The Equilibrium Molecular Structure of Cyclic (Alkyl)(Amino) Carbene Copper(I) Chloride via Gas-Phase Electron Diffraction and Quantum Chemical Calculations
Abstract
:1. Introduction
2. Results and Discussion
2.1. Comparison with the Single-Crystal X-ray Diffraction Data
2.2. Analysis of the Intramolecular Contacts in the Gas-Phase with the Quantum Theory of Atoms in Molecules (QTAIM)
3. Materials and Methods
3.1. Computational Details
3.2. X-ray Diffraction Experiments
3.3. Gas-Electron Diffraction Experiments
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Yersin, H.; Rausch, A.F.; Czerwieniec, R.; Hofbeck, T.; Fischer, T. The triplet state of organo-transition metal compounds. Triplet harvesting and singlet harvesting for efficient OLEDs. Coord. Chem. Rev. 2011, 255, 2622–2652. [Google Scholar] [CrossRef]
- Yersin, H. (Ed.) Highly Efficient OLEDs with Phosphorescent Materials; Wiley-VCH Verlag GmbH: Weinheim, Germany, 2008; ISBN 978-3-527-40594-7. [Google Scholar]
- Uoyama, H.; Goushi, K.; Shizu, K.; Nomura, H.; Adachi, C. Highly efficient organic light-emitting diodes from delayed fluorescence. Nature 2012, 492, 234–238. [Google Scholar] [CrossRef] [PubMed]
- Yersin, H. (Ed.) Highly Efficient OLEDs—Materials Based on Thermally Activated Delayed Fluorescence; Wiley-VCH Verlag GmbH: Weinheim, Germany, 2019; ISBN 978-3-527-33900-6. [Google Scholar]
- Zysman-Colman, E. (Ed.) Iridium(III) in Optoelectronic and Photonics Applications; John Wiley & Sons: Hoboken, NJ, USA, 2017. [Google Scholar] [CrossRef]
- Hong, G.; Gan, X.; Leonhardt, C.; Zhang, Z.; Seibert, J.; Busch, J.M.; Bräse, S. A Brief History of OLEDs—Emitter Development and Industry Milestones. Adv. Mater. 2021, 33, 2005630. [Google Scholar] [CrossRef] [PubMed]
- Visbal, R.; Gimeno, M.C. N-heterocyclic carbene metal complexes: Photoluminescence and applications. Chem. Soc. Rev. 2014, 43, 3551–3574. [Google Scholar] [CrossRef] [PubMed]
- Bizzarri, C.; Spuling, E.; Knoll, D.M.; Volz, D.; Bräse, S. Sustainable metal complexes for organic light-emitting diodes (OLEDs). Coord. Chem. Rev. 2018, 373, 49–82. [Google Scholar] [CrossRef]
- Amouri, H. Luminescent Complexes of Platinum, Iridium, and Coinage Metals Containing N-Heterocyclic Carbene Ligands: Design, Structural Diversity, and Photophysical Properties. Chem. Rev. 2023, 123, 230–270. [Google Scholar] [CrossRef]
- Harkins, S.B.; Peters, J.C. A highly emissive Cu2N2 diamond core complex supported by a [PNP]− ligand. J. Am. Chem. Soc. 2005, 127, 2030–2031. [Google Scholar] [CrossRef]
- Krylova, V.A.; Djurovich, P.I.; Whited, M.T.; Thompson, M.E. Synthesis and characterization of phosphorescent three-coordinate Cu(I)–NHC complexes. Chem. Commun. 2010, 46, 6696–6698. [Google Scholar] [CrossRef]
- Hashimoto, M.; Igawa, S.; Yashima, M.; Kawata, I.; Hoshino, M.; Osawa, M. Highly Efficient Green Organic Light-Emitting Diodes Containing Luminescent Three-Coordinate Copper(I) Complexes. J. Am. Chem. Soc. 2011, 133, 10348–10351. [Google Scholar] [CrossRef]
- Krylova, V.A.; Djurovich, P.I.; Conley, B.L.; Haiges, R.; Whited, M.T.; Williams, T.J.; Thompson, M.E. Control of emission colour with N-heterocyclic carbene (NHC) ligands in phosphorescent three-coordinate Cu(I) complexes. Chem. Commun. 2014, 50, 7176–7179. [Google Scholar] [CrossRef]
