Strategies and Applications of Graphene and Its Derivatives-Based Electrochemical Sensors in Cancer Diagnosis
Abstract
:1. Introduction
2. The Synthesis and Modification of Graphene Materials
2.1. Methods for Graphene Synthesis
2.2. Functionalization Strategies for Biosensing
3. Graphene Electrochemical Biosensors
3.1. Different Sensor Designs and Fabrication Strategies
3.2. Immobilization of Biorecognition Elements
4. Applications in Cancer Diagnosis
4.1. Detection of Cancer Protein Biomarkers
4.2. The Detection of Circulating Tumor Cells
4.3. DNA-Based Cancer Detection
4.4. The Detection of miRNA Cancer Biomarkers
5. Challenges and Future Directions
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Cao, W.; Chen, H.-D.; Yu, Y.-W.; Li, N.; Chen, W.-Q. Changing Profiles of Cancer Burden Worldwide and in China: A Secondary Analysis of the Global Cancer Statistics 2020. Chin. Med. J. 2021, 134, 783–791. [Google Scholar] [CrossRef]
- Abati, S.; Bramati, C.; Bondi, S.; Lissoni, A.; Trimarchi, M. Oral Cancer and Precancer: A Narrative Review on the Relevance of Early Diagnosis. Int. J. Environ. Res. Public Health 2020, 17, 9160. [Google Scholar] [CrossRef] [PubMed]
- Jing, L.; Xie, C.; Li, Q.; Yang, M.; Li, S.; Li, H.; Xia, F. Electrochemical Biosensors for the Analysis of Breast Cancer Biomarkers: From Design to Application. Anal. Chem. 2022, 94, 269–296. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Rong, F.; Guo, C.; Duan, F.; He, L.; Wang, M.; Zhang, Z.; Kang, M.; Du, M. Metal–Organic Frameworks (MOFs) Based Electrochemical Biosensors for Early Cancer Diagnosis in Vitro. Coord. Chem. Rev. 2021, 439, 213948. [Google Scholar] [CrossRef]
- Hasan, M.R.; Ahommed, M.S.; Daizy, M.; Bacchu, M.S.; Ali, M.R.; Al-Mamun, M.R.; Saad Aly, M.A.; Khan, M.Z.H.; Hossain, S.I. Recent Development in Electrochemical Biosensors for Cancer Biomarkers Detection. Biosens. Bioelectron. X 2021, 8, 100075. [Google Scholar] [CrossRef]
- Cui, F.; Zhou, Z.; Zhou, H.S. Review—Measurement and Analysis of Cancer Biomarkers Based on Electrochemical Biosensors. J. Electrochem. Soc. 2019, 167, 037525. [Google Scholar] [CrossRef]
- Karimi-Maleh, H.; Liu, Y.; Li, Z.; Darabi, R.; Orooji, Y.; Karaman, C.; Karimi, F.; Baghayeri, M.; Rouhi, J.; Fu, L.; et al. Calf Thymus Ds-DNA Intercalation with Pendimethalin Herbicide at the Surface of ZIF-8/Co/rGO/C3N4/Ds-DNA/SPCE; A Bio-Sensing Approach for Pendimethalin Quantification Confirmed by Molecular Docking Study. Chemosphere 2023, 332, 138815. [Google Scholar] [CrossRef]
- Karimi-Maleh, H.; Ghalkhani, M.; Saberi Dehkordi, Z.; Mohsenpour Tehran, M.; Singh, J.; Wen, Y.; Baghayeri, M.; Rouhi, J.; Fu, L.; Rajendran, S. MOF-Enabled Pesticides as Developing Approach for Sustainable Agriculture and Reducing Environmental Hazards. J. Ind. Eng. Chem. 2023, in press. [Google Scholar] [CrossRef]
- Karimi-Maleh, H.; Darabi, R.; Baghayeri, M.; Karimi, F.; Fu, L.; Rouhi, J.; Niculina, D.E.; Gündüz, E.S.; Dragoi, E.N. Recent Developments in Carbon Nanomaterials-Based Electrochemical Sensors for Methyl Parathion Detection. J. Food Meas. Charact. 2023, 17, 1–19. [Google Scholar] [CrossRef]
- Karimi-Maleh, H.; Darabi, R.; Karimi, F.; Karaman, C.; Shahidi, S.A.; Zare, N.; Baghayeri, M.; Fu, L.; Rostamnia, S.; Rouhi, J.; et al. State-of-Art Advances on Removal, Degradation and Electrochemical Monitoring of 4-Aminophenol Pollutants in Real Samples: A Review. Environ. Res. 2023, 222, 115338. [Google Scholar] [CrossRef]
- Khanmohammadi, A.; Aghaie, A.; Vahedi, E.; Qazvini, A.; Ghanei, M.; Afkhami, A.; Hajian, A.; Bagheri, H. Electrochemical Biosensors for the Detection of Lung Cancer Biomarkers: A Review. Talanta 2020, 206, 120251. [Google Scholar] [CrossRef] [PubMed]
- Mohammadpour-Haratbar, A.; Boraei, S.B.A.; Zare, Y.; Rhee, K.Y.; Park, S.-J. Graphene-Based Electrochemical Biosensors for Breast Cancer Detection. Biosensors 2023, 13, 80. [Google Scholar] [CrossRef] [PubMed]
- El Aamri, M.; Yammouri, G.; Mohammadi, H.; Amine, A.; Korri-Youssoufi, H. Electrochemical Biosensors for Detection of MicroRNA as a Cancer Biomarker: Pros and Cons. Biosensors 2020, 10, 186. [Google Scholar] [CrossRef]
- Meng, F.; Yu, W.; Chen, C.; Guo, S.; Tian, X.; Miao, Y.; Ma, L.; Zhang, X.; Yu, Y.; Huang, L.; et al. A Versatile Electrochemical Biosensor for the Detection of Circulating MicroRNA toward Non-Small Cell Lung Cancer Diagnosis. Small 2022, 18, 2200784. [Google Scholar] [CrossRef]
- Campuzano, S.; Yáñez-Sedeño, P.; Pingarrón, J.M. Carbon Dots and Graphene Quantum Dots in Electrochemical Biosensing. Nanomaterials 2019, 9, 634. [Google Scholar] [CrossRef]
- Reddy, Y.V.M.; Shin, J.H.; Palakollu, V.N.; Sravani, B.; Choi, C.-H.; Park, K.; Kim, S.-K.; Madhavi, G.; Park, J.P.; Shetti, N.P. Strategies, Advances, and Challenges Associated with the Use of Graphene-Based Nanocomposites for Electrochemical Biosensors. Adv. Colloid Interface Sci. 2022, 304, 102664. [Google Scholar] [CrossRef]
- Wan, Z.; Umer, M.; Lobino, M.; Thiel, D.; Nguyen, N.-T.; Trinchi, A.; Shiddiky, M.J.A.; Gao, Y.; Li, Q. Laser Induced Self-N-Doped Porous Graphene as an Electrochemical Biosensor for Femtomolar miRNA Detection. Carbon 2020, 163, 385–394. [Google Scholar] [CrossRef]
- Yu, H.; Guo, W.; Lu, X.; Xu, H.; Yang, Q.; Tan, J.; Zhang, W. Reduced Graphene Oxide Nanocomposite Based Electrochemical Biosensors for Monitoring Foodborne Pathogenic Bacteria: A Review. Food Control 2021, 127, 108117. [Google Scholar] [CrossRef]
- Özcan, N.; Karaman, C.; Atar, N.; Karaman, O.; Yola, M.L. A Novel Molecularly Imprinting Biosensor Including Graphene Quantum Dots/Multi-Walled Carbon Nanotubes Composite for Interleukin-6 Detection and Electrochemical Biosensor Validation. ECS J. Solid State Sci. Technol. 2020, 9, 121010. [Google Scholar] [CrossRef]
