Development of in-House Synthesis and Quality Control of [99mTc]Tc-PSMA-I&S
Abstract
:1. Introduction
2. Results
2.1. Automated Radiolabelling
2.2. Optimising the Reaction Conditions
2.3. Validation of the Automated Labelling of [99mTc]Tc-PSMA-I&S
3. Discussion
4. Materials and Methods
4.1. Radiolabelling and Purification of [99mTc]Tc-PSMA-I&S
4.2. Quality Control by HPLC
4.3. Quality Control by TLC
4.4. Evaluation of the pH Value
4.5. Post Release Tests
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Duatti, A. Review on 99mTc radiopharmaceuticals with emphasis on new advancements. Nucl. Med. Biol. 2021, 92, 202–216. [Google Scholar] [CrossRef] [PubMed]
- Schmidkonz, C.; Kuwert, T.; Cordes, M. 99mTc-PSMA-SPECT/CT zur Diagnostik des Prostatakarzinoms. Der Nukl. 2020, 43, 303–308. [Google Scholar] [CrossRef]
- Robu, S.; Schottelius, M.; Eiber, M.; Maurer, T.; Gschwend, J.; Schwaiger, M.; Wester, H.J. Preclinical evaluation and first patient application of 99mTc-PSMA-I&S for SPECT imaging and radioguided surgery in prostate cancer. J. Nucl. Med. 2017, 58, 235–242. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maurer, T.; Robu, S.; Schottelius, M.; Schwamborn, K.; Rauscher, I.; van den Berg, N.S.; van Leeuwen, F.W.B.; Haller, B.; Horn, T.; Heck, M.M.; et al. 99mTechnetium-based prostate-specific membrane antigen–radioguided surgery in recurrent prostate cancer. Eur. Urol. 2019, 75, 659–666. [Google Scholar] [CrossRef] [PubMed]
- Horn, T.; Krönke, M.; Rauscher, I.; Haller, B.; Robu, S.; Wester, H.J.; Schottelius, M.; van Leeuwen, F.W.B.; van der Poel, H.G.; Heck, M.; et al. Single lesion on prostate-specific membrane antigen-ligand positron emission tomography and low prostate-specific antigen are prognostic factors for a favorable biochemical response to prostate-specific membrane antigen-targeted radioguided surgery in recurrent prostate cancer. Eur. Urol. 2019, 76, 517–523. [Google Scholar] [CrossRef] [PubMed]
- Urban, S.; Meyer, C.; Dahlbom, M.; Farkas, I.; Sipka, G.; Besenyi, Z.; Czernin, J.; Calais, J.; Pavics, L. Radiation Dosimetry of 99mTc-PSMA-I&S: A single-center prospective study. J. Nucl. Med. 2021, 62, 1075–1081. [Google Scholar] [CrossRef] [PubMed]
- de Barros, H.A.; van Oosterom, M.N.; Donswijk, M.L.; Hendrikx, J.J.M.A.; Vis, A.N.; Maurer, T.; van Leeuwen, F.W.B.; van der Poel, H.G.; van Leeuwen, P.J. Robot-assisted prostate-specific membrane antigen–radioguided salvage surgery in recurrent prostate cancer using a DROP-IN gamma probe: The first prospective feasibility study. Eur. Urol. 2022, 82, 97–105. [Google Scholar] [CrossRef] [PubMed]
- Gandaglia, G.; Mazzone, E.; Stabile, A.; Pellegrino, A.; Cucchiara, V.; Barletta, F.; Scuderi, S.; Robesti, D.; Leni, R.; Gajate, A.M.S.; et al. Prostate-specific membrane antigen radioguided surgery to detect nodal metastases in primary prostate cancer patients undergoing robot-assisted radical prostatectomy and extended pelvic lymphnode dissection: Results of a planned interim analysis of a prospective phase 2 study. Eur. Urol. 2022, 82, 411–418. [Google Scholar] [CrossRef] [PubMed]
- van Leeuwen, F.W.B.; van Oosterom, M.N.; Meershoek, P.; van Leeuwen, P.J.; Berliner, C.; van der Poel, H.G.; Graefen, M.; Maurer, T. Minimal-invasive robot-assisted image-guided resection of prostate-specific membrane antigen–positive lymph nodes in recurrent prostate cancer. Clin. Nucl. Med. 2019, 44, 580–581. [Google Scholar] [CrossRef] [PubMed]