- Leitl, M.J.; Krylova, V.A.; Djurovich, P.I.; Thompson, M.E.; Yersin, H. Phosphorescence versus Thermally Activated Delayed Fluorescence. Controlling Singlet-Triplet Splitting in Brightly Emitting and Sublimable Cu(I) Compounds. J. Am. Chem. Soc. 2014, 136, 16032–16038. [Google Scholar] [CrossRef] [PubMed]
- Czerwieniec, R.; Leitl, M.J.; Homeier, H.H.H.; Yersin, H. Cu(I) complexes—Thermally activated delayed fluorescence. Photophysical approach and material design. Coord. Chem. Rev. 2016, 325, 2–28. [Google Scholar] [CrossRef]
- Romanov, A.S.; Di, D.; Yang, L.; Fernandez-Cestau, J.; Becker, C.R.; James, C.E.; Zhu, B.; Linnolahti, M.; Credgington, D.; Bochmann, M. Highly photoluminescent copper carbene complexes based on prompt rather than delayed fluorescence. Chem. Commun. 2016, 52, 6379–6382. [Google Scholar] [CrossRef] [PubMed]
- Romanov, A.S.; Becker, C.R.; James, C.E.; Di, D.; Credgington, D.; Linnolahti, M.; Bochmann, M. Copper and Gold Cyclic (Alkyl)(amino)carbene Complexes with Sub-Microsecond Photoemissions: Structure and Substituent Effects on Redox and Luminescent Properties. Chem. Eur. J. 2017, 23, 4625–4637. [Google Scholar] [CrossRef] [PubMed]
- Ruduss, A.; Turovska, B.; Belyakov, S.; Stucere, K.A.; Vembris, A.; Baryshnikov, G.; Ågren, H.; Lu, J.-C.; Lin, W.-H.; Chang, C.-H.; et al. Thiazoline Carbene−Cu(I)−Amide complexes: Efficient White Electroluminescence from Combined Monomer and Excimer Emission. ACS Appl. Mater. Interfaces 2022, 14, 15478–15493. [Google Scholar] [CrossRef] [PubMed]
- Iwamura, M.; Takeuchi, S.; Tahara, T. Ultrafast Excited-State Dynamics of Copper(I) Complexes. Acc. Chem. Res. 2015, 48, 782–791. [Google Scholar] [CrossRef] [PubMed]
- Barakat, K.A.; Cundari, T.R.; Omary, M.A. Jahn-Teller Distortion in the Phosphorescent Excited State of Three-Coordinate Au(I) Phosphine Complexes. J. Am. Chem. Soc. 2003, 125, 14228–14229. [Google Scholar] [CrossRef]
- Herzberg, G.; Teller, E. Schwingungsstruktur der Elektronenübergänge Bei Mehratomigen Molekülen. Z. Phys. Chem. 1933, 21B, 410. [Google Scholar] [CrossRef]
- Renner, R. Zur Theorie Der Wechselwirkung Zwischen Elektronen- Und Kernbewegung Bei Dreiatomigen, Stabförmigen Molekülen. Eur. Phys. J. A 1934, 92, 172–193. [Google Scholar]
- Li, T.-Y.; Sylvinson, D.; Ravinson, M.; Haiges, R.; Djurovich, P.I.; Thompson, M.E. Enhancement of the Luminescent Efficiency in Carbene-Au(I)-Aryl Complexes by the Restriction of Renner-Teller Distortion and Bond Rotation. J. Am. Chem. Soc. 2020, 142, 6158–6172. [Google Scholar] [CrossRef]
- Lin, S.; Peng, Q.; Ou, Q.; Shuai, Z. Strong Solid-State Fluorescence Induced by Restriction of the Coordinate Bond Bending in Two-Coordinate Copper(I)-Carbene Complexes. Inorg. Chem. 2019, 58, 14403–14409. [Google Scholar] [CrossRef] [PubMed]
- Reponen, A.-P.M.; Chotard, F.; Lempelto, A.; Shekhovtsev, V.; Credgington, D.; Bochmann, M.; Linnolahti, M.; Greenham, N.C.; Romanov, A.S. Donor N-Substitution as Design Principle for Fast and Blue Luminescence in Carbene-Metal-Amides. Adv. Opt. Mater. 2022, 10, 2200312. [Google Scholar] [CrossRef]
- Di, D.; Romanov, A.S.; Yang, L.; Richter, J.M.; Rivett, J.P.; Jones, S.; Thomas, T.H.; Jalebi, M.A.; Friend, R.H.; Linnolahti, M.; et al. High-performance light-emitting diodes based on carbene-metal-amides. Science 2017, 356, 159–163. [Google Scholar] [CrossRef] [PubMed]