- Yoon, H.; Nah, J.; Kim, H.; Ko, S.; Sharifuzzaman, M.; Barman, S.C.; Xuan, X.; Kim, J.; Park, J.Y. A Chemically Modified Laser-Induced Porous Graphene Based Flexible and Ultrasensitive Electrochemical Biosensor for Sweat Glucose Detection. Sens. Actuators B Chem. 2020, 311, 127866. [Google Scholar] [CrossRef]
- Hashemi, S.A.; Mousavi, S.M.; Bahrani, S.; Ramakrishna, S.; Babapoor, A.; Chiang, W.-H. Coupled Graphene Oxide with Hybrid Metallic Nanoparticles as Potential Electrochemical Biosensors for Precise Detection of Ascorbic Acid within Blood. Anal. Chim. Acta 2020, 1107, 183–192. [Google Scholar] [CrossRef] [PubMed]
- Hou, X.; Xu, H.; Zhen, T.; Wu, W. Recent Developments in Three-Dimensional Graphene-Based Electrochemical Sensors for Food Analysis. Trends Food Sci. Technol. 2020, 105, 76–92. [Google Scholar] [CrossRef]
- Song, N.; Wang, Y.; Yang, X.; Zong, H.; Chen, Y.; Ma, Z.; Chen, C. A Novel Electrochemical Biosensor for the Determination of Dopamine and Ascorbic Acid Based on Graphene Oxide/Poly(Aniline-Co-Thionine) Nanocomposite. J. Electroanal. Chem. 2020, 873, 114352. [Google Scholar] [CrossRef]
- Taniselass, S.; Arshad, M.K.M.; Gopinath, S.C.B. Graphene-Based Electrochemical Biosensors for Monitoring Noncommunicable Disease Biomarkers. Biosens. Bioelectron. 2019, 130, 276–292. [Google Scholar] [CrossRef] [PubMed]
- Sainz, R.; del Pozo, M.; Vázquez, L.; Vilas-Varela, M.; Castro-Esteban, J.; Blanco, E.; Petit-Domínguez, M.D.; Quintana, C.; Casero, E. Lactate Biosensing Based on Covalent Immobilization of Lactate Oxidase onto Chevron-like Graphene Nanoribbons via Diazotization-Coupling Reaction. Anal. Chim. Acta 2022, 1208, 339851. [Google Scholar] [CrossRef]
- Fenoy, G.E.; Marmisollé, W.A.; Azzaroni, O.; Knoll, W. Acetylcholine Biosensor Based on the Electrochemical Functionalization of Graphene Field-Effect Transistors. Biosens. Bioelectron. 2020, 148, 111796. [Google Scholar] [CrossRef]
- Sengupta, J.; Hussain, C.M. Graphene-Based Field-Effect Transistor Biosensors for the Rapid Detection and Analysis of Viruses: A Perspective in View of COVID-19. Carbon Trends 2021, 2, 100011. [Google Scholar] [CrossRef]
- Liu, X.; Cheng, H.; Zhao, Y.; Wang, Y.; Li, F. Portable Electrochemical Biosensor Based on Laser-Induced Graphene and MnO2 Switch-Bridged DNA Signal Amplification for Sensitive Detection of Pesticide. Biosens. Bioelectron. 2022, 199, 113906. [Google Scholar] [CrossRef]
- Kumar, A.; Purohit, B.; Maurya, P.K.; Pandey, L.M.; Chandra, P. Engineered Nanomaterial Assisted Signal-Amplification Strategies for Enhancing Analytical Performance of Electrochemical Biosensors. Electroanalysis 2019, 31, 1615–1629. [Google Scholar] [CrossRef]
- Wei, B.; Mao, K.; Liu, N.; Zhang, M.; Yang, Z. Graphene Nanocomposites Modified Electrochemical Aptamer Sensor for Rapid and Highly Sensitive Detection of Prostate Specific Antigen. Biosens. Bioelectron. 2018, 121, 41–46. [Google Scholar] [CrossRef]
- Jing, A.; Xu, Q.; Feng, W.; Liang, G. An Electrochemical Immunosensor for Sensitive Detection of the Tumor Marker Carcinoembryonic Antigen (CEA) Based on Three-Dimensional Porous Nanoplatinum/Graphene. Micromachines 2020, 11, 660. [Google Scholar] [CrossRef] [PubMed]
- Mansouri Majd, S.; Salimi, A. Ultrasensitive Flexible FET-Type Aptasensor for CA 125 Cancer Marker Detection Based on Carboxylated Multiwalled Carbon Nanotubes Immobilized onto Reduced Graphene Oxide Film. Anal. Chim. Acta 2018, 1000, 273–282. [Google Scholar] [CrossRef] [PubMed]
- Ondraskova, K.; Sebuyoya, R.; Moranova, L.; Holcakova, J.; Vonka, P.; Hrstka, R.; Bartosik, M. Electrochemical Biosensors for Analysis of DNA Point Mutations in Cancer Research. Anal. Bioanal. Chem. 2023, 415, 1065–1085. [Google Scholar] [CrossRef]
- Al-Ogaidi, A.J.M.; Stefan-van Staden, R.-I.; Gugoasa, L.A.; Rosu, M.-C.; Socaci, C. Electrochemical Determination of the KRAS Genetic Marker for Colon Cancer with Modified Graphete and Graphene Paste Electrodes. Anal. Lett. 2018, 51, 2822–2834. [Google Scholar] [CrossRef]
- Wang, Y.; Sun, S.; Luo, J.; Xiong, Y.; Ming, T.; Liu, J.; Ma, Y.; Yan, S.; Yang, Y.; Yang, Z. Low Sample Volume Origami-Paper-Based Graphene-Modified Aptasensors for Label-Free Electrochemical Detection of Cancer Biomarker-EGFR. Microsyst. Nanoeng. 2020, 6, 32. [Google Scholar] [CrossRef] [PubMed]
- Santhanam, M.; Algov, I.; Alfonta, L. DNA/RNA Electrochemical Biosensing Devices a Future Replacement of PCR Methods for a Fast Epidemic Containment. Sensors 2020, 20, 4648. [Google Scholar] [CrossRef]
- Pan, L.-H.; Kuo, S.-H.; Lin, T.-Y.; Lin, C.-W.; Fang, P.-Y.; Yang, H.-W. An Electrochemical Biosensor to Simultaneously Detect VEGF and PSA for Early Prostate Cancer Diagnosis Based on Graphene Oxide/ssDNA/PLLA Nanoparticles. Biosens. Bioelectron. 2017, 89, 598–605. [Google Scholar] [CrossRef]
- Ahour, F.; Ahsani, M.K. An Electrochemical Label-Free and Sensitive Thrombin Aptasensor Based on Graphene Oxide Modified Pencil Graphite Electrode. Biosens. Bioelectron. 2016, 86, 764–769. [Google Scholar] [CrossRef]
- Dou, B.; Xu, L.; Jiang, B.; Yuan, R.; Xiang, Y. Aptamer-Functionalized and Gold Nanoparticle Array-Decorated Magnetic Graphene Nanosheets Enable Multiplexed and Sensitive Electrochemical Detection of Rare Circulating Tumor Cells in Whole Blood. Anal. Chem. 2019, 91, 10792–10799. [Google Scholar] [CrossRef]
- Negahdary, M.; Angnes, L. Application of Electrochemical Biosensors for the Detection of microRNAs (miRNAs) Related to Cancer. Coord. Chem. Rev. 2022, 464, 214565. [Google Scholar] [CrossRef]
- Huang, Y.; Pan, Y.-H.; Yang, R.; Bao, L.-H.; Meng, L.; Luo, H.-L.; Cai, Y.-Q.; Liu, G.-D.; Zhao, W.-J.; Zhou, Z. Universal Mechanical Exfoliation of Large-Area 2D Crystals. Nat. Commun. 2020, 11, 2453. [Google Scholar] [CrossRef] [PubMed]
