Nanohybrid Composites Based on TiO2 and Single-Walled Carbon Nanohorns as Promising Catalysts for Photodegradation of Amoxicillin
Abstract
:1. Introduction
2. Results and Discussion
2.1. Optical and Structural Properties of the TiO2/SWCNH Composites
2.2. Photocatalytic Properties of the TiO2/SWCNH Composites
3. Materials and Methods
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Koh, S.W.C.; Ng, T.S.M.; Loh, V.W.T.; Goh, J.C.; Low, S.H.; Tan, W.Z.; Wong, H.C.; Durai, P.; Sun, L.J.; Young, D.; et al. Antibiotic treatment failure of uncomplicated urinary tract infections in primary care. Antimicrob. Resist. Infect. Control 2023, 12, 73. [Google Scholar] [CrossRef]
- Sinhorelli, B.S.; Oliveira, S.D. Antimicrobial prophylaxis in dentistry: Survey among dental surgeons in Porto Alegre, Brazil, and the Metropolitan region. Am. J. Trop. Med. Hyg. 2023, 108, 1071. [Google Scholar] [CrossRef]
- Ghisalberti, M.; Madioni, C.; Ghinassi, G.; Macccari, U.; Corzani, R.; Menicone, F.; Scala, R.; Paladini, P. A strong case of traumatic pleural effusion, pleural empyema due to Actinomyces meyeri, a case report. Life 2003, 13, 1450. [Google Scholar] [CrossRef] [PubMed]
- Agwan, M.A.; Mohsiri, S.F.; Almatreedi, S.A.; Alodhait, T.A.; Alharbi, Y.R.; Lardhi, N.A.; Alzahrani, K.T. Pattern of antibiotics prescription by endodontists for root canal infections in Saudi Arabi. Med. Sci. 2022, 26, ms1Be2036. [Google Scholar] [CrossRef]
- Kubacka, A.; Fernandez-Garcia, M.; Colon, G. Advanced nanoarchitectures for solar photocatalytic applications. Chem. Rev. 2012, 112, 1555. [Google Scholar] [CrossRef]
- Liu, X.; Iocozzia, J.; Wang, Y.; Cui, X.; Chen, Y.; Zhao, S.; Li, Z.; Lin, Z. Noble metal-metal oxide nanohybrids with tailored nanostructures for efficient solar energy conversion, photocatalysis and environmental remediation. Energy Environ. Sci. 2017, 10, 402. [Google Scholar] [CrossRef]
- Zha, S.; Cheng, Y.; Gao, Y.; Chen, Z.; Megharaj, M.; Naidu, R. Nanoscale zero-valent iron as a catalyst for heterogeneous Fenton oxidation of amoxicillin. Chem. Eng. J. 2014, 255, 141. [Google Scholar] [CrossRef]
- Pereira, J.H.O.S.; Reis, A.C.; Homem, V.; Silon, J.A.; Alves, A.; Borges, M.T.; Boaventura, R.A.R.; Vilar, V.J.P.; Nunes, O.C. Solar photocatalytic oxidation of recalcitrant natural metabolic by—Productis of amoicillin biodegradation. Water Res. 2014, 63, 307. [Google Scholar] [CrossRef]
- Trovo, A.G.; Nagueira, R.F.P.; Aguera, A.; Fernandez-Alba, A.R.; Malato, S. Degradation of the antibiotic amoxicillin by photo-Fento process-chemical and toxicological assessment. Water Res. 2011, 45, 1394. [Google Scholar] [CrossRef]
- Mareira, N.F.F.; Orge, C.A.; Ribeiro, A.R.; Faeia, J.L.; Nunes, O.C.; Pereira, M.F.R.; Silva, A.M.T. Fast mineralization and detoxification of amoxicillin and dicolofenac by photocatalytic ozonation and application to an urban wastewater. Water Res. 2015, 87, 87. [Google Scholar] [CrossRef]
- Pourakbar, M.; Moussavi, G.; Shekovhiyan, S. Homogeneous VUV advanced oxidation process for enhanced degradation and mineralization of antibiotics in contaminated water. Ecotoxicol. Environ. Saf. 2016, 125, 72. [Google Scholar] [CrossRef] [PubMed]
- Jianguo, S.; Zhen, X.; Wei, L.; Chang-Tang, C. KBrO3 and graphene as double and enhanced collaborative catalysts for the photocatalytic degradation of amoxicillin by UVA/TiO2 nanotube processes. Mater. Sci. Semicond. Proc. 2016, 52, 32. [Google Scholar]