- Hamze, R.; Peltier, J.L.; Sylvinson, D.; Jung, M.; Cardenas, J.; Haiges, R.; Soleilhavoup, M.; Jazzar, R.; Djurovich, P.I.; Bertrand, G.; et al. Eliminating nonradiative decay in Cu(I) emitters: >99% quantum efficiency and microsecond lifetime. Science 2019, 363, 601–606. [Google Scholar] [CrossRef]
- Hamze, R.; Shi, S.; Kapper, S.C.; Muthiah Ravinson, D.S.; Estergreen, L.; Jung, M.-C.; Tadle, A.C.; Haiges, R.; Djurovich, P.I.; Peltier, J.L.; et al. “Quick-Silver” from a Systematic Study of Highly Luminescent, TwoCoordinate, d10 Coinage Metal Complexes. J. Am. Chem. Soc. 2019, 141, 8616–8626. [Google Scholar] [CrossRef]
- Jazzar, R.; Soleilhavoup, M.; Bertrand, G. Cyclic (Alkyl)- and (Aryl)-(amino)carbene Coinage Metal Complexes and Their Applications. Chem. Rev. 2020, 120, 4141–4168. [Google Scholar] [CrossRef]
- Chotard, F.; Sivchik, V.; Linnolahti, M.; Bochmann, M.; Romanov, A.S. Mono- versus Bicyclic Carbene Metal Amide Photoemitters: Which Design Leads to Best Performance? Chem. Mater. 2020, 32, 6114–6122. [Google Scholar] [CrossRef]
- Gernert, M.; Balles-Wolf, L.; Kerner, F.; Müller, U.; Schmiedel, A.; Holzapfel, M.; Marian, C.M.; Pflaum, J.; Lambert, C.; Steffen, A. Cyclic (Amino)(aryl)carbenes Enter the Field of Chromophore Ligands: Expanded π System Leads to Unusually Deep Red Emitting CuI Compounds. J. Am. Chem. Soc. 2020, 142, 8897–8909. [Google Scholar] [CrossRef]
- Phuoc, N.L.; Brannan, A.C.; Linnolahti, M.; Romanov, A.S. Tailoring Carbene–Metal–Amides for Thermally Activated Delayed Fluorescence: A Computationally Guided Study on the Effect of Cyclic (Alkyl)(amino)carbenes. Molecules 2023, 28, 4398. [Google Scholar] [CrossRef]
- Romanov, A.S.; Linnolahti, M.; Bochmann, M. Synthesis and photophysical properties of linear gold(I) complexes based on a CCC carbene. Dalton Trans. 2021, 50, 17156–17164. [Google Scholar] [CrossRef]
- Gernert, M.; Meller, U.; Haehnel, M.; Pflaum, J.; Steffen, A. A Cyclic Alkyl(amino)carbene as Two-Atom π-Chromophore Leading to the First Phosphorescent Linear CuI Complexes. Chem. Eur. J. 2017, 23, 2206–2216. [Google Scholar] [CrossRef] [PubMed]
- Hilderbrandt, R.L. Cartesian Coordinates of Molecular Models. J. Chem. Phys. 1969, 51, 1654–1659. [Google Scholar] [CrossRef]
- Andersen, B.; Seip, H.M.; Strand, T.G.; Stolevik, R. Procedure and computer programs for the structure determination of gaseous molecules from electron diffraction data. Acta Chem. Scand. 1969, 23, 3224–3228. [Google Scholar] [CrossRef]
- Rajamalli, P.; Senthilkumar, N.; Gandeepan, P.; Huang, P.-Y.; Huang, M.-J.; Ren-Wu, C.Z.; Yang, C.-Y.; Chiu, M.-J.; Chu, L.-K.; Lin, H.-W.; et al. A New Molecular Design Based on Thermally Activated Delayed Fluorescence for Highly Efficient Organic Light Emitting Diodes. J. Am. Chem. Soc. 2016, 138, 628–634. [Google Scholar] [CrossRef]
- Liske, A.; Wallbaum, L.; Hölzel, T.; Föller, J.; Gernert, M.; Hupp, B.; Ganter, C.; Marian, C.M.; Steffen, A. Cu–F Interactions between Cationic Linear N-Heterocyclic Carbene Copper(I) Pyridine Complexes and Their Counterions Greatly Enhance Blue Luminescence Efficiency. Inorg. Chem. 2019, 58, 5433–5445. [Google Scholar] [CrossRef] [PubMed]