- Farjadian, F.; Abbaspour, S.; Sadatlu, M.A.A.; Mirkiani, S.; Ghasemi, A.; Hoseini-Ghahfarokhi, M.; Mozaffari, N.; Karimi, M.; Hamblin, M.R. Recent Developments in Graphene and Graphene Oxide: Properties, Synthesis, and Modifications: A Review. ChemistrySelect 2020, 5, 10200–10219. [Google Scholar] [CrossRef]
- Hu, L.; Cheng, Q.; Chen, D.; Ma, M.; Wu, K. Liquid-Phase Exfoliated Graphene as Highly-Sensitive Sensor for Simultaneous Determination of Endocrine Disruptors: Diethylstilbestrol and Estradiol. J. Hazard. Mater. 2015, 283, 157–163. [Google Scholar] [CrossRef] [PubMed]
- Kumar, N.; Yadav, S.; Sadique, M.A.; Khan, R. Electrochemically Exfoliated Graphene Quantum Dots Based Biosensor for CD44 Breast Cancer Biomarker. Biosensors 2022, 12, 966. [Google Scholar] [CrossRef]
- Plutnar, J.; Pumera, M.; Sofer, Z. The Chemistry of CVD Graphene. J. Mater. Chem. C 2018, 6, 6082–6101. [Google Scholar] [CrossRef]
- Deokar, G.; Avila, J.; Razado-Colambo, I.; Codron, J.-L.; Boyaval, C.; Galopin, E.; Asensio, M.-C.; Vignaud, D. Towards High Quality CVD Graphene Growth and Transfer. Carbon 2015, 89, 82–92. [Google Scholar] [CrossRef]
- Singh, V.K.; Kumar, S.; Pandey, S.K.; Srivastava, S.; Mishra, M.; Gupta, G.; Malhotra, B.D.; Tiwari, R.S.; Srivastava, A. Fabrication of Sensitive Bioelectrode Based on Atomically Thin CVD Grown Graphene for Cancer Biomarker Detection. Biosens. Bioelectron. 2018, 105, 173–181. [Google Scholar] [CrossRef]
- Tehrani, Z.; Burwell, G.; Azmi, M.A.M.; Castaing, A.; Rickman, R.; Almarashi, J.; Dunstan, P.; Beigi, A.M.; Doak, S.H.; Guy, O.J. Generic Epitaxial Graphene Biosensors for Ultrasensitive Detection of Cancer Risk Biomarker. 2D Mater. 2014, 1, 025004. [Google Scholar] [CrossRef]
- Ban, F.; Majid, S.R.; Huang, N.M.; Lim, H. Graphene Oxide and Its Electrochemical Performance. Int. J. Electrochem. Sci. 2012, 7, 4345–4351. [Google Scholar] [CrossRef]
- Chen, D.; Lin, Z.; Sartin, M.M.; Huang, T.-X.; Liu, J.; Zhang, Q.; Han, L.; Li, J.-F.; Tian, Z.-Q.; Zhan, D. Photosynergetic Electrochemical Synthesis of Graphene Oxide. J. Am. Chem. Soc. 2020, 142, 6516–6520. [Google Scholar] [CrossRef]
- Rostamabadi, P.F.; Heydari-Bafrooei, E. Impedimetric Aptasensing of the Breast Cancer Biomarker HER2 Using a Glassy Carbon Electrode Modified with Gold Nanoparticles in a Composite Consisting of Electrochemically Reduced Graphene Oxide and Single-Walled Carbon Nanotubes. Microchim. Acta 2019, 186, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Shafiei, F.; Saberi, R.S.; Mehrgardi, M.A. A Label-Free Electrochemical Aptasensor for Breast Cancer Cell Detection Based on a Reduced Graphene Oxide-Chitosan-Gold Nanoparticle Composite. Bioelectrochemistry 2021, 140, 107807. [Google Scholar] [CrossRef]
- Zhou, L.; Mao, H.; Wu, C.; Tang, L.; Wu, Z.; Sun, H.; Zhang, H.; Zhou, H.; Jia, C.; Jin, Q.; et al. Label-Free Graphene Biosensor Targeting Cancer Molecules Based on Non-Covalent Modification. Biosens. Bioelectron. 2017, 87, 701–707. [Google Scholar] [CrossRef] [PubMed]
- Xiong, K.; Fan, Q.; Wu, T.; Shi, H.; Chen, L.; Yan, M. Enhanced Bovine Serum Albumin Absorption on the N-Hydroxysuccinimide Activated Graphene Oxide and Its Corresponding Cell Affinity. Mater. Sci. Eng. C 2017, 81, 386–392. [Google Scholar] [CrossRef]
- Monteiro, A.R.; Ramos, C.I.V.; Fateixa, S.; Neves, M.G.P.M.S.; Trindade, T. Arrays of Graphene-Quantum Dots-Supported DNA Oligonucleotides as Self-Indicating Porphyrin Carriers. New J. Chem. 2023, in press. [Google Scholar] [CrossRef]
- Qiu, Z.; Yu, J.; Yan, P.; Wang, Z.; Wan, Q.; Yang, N. Electrochemical Grafting of Graphene Nano Platelets with Aryl Diazonium Salts. ACS Appl. Mater. Interfaces 2016, 8, 28291–28298. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.-W.; Kim, T.; Lee, M. An Amphiphilic Pyrene Sheet for Selective Functionalization of Graphene. Chem. Commun. 2011, 47, 8259–8261. [Google Scholar] [CrossRef]
- Tran, H.L.; Dang, V.D.; Dega, N.K.; Lu, S.-M.; Huang, Y.-F.; Doong, R. Ultrasensitive Detection of Breast Cancer Cells with a Lectin-Based Electrochemical Sensor Using N-Doped Graphene Quantum Dots as the Sensing Probe. Sens. Actuators B Chem. 2022, 368, 132233. [Google Scholar] [CrossRef]
- Elshafey, R.; Siaj, M.; Tavares, A.C. Au Nanoparticle Decorated Graphene Nanosheets for Electrochemical Immunosensing of P53 Antibodies for Cancer Prognosis. Analyst 2016, 141, 2733–2740. [Google Scholar] [CrossRef]
- Bharti, A.; Rana, S.; Dahiya, D.; Agnihotri, N.; Prabhakar, N. An Electrochemical Aptasensor for Analysis of MUC1 Using Gold Platinum Bimetallic Nanoparticles Deposited Carboxylated Graphene Oxide. Anal. Chim. Acta 2020, 1097, 186–195. [Google Scholar] [CrossRef]
- Su, H.; Yin, S.; Yang, J.; Wu, Y.; Shi, C.; Sun, H.; Wang, G. In Situ Monitoring of Circulating Tumor Cell Adhered on Three-Dimensional Graphene/ZnO Macroporous Structure by Resistance Change and Electrochemical Impedance Spectroscopy. Electrochim. Acta 2021, 393, 139093. [Google Scholar] [CrossRef]
- Chen, M.; Wang, Y.; Su, H.; Mao, L.; Jiang, X.; Zhang, T.; Dai, X. Three-Dimensional Electrochemical DNA Biosensor Based on 3D Graphene-Ag Nanoparticles for Sensitive Detection of CYFRA21-1 in Non-Small Cell Lung Cancer. Sens. Actuators B Chem. 2018, 255, 2910–2918. [Google Scholar] [CrossRef]
- Schwierz, F. Graphene Transistors. Nat. Nanotechnol. 2010, 5, 487–496. [Google Scholar] [CrossRef] [PubMed]
- Reddy, D.; Register, L.F.; Carpenter, G.D.; Banerjee, S.K. Graphene Field-Effect Transistors. J. Phys. Appl. Phys. 2011, 44, 313001. [Google Scholar] [CrossRef]
- Novodchuk, I.; Bajcsy, M.; Yavuz, M. Graphene-Based Field Effect Transistor Biosensors for Breast Cancer Detection: A Review on Biosensing Strategies. Carbon 2021, 172, 431–453. [Google Scholar] [CrossRef]
- He, R.X.; Lin, P.; Liu, Z.K.; Zhu, H.W.; Zhao, X.Z.; Chan, H.L.W.; Yan, F. Solution-Gated Graphene Field Effect Transistors Integrated in Microfluidic Systems and Used for Flow Velocity Detection. Nano Lett. 2012, 12, 1404–1409. [Google Scholar] [CrossRef]