- Radosavljevic, K.D.; Golubovic, A.V.; Radisic, M.M.; Mijin, D.Z.; Petrovic, S.D. Amoxicillin photodegradation by nanocrystalline TiO2. Chem. Ind. Eng. Q. 2017, 23, 187. [Google Scholar] [CrossRef]
- Song, J.G.; Zhen, X.; Chang, C.T. Hydrothermal synthesis of graphene and titanium dioxide nanotubes by a one-step method for the photocatalytic degradation of amoxicillin. Nanosci. Nanotechnol. Lett. 2016, 8, 113. [Google Scholar] [CrossRef]
- Thi, T.D.N.; Nguyen, L.H.; Nguyen, X.H.; Phung, H.V.; Vinh, T.H.T.; Viet, P.V.; Thai, N.W.; Lee, H.N.; Pham, D.T.; Van, H.T.; et al. Enhanced heterogeneous photocatalytic peronone degradation of amoxicillin by ZnO modified TiO2 nanocomposites under visible light irradiation. Mater. Sci. Semicond. Process. 2022, 142, 106456. [Google Scholar]
- Rajkumari, N.P.; Dolakashoria, S.; Goswami, P. Plant-based natural dye-stimulated visible-light reduction of GO and physicochemical factors influencing the production of oxidizing species by a synthesized rGO/TiO2 nanocomposite for environmental remediation. ACS Omega 2021, 6, 2686. [Google Scholar] [CrossRef]
- Pastrama-Martinez, L.M.; Morales-Torres, S.; Carabineiro, S.A.C.; Buijnsters, J.G.; Figueiredo, J.L.; Silva, A.M.T.; Foria, J.L. Photocatalytic activity of functionalized nanodiamond-TiO2 composites towards water pollutants degradation under UV/VIS irradiation. Appl. Surface Sci. 2018, 458, 839. [Google Scholar] [CrossRef]
- Isa, E.D.M.; Shameli, K.; Ching, H.J.; Jusoh, N.W.C.; Hazam, R. Photocatalytic degradation of selected pharmaceuticals using green fabrication zinc oxide nanoparticles. Adv. Powder Technol. 2021, 32, 2398. [Google Scholar]
- Balarak, D.; Mengelizadeh, N.; Rajiv, P.; Chandrika, K. Photocatalytic degradation of amoxicillin from aqueous solutions by titanium dioxide nanoparticles loaded on graphene oxide. Environ. Sci. Pollut. Res. 2021, 24, 49743. [Google Scholar] [CrossRef]
- Battison, S.; Minella, M.; Gerbasi, R.; Visentin, F.; Guerriero, P.; Leto, A.; Pezzotti, G.; Miorin, E.; Fabrizio, M.; Pagura, C. Growth of titanium dioxide nanopetals induced by single wall carbon nanohorns. Carbon 2010, 48, 2471. [Google Scholar]
- Xu, W.; Wang, Z.; Guo, Z.; Liu, Y.; Zhou, N.; Niu, B.; Shi, Z.; Zhang, H. Nanoparous anatase TiO2/single-wall carbon nanohorns composite as superior anode for lithium ion batteries. J. Power Sources 2013, 232, 193. [Google Scholar] [CrossRef]
- Reddy, N.R.; Kumari, M.M.; Shankar, M.V.; Reddy, K.R.; Jao, S.W.; Aminabhavi, T.A. Photocatalytic hydrogen production from dye contaminated water and electrochemical supercapacitors using carbon nanohorns and TiO2 nanoflower heterogeneous catalysts. J. Environ. Manag. 2021, 277, 111433. [Google Scholar] [CrossRef] [PubMed]
- Daescu, M.; Chivu, M.; Matei, E.; Negrila, C.; Cramariuc, O.; Baibarac, M. Photocatalytic activity of the blends base don TiO2 nanoparticles and reduced graphene oxide for degradation of acetaminophen. Molecules 2023, 28, 4546. [Google Scholar] [CrossRef] [PubMed]
- Choi, H.C.; Jung, Y.M.; Kim, S.B. Size effects in the Raman spectra of TiO2 nanoparticles. Vib. Spectrosc. 2005, 37, 33. [Google Scholar] [CrossRef]
- Utsumi, S.; Honda, H.; Hattori, Y.; Kanoh, H.; Takahashi, K.; Sakai, H.; Abe, M.; Yuesaka, M.; Iijima, S.; Kaneko, K. Direct evidence on C-C single bonding in single-walled carbon nanohorn aggregates. J. Phys. Chem. C 2007, 111, 5572. [Google Scholar] [CrossRef]
- Daimay, L.V.; Colthup, N.B.; Fateley, W.G.; Grasselii, J.G. The Handbook of Infrared and Raman Characteristic Frequencies of Organic Molecules; Academic Press: New York, NY, USA, 1991. [Google Scholar]