- Gu, Q.; Chotard, F.; Eng, J.; Reponen, A.-P.M.; Vitorica-Yrezabal, I.J.; Woodward, A.W.; Penfold, T.J.; Credgington, D.; Bochmann, M.; Romanov, A.S. Excited State Lifetime Modulation by Twisted and Tilted Molecular Design in Carbene-Metal-Amide Photoemitters. Chem. Mater. 2022, 34, 7526–7542. [Google Scholar] [CrossRef]
- Weigend, F.; Häser, M. RI-MP2: First derivatives and global consistency. Theor. Chem. Acc. 1997, 97, 331–340. [Google Scholar] [CrossRef]
- Schäfer, A.; Huber, C.; Ahlrichs, R. Fully optimized contracted Gaussian basis sets of triple zeta valence quality for atoms Li to Kr. J. Chem. Phys. 1994, 100, 5829–5835. [Google Scholar] [CrossRef]
- Yu, H.S.; He, X.; Li, S.L.; Truhlar, D.G. MN15: A Kohn–Sham global-hybrid exchange–correlation density functional with broad accuracy for multi-reference and single-reference systems and noncovalent interactions. Chem. Sci. 2016, 7, 5032–5051. [Google Scholar] [CrossRef]
- Neese, F. The ORCA program system. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2012, 2, 73–78. [Google Scholar] [CrossRef]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Petersson, G.A.; Nakatsuji, H.; et al. Gaussian, 16, Revision C.01; Gaussian Inc.: Wallingford, CT, USA, 2016. [Google Scholar]
- Sipachev, V.A. Calculation of shrinkage corrections in harmonic approximation. J. Mol. Struct. Theochem. 1985, 121, 143–151. [Google Scholar] [CrossRef]
- Sipachev, V.A. Vibrational effects in diffraction and microwave experiments: A start on the problem. In Advances in Molecular Structure Research; Hargittai, I., Hargittai, M., Sipachev, V.A., Eds.; JAI Press: New York, NY, USA, 1999; Volume 5, p. 263. [Google Scholar]
- Sipachev, V.A. Local centrifugal distortions caused by internal motions of molecules. J. Mol. Struct. 2001, 567–568, 67–72. [Google Scholar] [CrossRef]
- Weinhold, F.; Landis, C.R. Discovering Chemistry with Natural Bond Orbitals; John Wiley & Sons: Upper Saddle River, NJ, USA, 2012; p. 300. [Google Scholar]
- Weinhold, F.; Landis, C.R. Valency and Bonding: A Natural Bond Orbital Donor-Acceptor Perspective; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2005; p. 760. [Google Scholar]
- Glendening, E.D.; Landis, C.R.; Weinhold, F. NBO 7.0: New vistas in localized and delocalized chemical bonding theory. J. Comput. Chem. 2019, 40, 2234–2241. [Google Scholar] [CrossRef]
- Bader, R.F.W. Atoms in Molecules: A Quantum Theory; Oxford University Press: New York, NY, USA, 1994; 456p. [Google Scholar]
- Keith, T.A. AIMAll; TK Gristmill Software: Overland Park, KS, USA, 2014; Available online: http://aim.tkgristmill.com (accessed on 15 January 2023).
- Programs CrysAlisPro; Oxford Diffraction Ltd.: Abingdon, UK, 2010.
- Sheldrick, G. Crystal structure refinement with SHELXL. Acta Crystallogr. Sect. C 2015, 71, 3–8. [Google Scholar] [CrossRef]
- Dolomanov, O.V.; Bourhis, L.J.; Gildea, R.J.; Howard, J.A.K.; Puschmann, H. OLEX2: A complete structure solution, refinement and analysis program. J. Appl. Crystallogr. 2009, 42, 339. [Google Scholar] [CrossRef]
- Shibata, S.; Iijima, K.; Tani, R.; Nakamura, I. Precise measurement of gas electron-diffraction Intensity by a sector-Microphotometer Method. Rep. Fac. Sci. Shizuoka Univ. 1974, 9, 33. [Google Scholar]
- Hamrick, E. Hamrick Software. 2014. Available online: http://hamrick.com (accessed on 20 January 2023).