- Kim, D.-J.; Sohn, I.Y.; Jung, J.-H.; Yoon, O.J.; Lee, N.-E.; Park, J.-S. Reduced Graphene Oxide Field-Effect Transistor for Label-Free Femtomolar Protein Detection. Biosens. Bioelectron. 2013, 41, 621–626. [Google Scholar] [CrossRef]
- Rajesh; Gao, Z.; Vishnubhotla, R.; Ducos, P.; Serrano, M.D.; Ping, J.; Robinson, M.K.; Johnson, A.T.C. Genetically Engineered Antibody Functionalized Platinum Nanoparticles Modified CVD-Graphene Nanohybrid Transistor for the Detection of Breast Cancer Biomarker, HER3. Adv. Mater. Interfaces 2016, 3, 1600124. [Google Scholar] [CrossRef]
- Haslam, C.; Damiati, S.; Whitley, T.; Davey, P.; Ifeachor, E.; Awan, S.A. Label-Free Sensors Based on Graphene Field-Effect Transistors for the Detection of Human Chorionic Gonadotropin Cancer Risk Biomarker. Diagnostics 2018, 8, 5. [Google Scholar] [CrossRef]
- Akbari, M.; Shahbazzadeh, M.J.; La Spada, L.; Khajehzadeh, A. The Graphene Field Effect Transistor Modeling Based on an Optimized Ambipolar Virtual Source Model for DNA Detection. Appl. Sci. 2021, 11, 8114. [Google Scholar] [CrossRef]
- Hu, S.; Wang, Z.; Gu, Y.; Li, Y.; Jia, Y. Clinical Available Circulating Tumor Cell Assay Based on Tetra(4-Aminophenyl) Porphyrin Mediated Reduced Graphene Oxide Field Effect Transistor. Electrochim. Acta 2019, 313, 415–422. [Google Scholar] [CrossRef]
- Wu, D.; Yu, Y.; Jin, D.; Xiao, M.-M.; Zhang, Z.-Y.; Zhang, G.-J. Dual-Aptamer Modified Graphene Field-Effect Transistor Nanosensor for Label-Free and Specific Detection of Hepatocellular Carcinoma-Derived Microvesicles. Anal. Chem. 2020, 92, 4006–4015. [Google Scholar] [CrossRef] [PubMed]
- Cai, B.; Huang, L.; Zhang, H.; Sun, Z.; Zhang, Z.; Zhang, G.-J. Gold Nanoparticles-Decorated Graphene Field-Effect Transistor Biosensor for Femtomolar MicroRNA Detection. Biosens. Bioelectron. 2015, 74, 329–334. [Google Scholar] [CrossRef] [PubMed]
- Gao, J.; Wang, C.; Wang, C.; Chu, Y.; Wang, S.; Sun, M.; Ji, H.; Gao, Y.; Wang, Y.; Han, Y.; et al. Poly-l-Lysine-Modified Graphene Field-Effect Transistor Biosensors for Ultrasensitive Breast Cancer miRNAs and SARS-CoV-2 RNA Detection. Anal. Chem. 2022, 94, 1626–1636. [Google Scholar] [CrossRef]
- Li, P.; Zhang, B.; Cui, T. Towards Intrinsic Graphene Biosensor: A Label-Free, Suspended Single Crystalline Graphene Sensor for Multiplex Lung Cancer Tumor Markers Detection. Biosens. Bioelectron. 2015, 72, 168–174. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.E.; Schuck, A.; Lee, J.H.; Kim, Y.-S. Solution-Gated Graphene Field Effect Transistor for TP53 DNA Sensor with Coplanar Electrode Array. Sens. Actuators B Chem. 2019, 291, 96–101. [Google Scholar] [CrossRef]
- Karthik, R.; Govindasamy, M.; Chen, S.-M.; Chen, T.-W.; Kumar, J.V.; Elangovan, A.; Muthuraj, V.; Yu, M.-C. A Facile Graphene Oxide Based Sensor for Electrochemical Detection of Prostate Anti-Cancer (Anti-Testosterone) Drug Flutamide in Biological Samples. RSC Adv. 2017, 7, 25702–25709. [Google Scholar] [CrossRef]
- Coroş, M.; Pruneanu, S.; Stefan-van Staden, R.-I. Recent Progress in the Graphene-Based Electrochemical Sensors and Biosensors. J. Electrochem. Soc. 2019, 167, 037528. [Google Scholar] [CrossRef]
- Wang, J.; Wang, D.; Hui, N. A Low Fouling Electrochemical Biosensor Based on the Zwitterionic Polypeptide Doped Conducting Polymer PEDOT for Breast Cancer Marker BRCA1 Detection. Bioelectrochemistry 2020, 136, 107595. [Google Scholar] [CrossRef]
- Ruiyi, L.; Tinling, P.; Hongxia, C.; Jinsong, S.; Zaijun, L. Electrochemical Detection of Cancer Cells in Human Blood Using Folic Acid and Glutamic Acid-Functionalized Graphene Quantum Dot-Palladium@gold as Redox Probe with Excellent Electrocatalytic Activity and Target Recognition. Sens. Actuators B Chem. 2020, 309, 127709. [Google Scholar] [CrossRef]
- Jalil, O.; Pandey, C.M.; Kumar, D. Electrochemical Biosensor for the Epithelial Cancer Biomarker EpCAM Based on Reduced Graphene Oxide Modified with Nanostructured Titanium Dioxide. Microchim. Acta 2020, 187, 275. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Lin, L.-Y.; Tseng, F.-Y.; Tan, Y.-C.; Li, J.; Feng, L.; Song, L.; Lai, C.-F.; Li, X.; He, J.-H.; et al. Label-Free Electrochemical Immunosensor Based on Gold Nanoparticle/Polyethyleneimine/Reduced Graphene Oxide Nanocomposites for the Ultrasensitive Detection of Cancer Biomarker Matrix Metalloproteinase-1. Analyst 2021, 146, 4066–4079. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Qiu, X.; Deng, K.; Hou, Z. Electrochemical Co-Reduction Synthesis of Au/Ferrocene–Graphene Nanocomposites and Their Application in an Electrochemical Immunosensor of a Breast Cancer Biomarker. Anal. Methods 2014, 6, 9078–9084. [Google Scholar] [CrossRef]
- Ruiyi, L.; Fangchao, C.; Haiyan, Z.; Xiulan, S.; Zaijun, L. Electrochemical Sensor for Detection of Cancer Cell Based on Folic Acid and Octadecylamine-Functionalized Graphene Aerogel Microspheres. Biosens. Bioelectron. 2018, 119, 156–162. [Google Scholar] [CrossRef]
- Chen, D.-N.; Wang, A.-J.; Feng, J.-J.; Cheang, T.Y. One-Pot Wet-Chemical Fabrication of 3D Urchin-like Core-Shell Au@PdCu Nanocrystals for Electrochemical Breast Cancer Immunoassay. Microchim. Acta 2023, 190, 353. [Google Scholar] [CrossRef]
- Khalil, I.; Julkapli, N.M.; Yehye, W.A.; Basirun, W.J.; Bhargava, S.K. Graphene–Gold Nanoparticles Hybrid—Synthesis, Functionalization, and Application in a Electrochemical and Surface-Enhanced Raman Scattering Biosensor. Materials 2016, 9, 406. [Google Scholar] [CrossRef]
- Li, Y.; Han, J.; Chen, R.; Ren, X.; Wei, Q. Label Electrochemical Immunosensor for Prostate-Specific Antigen Based on Graphene and Silver Hybridized Mesoporous Silica. Anal. Biochem. 2015, 469, 76–82. [Google Scholar] [CrossRef]