- Rubio, J.; Otero, J.L.; Vilegas, M.; Duran, P. Characterization and sintering behavior of submicrometric titanium dioxide spherical particles obtained by gas phase hydrolysis of titanium tetrabutoxide. J. Chin. Chem. Soc. 1997, 32, 643. [Google Scholar]
- Bantignies, J.L.; Sauvajol, J.L.; Rahmani, A.; Flahaut, E. Infrared-active phonons in carbon nanotubes. Phys. Rev. B 2006, 74, 195424. [Google Scholar] [CrossRef]
- De Souza, L.A.; Da Silva, A.M.; Dos Santos, H.F.; De Almeida, W.B. Oxidized single-walled carbon nanotubes and neocones: A DFT study. RSC Adv. 2017, 7, 13212. [Google Scholar] [CrossRef]
- Tu, W.; Lei, J.; Ding, L.; Ju, H. Sandwich nanohybrid of single-walled carbon nanohorns-TiO2-porphyrin for electrocatalysis and amperometric biosensing towards chloramphenicol. Chem. Commun. 2009, 28, 4227. [Google Scholar] [CrossRef]
- Hrioua, A.; Loudiki, A.; Farahi, A.; Laghrib, F.; Bakasse, M.; Lahrich, S.; Saqrane, S.; El Mhammedi, M.A. Complexation of amoxicillin by transition metals: Physico-chemical and antibacterial activity evaluation. Bioelectrochemistry 2021, 142, 107836. [Google Scholar] [CrossRef]
- Reddy, K.M.; Manorama, S.V.; Reddy, D.R. Bandgap studies on anatase titanium dioxide nanoparticles. Mater. Chem. Phys. 2002, 78, 239. [Google Scholar] [CrossRef]
- Hossain, R.; Uddin, M.A.; Khan, M.A. Mechanistic understanding in manipulation energetics of TiO2 for photocatalysis. J. Phys. Chem. C 2023, 127, 10897. [Google Scholar] [CrossRef]
- Low, J.; Cheng, B.; Yu, J. Surface modification and enhanced photocatalytic CO2 reduction performance of TiO2: A review. Appl. Surf. Sci. 2017, 392, 658. [Google Scholar] [CrossRef]
- Elmolla, E.S.; Chaudhuri, M. Photocatalytic degradation of amoxicillin, ampicillin and cloxacillin antibiotics in aqueous solution using UV/TiO2 and UV/H2O2/TiO2 photocatalysis. Desalination 2010, 252, 46. [Google Scholar] [CrossRef]
Sample Name | (min−1) | (min−1) | (min−1) | |||
---|---|---|---|---|---|---|
TiO2 | 0.0053 | 0.9934 | 0.018 | 0.9957 | 0.0029 | 0.9594 |
TiO2/SWCNH 1% | 0.090 | 0.9908 | 0.034 | 0.9953 | 0.01 | 0.9972 |
TiO2/SWCNH 5% | 0.072 | 0.9905 | 0.0041 | 0.9941 | 0.019 | 0.9943 |
TiO2/SWCNH 10% | 0.114 | 0.9786 | 0.038 | 0.9983 | 0.008 | 0.9911 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cercel, R.; Androne, A.; Florica, C.S.; Lőrinczi, A.; Serbschi, C.; Baibarac, M. Nanohybrid Composites Based on TiO2 and Single-Walled Carbon Nanohorns as Promising Catalysts for Photodegradation of Amoxicillin. Molecules 2023, 28, 6958. https://doi.org/10.3390/molecules28196958
Cercel R, Androne A, Florica CS, Lőrinczi A, Serbschi C, Baibarac M. Nanohybrid Composites Based on TiO2 and Single-Walled Carbon Nanohorns as Promising Catalysts for Photodegradation of Amoxicillin. Molecules. 2023; 28(19):6958. https://doi.org/10.3390/molecules28196958
Chicago/Turabian StyleCercel, Radu, Andreea Androne, Cristina Stefania Florica, Adam Lőrinczi, Constantin Serbschi, and Mihaela Baibarac. 2023. "Nanohybrid Composites Based on TiO2 and Single-Walled Carbon Nanohorns as Promising Catalysts for Photodegradation of Amoxicillin" Molecules 28, no. 19: 6958. https://doi.org/10.3390/molecules28196958
APA StyleCercel, R., Androne, A., Florica, C. S., Lőrinczi, A., Serbschi, C., & Baibarac, M. (2023). Nanohybrid Composites Based on TiO2 and Single-Walled Carbon Nanohorns as Promising Catalysts for Photodegradation of Amoxicillin. Molecules, 28(19), 6958. https://doi.org/10.3390/molecules28196958