.L.; Wright, K.C.; Verbeck, G.F. Portable membrane inlet mass spectrometric detection and analysis of chemical warfare agent simulants at the U.S. Army Dugway Proving Ground S/K challenge event. Int. J. Mol. Sci. 2021, 468, 116635. [Google Scholar] [CrossRef]
- Rankin-Turner, S.; Turner, M.A.; Kelly, P.F.; King, R.S.P.; Reynolds, J.C. Transforming presumptive forensic testing: In situ identification and age estimation of human bodily fluids. Chem. Sci. 2019, 10, 1064–1069. [Google Scholar] [CrossRef] [PubMed]
- Miller-Graber, P.; Lawrence, L.; Fisher, M.; Bump, K.; Foreman, J.; Kurcz, E. Metabolic Responses to Ammonium Acetate Infusion in Exercising Horses. Cornell Vet. 1991, 81, 397–410. [Google Scholar] [PubMed]
- Hunter, J.D. Matplotlib: A 2D Graphics Environment. Comput. Sci. Eng. 2007, 9, 90–95. [Google Scholar] [CrossRef]
- Available online: https://scipython.com/book/chapter-7-matplotlib/examples/bmi-data-with-confidence-ellipses/ (accessed on 12 May 2023).
Substance | Prominent Mobility Value Signals (cm2/Vs) |
---|---|
Blank | 1.82, 1.92, 1.96, 2.19, 2.44 |
Blood | 1.80, 2.42 |
Urine | 1.60, 1.82, 2.42 |
Ketchup | 1.60, 1.82, 1.90, 2.06, 2.18, 2.42 |
Food colouring | 1.64, 1.82, 1.90, 2.08, 2.44 |
Shoe polish | 1.56, 1.62, 1.82, 1.90, 2.42 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Heaton, C.; Clement, S.; Kelly, P.F.; King, R.S.P.; Reynolds, J.C. Differentiation of Body Fluid Stains Using a Portable, Low-Cost Ion Mobility Spectrometry Device—A Pilot Study. Molecules 2023, 28, 6533. https://doi.org/10.3390/molecules28186533
Heaton C, Clement S, Kelly PF, King RSP, Reynolds JC. Differentiation of Body Fluid Stains Using a Portable, Low-Cost Ion Mobility Spectrometry Device—A Pilot Study. Molecules. 2023; 28(18):6533. https://doi.org/10.3390/molecules28186533
Chicago/Turabian StyleHeaton, Cameron, Simon Clement, Paul F. Kelly, Roberto S. P. King, and James C. Reynolds. 2023. "Differentiation of Body Fluid Stains Using a Portable, Low-Cost Ion Mobility Spectrometry Device—A Pilot Study" Molecules 28, no. 18: 6533. https://doi.org/10.3390/molecules28186533
APA StyleHeaton, C., Clement, S., Kelly, P. F., King, R. S. P., & Reynolds, J. C. (2023). Differentiation of Body Fluid Stains Using a Portable, Low-Cost Ion Mobility Spectrometry Device—A Pilot Study. Molecules, 28(18), 6533. https://doi.org/10.3390/molecules28186533