- Li, H.; Wei, Q.; He, J.; Li, T.; Zhao, Y.; Cai, Y.; Du, B.; Qian, Z.; Yang, M. Electrochemical Immunosensors for Cancer Biomarker with Signal Amplification Based on Ferrocene Functionalized Iron Oxide Nanoparticles. Biosens. Bioelectron. 2011, 26, 3590–3595. [Google Scholar] [CrossRef]
- Alizadeh, N.; Salimi, A.; Hallaj, R.; Fathi, F.; Soleimani, F. CuO/WO3 Nanoparticles Decorated Graphene Oxide Nanosheets with Enhanced Peroxidase-like Activity for Electrochemical Cancer Cell Detection and Targeted Therapeutics. Mater. Sci. Eng. C 2019, 99, 1374–1383. [Google Scholar] [CrossRef]
- Wang, J.; Wang, X.; Tang, H.; Gao, Z.; He, S.; Li, J.; Han, S. Ultrasensitive Electrochemical Detection of Tumor Cells Based on Multiple Layer CdS Quantum Dots-Functionalized Polystyrene Microspheres and Graphene Oxide—Polyaniline Composite. Biosens. Bioelectron. 2018, 100, 1–7. [Google Scholar] [CrossRef]
- Li, M.; Liu, Q.; Jia, Z.; Xu, X.; Shi, Y.; Cheng, Y.; Zheng, Y.; Xi, T.; Wei, S. Electrophoretic Deposition and Electrochemical Behavior of Novel Graphene Oxide-Hyaluronic Acid-Hydroxyapatite Nanocomposite Coatings. Appl. Surf. Sci. 2013, 284, 804–810. [Google Scholar] [CrossRef]
- Shekari, Z.; Zare, H.R.; Falahati, A. Dual Assaying of Breast Cancer Biomarkers by Using a Sandwich–Type Electrochemical Aptasensor Based on a Gold Nanoparticles–3D Graphene Hydrogel Nanocomposite and Redox Probes Labeled Aptamers. Sens. Actuators B Chem. 2021, 332, 129515. [Google Scholar] [CrossRef]
- Zhang, Y.; Xiao, J.; Lv, Q.; Wang, L.; Dong, X.; Asif, M.; Ren, J.; He, W.; Sun, Y.; Xiao, F.; et al. In Situ Electrochemical Sensing and Real-Time Monitoring Live Cells Based on Freestanding Nanohybrid Paper Electrode Assembled from 3D Functionalized Graphene Framework. ACS Appl. Mater. Interfaces 2017, 9, 38201–38210. [Google Scholar] [CrossRef] [PubMed]
- Xu, Z.; Peng, M.; Zhang, Z.; Zeng, H.; Shi, R.; Ma, X.; Wang, L.; Liao, B. Graphene-Assisted Electrochemical Sensor for Detection of Pancreatic Cancer Markers. Front. Chem. 2021, 9, 733371. [Google Scholar] [CrossRef] [PubMed]
- Tian, R.; Ning, W.; Chen, M.; Zhang, C.; Li, Q.; Bai, J. High Performance Electrochemical Biosensor Based on 3D Nitrogen-Doped Reduced Graphene Oxide Electrode and Tetrahedral DNA Nanostructure. Talanta 2019, 194, 273–281. [Google Scholar] [CrossRef]
- Hampitak, P.; Jowitt, T.A.; Melendrez, D.; Fresquet, M.; Hamilton, P.; Iliut, M.; Nie, K.; Spencer, B.; Lennon, R.; Vijayaraghavan, A. A Point-of-Care Immunosensor Based on a Quartz Crystal Microbalance with Graphene Biointerface for Antibody Assay. ACS Sens. 2020, 5, 3520–3532. [Google Scholar] [CrossRef]
- Zhang, J.; Sun, Y.; Xu, B.; Zhang, H.; Gao, Y.; Zhang, H.; Song, D. A Novel Surface Plasmon Resonance Biosensor Based on Graphene Oxide Decorated with Gold Nanorod–Antibody Conjugates for Determination of Transferrin. Biosens. Bioelectron. 2013, 45, 230–236. [Google Scholar] [CrossRef]
- Yao, Y.; Miao, S.; Yu, S.; Ping Ma, L.; Sun, H.; Wang, S. Fabrication of Fe3O4/SiO2 Core/Shell Nanoparticles Attached to Graphene Oxide and Its Use as an Adsorbent. J. Colloid Interface Sci. 2012, 379, 20–26. [Google Scholar] [CrossRef]
- Biru, I.; Damian, C.M.; Gârea, S.A.; Iovu, H. Benzoxazine-Functionalized Graphene Oxide for Synthesis of New Nanocomposites. Eur. Polym. J. 2016, 83, 244–255. [Google Scholar] [CrossRef]
- Parsamehr, P.S.; Zahed, M.; Tofighy, M.A.; Mohammadi, T.; Rezakazemi, M. Preparation of Novel Cross-Linked Graphene Oxide Membrane for Desalination Applications Using (EDC and NHS)-Activated Graphene Oxide and PEI. Desalination 2019, 468, 114079. [Google Scholar] [CrossRef]
- Xiao, J.; Lu, Q.; Cong, H.; Shen, Y.; Yu, B. Microporous Poly(Glycidyl Methacrylate-Co-Ethylene Glycol Dimethyl Acrylate) Microspheres: Synthesis, Functionalization and Applications. Polym. Chem. 2021, 12, 6050–6070. [Google Scholar] [CrossRef]
- Negishi, R.; Matsui, Y.; Kobayashi, Y. Improving Sensor Response Using Reduced Graphene Oxide Film Transistor Biosensor by Controlling the Adsorption of Pyrene as an Anchor Molecule. Jpn. J. Appl. Phys. 2017, 56, 06GE04. [Google Scholar] [CrossRef]
- Cincotto, F.H.; Martínez-García, G.; Yáñez-Sedeño, P.; Canevari, T.C.; Machado, S.A.S.; Pingarrón, J.M. Electrochemical Immunosensor for Ethinylestradiol Using Diazonium Salt Grafting onto Silver Nanoparticles-Silica–Graphene Oxide Hybrids. Talanta 2016, 147, 328–334. [Google Scholar] [CrossRef] [PubMed]
- WooáKim, D.; BockáGu, M. Immobilization-Free Screening of Aptamers Assisted by Graphene Oxide. Chem. Commun. 2012, 48, 2071–2073. [Google Scholar]
- Aye, N.N.S.; Maraming, P.; Tavichakorntrakool, R.; Chaibunruang, A.; Boonsiri, P.; Daduang, S.; Teawtrakul, N.; Prasongdee, P.; Amornkitbamrung, V.; Daduang, J. A Simple Graphene Functionalized Electrochemical Aptasensor for the Sensitive and Selective Detection of Glycated Albumin. Appl. Sci. 2021, 11, 10315. [Google Scholar] [CrossRef]
- Edward Sekhosana, K.; Majeed, S.A.; Feleni, U. Click Chemistry in the Electrochemical Systems: Toward the Architecture of Electrochemical (Bio)Sensors. Coord. Chem. Rev. 2023, 491, 215232. [Google Scholar] [CrossRef]
- Wang, Y.; Li, Z.; Weber, T.J.; Hu, D.; Lin, C.-T.; Li, J.; Lin, Y. In Situ Live Cell Sensing of Multiple Nucleotides Exploiting DNA/RNA Aptamers and Graphene Oxide Nanosheets. Anal. Chem. 2013, 85, 6775–6782. [Google Scholar] [CrossRef]
- Rasheed, P.A.; Sandhyarani, N. Graphene-DNA Electrochemical Sensor for the Sensitive Detection of BRCA1 Gene. Sens. Actuators B Chem. 2014, 204, 777–782. [Google Scholar] [CrossRef]
- Shahrokhian, S.; Salimian, R. Ultrasensitive Detection of Cancer Biomarkers Using Conducting Polymer/Electrochemically Reduced Graphene Oxide-Based Biosensor: Application toward BRCA1 Sensing. Sens. Actuators B Chem. 2018, 266, 160–169. [Google Scholar] [CrossRef]