- Belyakov, A.V.; Baskakov, A.A.; Naraev, V.N.; Rykov, A.N.; Oberhammer, H.; Arnason, I.; Wallevik, S.O. Molecular structure and conformational preferences of 1-bromo-1-silacyclohexane, CH2(CH2CH2)2SiH-Br, as studies by gas-phase electron diffraction and quantum chemistry. Russ. J. Phys. Chem. A 2012, 86, 1563–1566. [Google Scholar] [CrossRef]
- Wallevik, S.Ó.; Bjornsson, R.; Kvaran, Á.; Jonsdottir, S.; Arnason, I.; Belyakov, A.V.; Kern, T.; Hassler, K. Conformational Properties of 1-Halogenated-1-Silacyclohexanes, C5H10SiHX (X = Cl, Br, I): Gas Electron Diffraction, Low-Temperature NMR, Temperature-Dependent Raman Spectroscopy, and Quantum-Chemical Calculations. Organometallics 2013, 32, 6996–7005. [Google Scholar] [CrossRef]
- Dierckx, P. Curve and Surface Fitting with Splines: Monographs on Numerical Analysis; Clarendon Press: Oxford, UK; New York, NY, USA, 1993. [Google Scholar]
- Karp, P.; Kraushaar, A. Fogra-Report Nr. 23024; LaserSoft Imaging AG: Kiel, Germany, 2009; pp. 1–9. Available online: http://www.silverfast.com/showdocu/ru.html?docu=1150 (accessed on 10 August 2023).
- Ross, A.W.; Fink, M.; Hilderbrandt, R.L. International Tables for Crystallography; Kluwer Academic Publishers: Dodrecht, The Netherlands, 1992; Volume C, p. 245. [Google Scholar]
Parameters a | GED | MP2 b | Parameters | GED | MP2 |
---|---|---|---|---|---|
R2(C1-C2) | 1.555(47) | 1.533 | A12(C12,C7,C6) | 123.3(3.3) | 122.7 |
R3(C2-C3) | 1.523(47) | 1.501 | A13(C13,C12,C7) | 112.7 | 112.7 |
R4(N4-C3) | 1.324(47) | 1.302 | A14(C14,C12,C7) | 109.1 | 109.1 |
R5(C5-N4) | 1.520(47) | 1.498 | A15(C15,C11,C6) | 123.0 | 123.0 |
R1(C5-C1) c | 1.547(47) | 1.525 | A16(C16,C15,C11) | 109.2 | 109.2 |
R6(C6-N4) | 1.452(47) | 1.430 | A17(C17,C15,C11) | 112.9 | 112.9 |
R7(C7-C6) | 1.401(9) | 1.398 | A18(C18,C5,C1) | 113.5 | 113.5 |
R8(C8-C7) | 1.392(9) | 1.390 | A19(C19,C5,C1) | 113.0 | 113.0 |
R9(C9-C8) | 1.385(9) | 1.383 | A20(C20,C2,C3) | 110.3 | 110.3 |
R10(C10-C9) | 1.385(9) | 1.383 | A21(C21,C2,C3) | 107.4 | 107.4 |
R11(C11-C10) | 1.393(9) | 1.391 | A22(Cu22,C3,C2) | 129.1(2.5) | 128.4 |
R(C11-C6) c | 1.401(9) | 1.399 | A(23,22,3) | 178.5 | 178.5 |
R12(C12-C7) | 1.501(38) | 1.503 | D4(N4,C3,C2,C1) | −11.5 | −11.5 |
R13(C13-C12) | 1.517(38) | 1.519 | D5(C5,N4,C3,C2) c | 0.2 | 0.1 |
R14(C14-C12) | 1.521(38) | 1.523 | D1(C1,C5,N4,C3) c | 11.1 | 11.3 |
R15(C15-C11) | 1.501(38) | 1.503 | D2(C2,C1,C5,N4) c | −17.2 | −17.3 |
R16(C16-C15) | 1.521(38) | 1.523 | D3(C3,C2,C1,C5) c | 18.2 | 18.2 |
R17(C17-C15) | 1.517(38) | 1.519 | D6(C6,N4,C3,C2) | −178.0 | −178.0 |
R18(C18-C5) | 1.513(38) | 1.515 | D7(C7,C6,N4,C5) | 90.7(10.7) | 90.4 |
R19(C19-C5) | 1.510(38) | 1.512 | D8(C8,C7,C6,C4) | −176.5 | −176.5 |
R20(C20-C2) | 1.514(38) | 1.516 | D9(9,8,7,6) | −1.1 | −1.1 |
R21(C21-C2) | 1.522(38) | 1.523 | D10(10,9,8,7) | −2.9 | −2.9 |
R22(Cu22-C3) | 1.827(12) | 1.797 | D11(11,10,9,8) c | 2.6 | 2.7 |
R23(Cl23-Cu22) | 2.068(10) | 2.052 | D(6,11,10,9) c | 1.6 | 1.5 |
R24(Csp3-H)av | 1.094(132) | 1.086 | D(7,6,11,10) c | −5.8 | −5.7 |
A3(3,2,1) c | 104.4(1.1) | 104.4 | D(8,7,6,11) c | 5.6 | 5.5 |
A4(4,3,2) | 108.4(1.1) | 108.4 | D12(12,7,6,4) | 10.1 | 10.1 |
A5(5,4,3) c | 116.7(1.1) | 116.8 | D13(13,12,7,8) | 54.3 | 54.3 |
A1(1,5,4) c | 100.4(1.1) | 100.4 | D14(14,12,7,13) | −123.1 | −123.1 |
A2(2,1,5) c | 106.7(1.1) | 106.6 | D15(15,11,6,4) | −10.5 | −10.5 |
A6(6,4,3) | 121.5(3.2) | 121.8 | D16(16,15,11,10) | 66.9 | 66.9 |
A7(7,6,4) | 115.4(1.8) | 118.2 | D17(17,15,11,16) | −122.8 | −122.9 |
A8(8,7,6) c | 117.4 | 117.4 | D18(18,5,1,2) | 99.7 | 99.7 |
A9(9,8,7) | 121.2 | 121.2 | D19(19,5,1,18) | 124.7 | 124.7 |
A10(10,9,8) | 119.9 | 119.9 | D20(20,2,3,4) | −132.3 | −132.3 |
A11(11,10,9) c | 121.3 | 121.3 | D21(21,2,3,20) | −119.3 | −119.3 |
A(6,11,10) c | 117.3 | 117.3 | D22(22,3,2,1) | 169.2 | 169.2 |
A(7,6,11) c | 122.6 | 122.6 | D(23,22,3,2) | −157.5 | −157.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Belyakov, A.V.; Altova, E.P.; Rykov, A.N.; Sharanov, P.Y.; Shishkov, I.F.; Romanov, A.S. The Equilibrium Molecular Structure of Cyclic (Alkyl)(Amino) Carbene Copper(I) Chloride via Gas-Phase Electron Diffraction and Quantum Chemical Calculations. Molecules 2023, 28, 6897. https://doi.org/10.3390/molecules28196897
Belyakov AV, Altova EP, Rykov AN, Sharanov PY, Shishkov IF, Romanov AS. The Equilibrium Molecular Structure of Cyclic (Alkyl)(Amino) Carbene Copper(I) Chloride via Gas-Phase Electron Diffraction and Quantum Chemical Calculations. Molecules. 2023; 28(19):6897. https://doi.org/10.3390/molecules28196897
Chicago/Turabian StyleBelyakov, Alexander V., Ekaterina P. Altova, Anatoliy N. Rykov, Pavel Yu. Sharanov, Igor F. Shishkov, and Alexander S. Romanov. 2023. "The Equilibrium Molecular Structure of Cyclic (Alkyl)(Amino) Carbene Copper(I) Chloride via Gas-Phase Electron Diffraction and Quantum Chemical Calculations" Molecules 28, no. 19: 6897. https://doi.org/10.3390/molecules28196897
APA StyleBelyakov, A. V., Altova, E. P., Rykov, A. N., Sharanov, P. Y., Shishkov, I. F., & Romanov, A. S. (2023). The Equilibrium Molecular Structure of Cyclic (Alkyl)(Amino) Carbene Copper(I) Chloride via Gas-Phase Electron Diffraction and Quantum Chemical Calculations. Molecules, 28(19), 6897. https://doi.org/10.3390/molecules28196897