- An, Y.; Jin, T.; Zhu, Y.; Zhang, F.; He, P. An Ultrasensitive Electrochemical Aptasensor for the Determination of Tumor Exosomes Based on Click Chemistry. Biosens. Bioelectron. 2019, 142, 111503. [Google Scholar] [CrossRef]
- Asadi, H.; Ramasamy, R.P. Graphene-Based Electrochemical Biosensor for Impedimetric Detection of miRNAs as Potential Cancer Biomarkers. J. Electrochem. Soc. 2020, 167, 167523. [Google Scholar] [CrossRef]
- Zhang, D.; Zhang, Y.; Zheng, L.; Zhan, Y.; He, L. Graphene Oxide/Poly-l-Lysine Assembled Layer for Adhesion and Electrochemical Impedance Detection of Leukemia K562 Cancercells. Biosens. Bioelectron. 2013, 42, 112–118. [Google Scholar] [CrossRef]
- Shoja, Y.; Kermanpur, A.; Karimzadeh, F. Diagnosis of EGFR Exon21 L858R Point Mutation as Lung Cancer Biomarker by Electrochemical DNA Biosensor Based on Reduced Graphene Oxide/Functionalized Ordered Mesoporous Carbon/Ni-Oxytetracycline Metallopolymer Nanoparticles Modified Pencil Graphite Electrode. Biosens. Bioelectron. 2018, 113, 108–115. [Google Scholar] [CrossRef] [PubMed]
- Saeed, A.A.; Sánchez, J.L.A.; O’Sullivan, C.K.; Abbas, M.N. DNA Biosensors Based on Gold Nanoparticles-Modified Graphene Oxide for the Detection of Breast Cancer Biomarkers for Early Diagnosis. Bioelectrochemistry 2017, 118, 91–99. [Google Scholar] [CrossRef] [PubMed]
- Meng, F.; Sun, H.; Huang, Y.; Tang, Y.; Chen, Q.; Miao, P. Peptide Cleavage-Based Electrochemical Biosensor Coupling Graphene Oxide and Silver Nanoparticles. Anal. Chim. Acta 2019, 1047, 45–51. [Google Scholar] [CrossRef] [PubMed]
- Zhang, G.; Liu, Z.; Fan, L.; Guo, Y. Electrochemical Prostate Specific Antigen Aptasensor Based on Hemin Functionalized Graphene-Conjugated Palladium Nanocomposites. Microchim. Acta 2018, 185, 159. [Google Scholar] [CrossRef] [PubMed]
- Assari, P.; Rafati, A.A.; Feizollahi, A.; Asadpour Joghani, R. An Electrochemical Immunosensor for the Prostate Specific Antigen Based on the Use of Reduced Graphene Oxide Decorated with Gold Nanoparticles. Microchim. Acta 2019, 186, 484. [Google Scholar] [CrossRef] [PubMed]
- Yan, L.; Zhang, C.; Xi, F. Disposable Amperometric Label-Free Immunosensor on Chitosan–Graphene-Modified Patterned ITO Electrodes for Prostate Specific Antigen. Molecules 2022, 27, 5895. [Google Scholar] [CrossRef]
- Zhang, Q.; Ma, S.; Zhang, K.; Zhang, L.; Liu, C.; Shi, H.; Wang, C.; Wang, N.; Zhu, A. A Facile Integrated Microfluidic Chip Based on Chitosan-Gold Nanoparticles-Anchored Three-Dimensional Graphene Fiber Film for Monitoring Prostate Specific Antigen. Microchem. J. 2023, 184, 108171. [Google Scholar] [CrossRef]
- Chen, S.; Xu, L.; Sheng, K.; Zhou, Q.; Dong, B.; Bai, X.; Lu, G.; Song, H. A Label-Free Electrochemical Immunosensor Based on Facet-Controlled Au Nanorods/Reduced Graphene Oxide Composites for Prostate Specific Antigen Detection. Sens. Actuators B Chem. 2021, 336, 129748. [Google Scholar] [CrossRef]
- Han, L.; Liu, C.-M.; Dong, S.-L.; Du, C.-X.; Zhang, X.-Y.; Li, L.-H.; Wei, Y. Enhanced Conductivity of rGO/Ag NPs Composites for Electrochemical Immunoassay of Prostate-Specific Antigen. Biosens. Bioelectron. 2017, 87, 466–472. [Google Scholar] [CrossRef] [PubMed]
- Jang, H.D.; Kim, S.K.; Chang, H.; Choi, J.-W. 3D Label-Free Prostate Specific Antigen (PSA) Immunosensor Based on Graphene–Gold Composites. Biosens. Bioelectron. 2015, 63, 546–551. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Yu, Y.; Shen, J.; Qi, W.; Wang, H. Design of Organic/Inorganic Nanocomposites for Ultrasensitive Electrochemical Detection of a Cancer Biomarker Protein. Talanta 2020, 212, 120794. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Liu, Q.; Liu, Y.; Cui, J.; Liu, H.; Wang, P.; Li, Y.; Chen, L.; Zhao, Z.; Dong, Y. A Novel Label-Free Electrochemical Immunosensor Based on Functionalized Nitrogen-Doped Graphene Quantum Dots for Carcinoembryonic Antigen Detection. Biosens. Bioelectron. 2017, 90, 31–38. [Google Scholar] [CrossRef]
- Wang, R.; Feng, J.-J.; Xue, Y.; Wu, L.; Wang, A.-J. A Label-Free Electrochemical Immunosensor Based on AgPt Nanorings Supported on Reduced Graphene Oxide for Ultrasensitive Analysis of Tumor Marker. Sens. Actuators B Chem. 2018, 254, 1174–1181. [Google Scholar] [CrossRef]
- Li, X.; Liu, L.; Xu, Z.; Wang, W.; Shi, J.; Liu, L.; Jing, M.; Li, F.; Zhang, X. Gamma Irradiation and Microemulsion Assisted Synthesis of Monodisperse Flower-like Platinum-Gold Nanoparticles/Reduced Graphene Oxide Nanocomposites for Ultrasensitive Detection of Carcinoembryonic Antigen. Sens. Actuators B Chem. 2019, 287, 267–277. [Google Scholar] [CrossRef]
- Yang, Y.; Cao, K.; Wu, M.; Zhao, C.; Li, H.; Hong, C. 3D Graphene/MWNTs Nano-Frameworks Embedded Ag-Au Bimetallic NPs for Carcinoembryonic Antigen Detection. Microchem. J. 2019, 148, 548–554. [Google Scholar] [CrossRef]
- Song, Y.; Cao, K.; Li, W.; Ma, C.; Qiao, X.; Li, H.; Hong, C. Optimal Film Thickness of rGO/MoS2 @ Polyaniline Nanosheets of 3D Arrays for Carcinoembryonic Antigen High Sensitivity Detection. Microchem. J. 2020, 155, 104694. [Google Scholar] [CrossRef]
- Huang, H.; Xia, H.; Xie, W.; Guo, Z.; Li, H.; Xie, D. Design of Broadband Graphene-Metamaterial Absorbers for Permittivity Sensing at Mid-Infrared Regions. Sci. Rep. 2018, 8, 4183. [Google Scholar] [CrossRef]
- Liu, L.; Du, R.; Zhang, Y.; Yu, X. A Novel Sandwich-Type Immunosensor Based on Three-Dimensional Graphene–Au Aerogels and Quaternary Chalcogenide Nanocrystals for the Detection of Carcino Embryonic Antigen. New J. Chem. 2017, 41, 9008–9013. [Google Scholar] [CrossRef]
- Huang, J.; Wu, Y.; Cong, J.; Luo, J.; Liu, X. Selective and Sensitive Glycoprotein Detection via a Biomimetic Electrochemical Sensor Based on Surface Molecular Imprinting and Boronate-Modified Reduced Graphene Oxide. Sens. Actuators B Chem. 2018, 259, 1–9. [Google Scholar] [CrossRef]
- Klukova, L.; Filip, J.; Belicky, S.; Vikartovska, A.; Tkac, J. Graphene Oxide-Based Electrochemical Label-Free Detection of Glycoproteins down to aM Level Using a Lectin Biosensor. Analyst 2016, 141, 4278–4282. [Google Scholar] [CrossRef] [PubMed]
- Sadeghi, M.; Kashanian, S.; Naghib, S.M.; Askari, E.; Haghiralsadat, F.; Tofighi, D. A Highly Sensitive Nanobiosensor Based on Aptamer-Conjugated Graphene-Decorated Rhodium Nanoparticles for Detection of HER2-Positive Circulating Tumor Cells. Nanotechnol. Rev. 2022, 11, 793–810. [Google Scholar] [CrossRef]
- Tian, L.; Qi, J.; Qian, K.; Oderinde, O.; Liu, Q.; Yao, C.; Song, W.; Wang, Y. Copper (II) Oxide Nanozyme Based Electrochemical Cytosensor for High Sensitive Detection of Circulating Tumor Cells in Breast Cancer. J. Electroanal. Chem. 2018, 812, 1–9. [Google Scholar] [CrossRef]
- Tian, L.; Qi, J.; Qian, K.; Oderinde, O.; Cai, Y.; Yao, C.; Song, W.; Wang, Y. An Ultrasensitive Electrochemical Cytosensor Based on the Magnetic Field Assisted Binanozymes Synergistic Catalysis of Fe3O4 Nanozyme and Reduced Graphene Oxide/Molybdenum Disulfide Nanozyme. Sens. Actuators B Chem. 2018, 260, 676–684. [Google Scholar] [CrossRef]
- Rahimzadeh, Z.; Naghib, S.M.; Askari, E.; Molaabasi, F.; Sadr, A.; Zare, Y.; Afsharpad, M.; Rhee, K.Y. A Rapid Nanobiosensing Platform Based on Herceptin-Conjugated Graphene for Ultrasensitive Detection of Circulating Tumor Cells in Early Breast Cancer. Nanotechnol. Rev. 2021, 10, 744–753. [Google Scholar] [CrossRef]
- Li, F.; Hu, S.; Zhang, R.; Gu, Y.; Li, Y.; Jia, Y. Porous Graphene Oxide Enhanced Aptamer Specific Circulating-Tumor-Cell Sensing Interface on Light Addressable Potentiometric Sensor: Clinical Application and Simulation. ACS Appl. Mater. Interfaces 2019, 11, 8704–8709. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, W.; Tang, X.; Wang, Y.; Fu, W.; Chang, K.; Chen, M. Target-Triggered “Signal-off” Electrochemical Aptasensor Assisted by Au Nanoparticle–Modified Sensing Platform for High-Sensitivity Determination of Circulating Tumor Cells. Anal. Bioanal. Chem. 2020, 412, 8107–8115. [Google Scholar] [CrossRef]
- Li, N.; Xiao, T.; Zhang, Z.; He, R.; Wen, D.; Cao, Y.; Zhang, W.; Chen, Y. A 3D Graphene Oxide Microchip and a Au-Enwrapped Silica Nanocomposite-Based Supersandwich Cytosensor toward Capture and Analysis of Circulating Tumor Cells. Nanoscale 2015, 7, 16354–16360. [Google Scholar] [CrossRef]
- Cai, Y.; Li, H.; Du, B.; Yang, M.; Li, Y.; Wu, D.; Zhao, Y.; Dai, Y.; Wei, Q. Ultrasensitive Electrochemical Immunoassay for BRCA1 Using BMIM·BF4-Coated SBA-15 as Labels and Functionalized Graphene as Enhancer. Biomaterials 2011, 32, 2117–2123. [Google Scholar] [CrossRef]
- Rasheed, P.A.; Radhakrishnan, T.; Shihabudeen, P.K.; Sandhyarani, N. Reduced Graphene Oxide-Yttria Nanocomposite Modified Electrode for Enhancing the Sensitivity of Electrochemical Genosensor. Biosens. Bioelectron. 2016, 83, 361–367. [Google Scholar] [CrossRef] [PubMed]
- Işın, D.; Eksin, E.; Erdem, A. Graphene-Oxide and Ionic Liquid Modified Electrodes for Electrochemical Sensing of Breast Cancer 1 Gene. Biosensors 2022, 12, 95. [Google Scholar] [CrossRef] [PubMed]
- Xia, Y.-M.; Li, M.-Y.; Chen, C.-L.; Xia, M.; Zhang, W.; Gao, W.-W. Employing Label-Free Electrochemical Biosensor Based on 3D-Reduced Graphene Oxide and Polyaniline Nanofibers for Ultrasensitive Detection of Breast Cancer BRCA1 Biomarker. Electroanalysis 2020, 32, 2045–2055. [Google Scholar] [CrossRef]
- Esteban-Fernandez de Avila, B.; Araque, E.; Campuzano, S.; Pedrero, M.; Dalkiran, B.; Barderas, R.; Villalonga, R.; Kilic, E.; Pingarron, J.M. Dual Functional Graphene Derivative-Based Electrochemical Platforms for Detection of the TP53 Gene with Single Nucleotide Polymorphism Selectivity in Biological Samples. Anal. Chem. 2015, 87, 2290–2298. [Google Scholar] [CrossRef]
- Shu, Q.; Liao, F.; Hong, N.; Cheng, L.; Lin, Y.; Cui, H.; Su, J.; Ma, G.; Wei, G.; Zhong, Y.; et al. A Novel DNA Sensor of Homogeneous Electrochemical Signal Amplification Strategy. Microchem. J. 2020, 156, 104777. [Google Scholar] [CrossRef]
- Wang, J.; Shi, A.; Fang, X.; Han, X.; Zhang, Y. An Ultrasensitive Supersandwich Electrochemical DNA Biosensor Based on Gold Nanoparticles Decorated Reduced Graphene Oxide. Anal. Biochem. 2015, 469, 71–75. [Google Scholar] [CrossRef]
- Pothipor, C.; Jakmunee, J.; Bamrungsap, S.; Ounnunkad, K. An Electrochemical Biosensor for Simultaneous Detection of Breast Cancer Clinically Related microRNAs Based on a Gold Nanoparticles/Graphene Quantum Dots/Graphene Oxide Film. Analyst 2021, 146, 4000–4009. [Google Scholar] [CrossRef]
- Azimzadeh, M.; Rahaie, M.; Nasirizadeh, N.; Ashtari, K.; Naderi-Manesh, H. An Electrochemical Nanobiosensor for Plasma miRNA-155, Based on Graphene Oxide and Gold Nanorod, for Early Detection of Breast Cancer. Biosens. Bioelectron. 2016, 77, 99–106. [Google Scholar] [CrossRef]
- Salahandish, R.; Ghaffarinejad, A.; Omidinia, E.; Zargartalebi, H.; Majidzadeh-A, K.; Naghib, S.M.; Sanati-Nezhad, A. Label-Free Ultrasensitive Detection of Breast Cancer miRNA-21 Biomarker Employing Electrochemical Nano-Genosensor Based on Sandwiched AgNPs in PANI and N-Doped Graphene. Biosens. Bioelectron. 2018, 120, 129–136. [Google Scholar] [CrossRef]
- Pothipor, C.; Bamrungsap, S.; Jakmunee, J.; Ounnunkad, K. A Gold Nanoparticle-Dye/Poly(3-Aminobenzylamine)/Two Dimensional MoSe2/Graphene Oxide Electrode towards Label-Free Electrochemical Biosensor for Simultaneous Dual-Mode Detection of Cancer Antigen 15-3 and microRNA-21. Colloids Surf. B Biointerfaces 2022, 210, 112260. [Google Scholar] [CrossRef]
- Salimi, A.; Kavosi, B.; Navaee, A. Amine-Functionalized Graphene as an Effective Electrochemical Platform toward Easily miRNA Hybridization Detection. Measurement 2019, 143, 191–198. [Google Scholar] [CrossRef]
- Pimalai, D.; Putnin, T.; Waiwinya, W.; Chotsuwan, C.; Aroonyadet, N.; Japrung, D. Development of Electrochemical Biosensors for Simultaneous Multiplex Detection of microRNA for Breast Cancer Screening. Microchim. Acta 2021, 188, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Ebrahimi, A.; Nikokar, I.; Zokaei, M.; Bozorgzadeh, E. Design, Development and Evaluation of microRNA-199a-5p Detecting Electrochemical Nanobiosensor with Diagnostic Application in Triple Negative Breast Cancer. Talanta 2018, 189, 592–598. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Chai, Y.; Yuan, R.; Zhuo, Y.; Chen, Y. Dual Signal Amplification Strategy for Enzyme-Free Electrochemical Detection of microRNAs. Sens. Actuators B Chem. 2014, 203, 296–302. [Google Scholar] [CrossRef]
- Tran, H.V.; Piro, B.; Reisberg, S.; Duc, H.T.; Pham, M.C. Antibodies Directed to RNA/DNA Hybrids: An Electrochemical Immunosensor for MicroRNAs Detection Using Graphene-Composite Electrodes. Anal. Chem. 2013, 85, 8469–8474. [Google Scholar] [CrossRef]
- Shahbazi-Derakhshi, P.; Mahmoudi, E.; Majidi, M.M.; Sohrabi, H.; Amini, M.; Majidi, M.R.; Niaei, A.; Shaykh-Baygloo, N.; Mokhtarzadeh, A. An Ultrasensitive miRNA-Based Genosensor for Detection of MicroRNA 21 in Gastric Cancer Cells Based on Functional Signal Amplifier and Synthesized Perovskite-Graphene Oxide and AuNPs. Biosensors 2023, 13, 172. [Google Scholar] [CrossRef]
PSA Electrochemical Sensor | Linear Detection | LOD | Reference |
---|---|---|---|
Peptide and GO/AgNPs | 5 pg/mL to 20 ng/mL | 0.33 pg/mL | [115] |
H-Gr/PdNPs | 0.025 to 204.8 ng/mL | 8 pg/mL | [116] |
AuNPs/rGO/THI-aptamer | 0.05 to 200 ng/mL | 10 pg/mL | [30] |
GC/AuNPs/rGOAuNPs/anti-PSA | 1 to 36 ng/mL | 2 pg/mL | [117] |
GCE/rGO/Au NPs/Ab1 with redox probes@Ab2/Si@Au NPs nanocomposites as labels | 0.01 to 25 ng/mL | 0.004 ng/mL | [116] |
Ab/GA/CS-rGO/ITO | 1 to 5 ng/mL | 0.8 pg/mL | [118] |
3D GF/CS-Au NPs | 0.001 to 200 ng/mL | 0.51 pg/mL | [119] |
FTO/Au CC-NRs/rGO (composite)/CS | 0.1 to 150 ng/mL | 0.016 ng/mL | [120] |
rGO/Ag Nanoparticles | 1 to 1000 ng/mL | 0.01 ng/mL | [121] |
Graphene–Au NPs | 1 to 10 ng/mL | 0.59 ng/mL | [122] |
CEA Electrochemical Sensor | Linear Detection | LOD | Reference |
---|---|---|---|
CEA/BSA/anti-CEA/PtPd/N-GQDs@Au/GCE | 5.0 fg/mL to 50.0 ng/mL | 2.0 fg/mL | [124] |
Anti-CEA/PBSE/graphene/Cu | 1.0 to 25.0 ng/mL | 0.23 ng/mL | [47] |
GCE/AgPt NRs-rGO/Ab/BSA/CEA | 5.0 fg/mL to 50.0 ng/mL | 1.43 fg/mL | [125] |
Anti-CEA/rGO-PtAu NPs/GCE | 10.0 to 1.0 × 108 fg/mL | 7.0 fg/mL | [126] |
Anti-CEA/3D-rGO-MWCNTs/Ag–Au NPs/GCE | 0.0001 to 80.0 ng/mL | 3.0 pg/mL | [127] |
Anti-CEA/PEDOT/Ag@BSA/rGO/CNTs-COOH/Au | 0.002 to 50.0 ng/mL | 0.1 pg/mL | [123] |
Anti-CEA/rGO/MoS2@PANI/GCE | 0.001 to 80.0 ng/mL | 0.3 pg/mL | [128] |
CEA-Ab/GZ-PYSE/SPCE | 0.01 to 10.0 ng/mL | 0.004 ng/mL | [129] |
Ab2-CZTS/CEA/BSA/Ab1/GN-Au/GCE | 5.0 × 10−4 to 20.0 ng/mL | 0.15 pg/mL | [130] |
CEA/BSA/Ab1/3DPt/HGO-MGCE | 0.001 to 150.0 ng/mL | 0.0006 ng/mL | [31] |
CTCs Electrochemical Sensor | Linear Detection | LOD | Reference |
---|---|---|---|
Aptamer/electroactive species-loaded AuNP probes | 5 to 500 cells/mL | 4 cells/mL for Ramos cells 3 cells/mL for CCRF-CEM cells | [39] |
MCF-7/S1/Gr/AuNPs/GCE | 50 to 1 × 104 cells/mL | 27 cells/mL | [134] |
MPA/Rh-NPs/rGONs/graphite electrode | 5.0 to 1.0 × 105 cells/mL | 1 cells/mL | [133] |
Fe3O4NPs/rGO/MoS2 | 15 to 45 cells/mL | 6 cells/mL | [135] |
FA-GAM-OA | 5.0 to 1.0 × 106 cells/mL | 5 cells/mL | [84] |
A/Glu-GQD-Pd@Au | 3.0 to 1.0 × 106 cells/mL | 2 cells/mL | [80] |
Herceptin-conjugated graphene | 1 to 80 cells/mL | - | [136] |
Apta-PGO-LAPS’ | 5 to 5000 cells/mL | - | [137] |
MB-aptamers/dsDNA/AuNP-modified GE | 1 × 102 to 1 × 106 cells/mL | 23 cells/mL | [138] |
HRP-Si/AuNPs-Ab2/MCF7/Ab1-SA/GO/microchip | 1 to 105 cells/mL | 10 cells/mL | [139] |
miRNA Electrochemical Sensor | Analyte | Linear Detection | LOD | Reference |
---|---|---|---|---|
AuNPs/GQDs/GO/SPCE | miRNA-21, miRNA-155, miRNA-210 | 0.001 to 1000 pM | 0.04 fM, 0.33 fM, 0.28 fM | [147] |
SS-probe/GO/GNR/GCE. | miRNA-155 | 2.0 fM to 8.0 pM | 0.6 fM | [148] |
miRNA-21/MCH/capture DNA-21 probe/dyes-AuNPs-coated nanocomposite-modified 2SPCE | miRNA-21 | 0 to 1000 pM | 1.2 fM | [150] |
nanocomposite/ss-DNA probe/MU | miRNA-21 | 10 fM to 10 µM | 0.2 fM | [149] |
anti-miRNA/GA/AGr/GCE | miRNA-155 | 30 fM to 1 pM | 12.5 fM | [151] |
PHSGNPs/metal ion/cap-DNA/miRNA | miRNA-155, miRNA-21, miRNA-16 | 1 fM to 10 nM | 0.98 fM, 3.58 fM, 0.25 fM | [152] |
GO/GNR/miR | miR199a-5p | 15 fM to 148 pM | 4.5 fM | [153] |
GO/Au NPs | miRNA-155 | 1 nM to 10 fM | 3.3 fM | [154] |
GO | miR-141 | 1 nM to 1 fM | 5 fM | [155] |
AuNPs/perovskite/GO | miRNA-21 | 10 fM to 100 nM | 2.94 fM | [156] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fu, L.; Zheng, Y.; Li, X.; Liu, X.; Lin, C.-T.; Karimi-Maleh, H. Strategies and Applications of Graphene and Its Derivatives-Based Electrochemical Sensors in Cancer Diagnosis. Molecules 2023, 28, 6719. https://doi.org/10.3390/molecules28186719
Fu L, Zheng Y, Li X, Liu X, Lin C-T, Karimi-Maleh H. Strategies and Applications of Graphene and Its Derivatives-Based Electrochemical Sensors in Cancer Diagnosis. Molecules. 2023; 28(18):6719. https://doi.org/10.3390/molecules28186719
Chicago/Turabian StyleFu, Li, Yuhong Zheng, Xingxing Li, Xiaozhu Liu, Cheng-Te Lin, and Hassan Karimi-Maleh. 2023. "Strategies and Applications of Graphene and Its Derivatives-Based Electrochemical Sensors in Cancer Diagnosis" Molecules 28, no. 18: 6719. https://doi.org/10.3390/molecules28186719
APA StyleFu, L., Zheng, Y., Li, X., Liu, X., Lin, C. -T., & Karimi-Maleh, H. (2023). Strategies and Applications of Graphene and Its Derivatives-Based Electrochemical Sensors in Cancer Diagnosis. Molecules, 28(18), 6719. https://doi.org/10.3390/molecules28186719