- Werner, P.; Neumann, C.; Eiber, M.; Wester, H.J.; Schottelius, M. [99cmTc]Tc-PSMA-I&S-SPECT/CT: Experience in prostate cancer imaging in an outpatient center. EJNMMI Res. 2020, 10, 45. [Google Scholar] [CrossRef] [PubMed]
- Aalbersberg, E.A.; van Andel, L.; Geluk-Jonker, M.M.; Beijnen, J.H.; Stokkel, M.P.M.; Hendrikx, J.J.M.A. Automated synthesis and quality control of [99mTc]Tc-PSMA for radioguided surgery (in a [68Ga]Ga-PSMA workflow). EJNMMI Radiopharm. Chem. 2020, 5, 10. [Google Scholar] [CrossRef] [PubMed]
- European Pharmacopoeia. Monograph Gallium (68Ga) edotreotide injection. 01/2013:2482. In European Pharmacopeia, 10th ed.; European Pharmacopoeia: Strasbourg, France, 2020. [Google Scholar]
- European Pharmacopoeia. Monograph Gallium (68Ga) PSMA-11 injection. 04/2021:3044. In European Pharmacopeia, 10th ed.; European Pharmacopoeia: Strasbourg, France, 2020. [Google Scholar]
- European Pharmacopoeia. Monograph Extemporaneous preparation of radiopharmaceuticals. 04/2016:51900. In European Pharmacopeia, 10th ed.; European Pharmacopoeia: Strasbourg, France, 2020. [Google Scholar]
- European Pharmacopoeia. Monograph Radiopharmaceutical Preparations. 07/2016:0125. In European Pharmacopeia, 10th ed.; European Pharmacopoeia: Strasbourg, France, 2020. [Google Scholar]
- Gillings, N.; Hjelstuen, O.; Ballinger, J.; Behe, M.; Decristoforo, C.; Elsinga, P.; Ferrari, V.; Kolenc Peitl, P.; Koziorowski, J.; Laverman, P.; et al. Guideline on current good radiopharmacy practice (cGRPP) for the small-scale preparation of radiopharmaceuticals. EJNMMI Radiopharm. Chem. 2021, 6, 8. [Google Scholar] [CrossRef] [PubMed]
- CPMP/ICH/381/95_ICH Harmonized Tripartite Guideline—Validation of Analytical Procedures: Text and Methodology Q2(R1); 2006. Available online: https://www.ema.europa.eu/en/ich-q2r2-validation-analytical-procedures-scientific-guideline (accessed on 5 October 2022).
- Antunes, I.F.; Franssen, G.M.; Zijlma, R.; van der Woude, G.L.K.; Yim, C.B.; Laverman, P.; Boersma, H.H.; Elsinga, P.H. New sensitive method for HEPES quantification in [Ga-68]-radiopharmaceuticals. Eur. J. Nucl. Med. Mol. Imaging 2017, 44, 407–408. [Google Scholar] [CrossRef]
- Kvaternik, H.; Plhak, E.; Rumpf, B.; Hausberger, D.; Aigner, R.M. Assay of bacterial endotoxins in radiopharmaceuticals by microplate reader. EJNMMI Radiopharm. Chem. 2018, 3 (Suppl. S1), 11. [Google Scholar]
n = 1 | n = 2 | n = 3 | n = 3 | |
---|---|---|---|---|
NaOH [mmol] | 0 | 0.4 | 0.8 | 1.2 |
pH value of the reaction solution | 5.5 | 7.2 | 7.8 | 8.2 |
Starting activity [MBq] | 1954 (100%) | 2383 (100%) | 2457 ± 309 (100%) | 2378 ± 450 (100%) |
[99mTc]Tc-PSMA-I&S (EOS) [MBq] | 10 (0.5%) | 1098 (46.1%) | 1453 ± 193 (59.2 ± 4.1%) | 1396 ± 270 (58.7 ± 1.5%) |
Retained on Sep-Pak® [MBq] | 713 (36.5%) | 151 (6.4%) | 60 ± 27 (2.4 ± 0.9%) | 23 ± 3 (1.0 ± 0.3%) |
Residue in reaction vial [MBq] | 327 (16.7%) | 130 (5.5%) | 55 ± 31 (2.2 ± 1.1%) | 22 ± 2 (0.9 ± 0.1%) |
Proportions of the peaks evaluated by HPLC | ||||
[99mTc]TcO4− [%] | n.d. | 0.09 | 0.1 ± 0.03 | 0.1 ± 0.01 |
Region 1 (impurity) [%] | n.d. | 1.2 | 1.6 ± 0.3 | 1.2 ± 0.03 |
[99mTc]Tc-PSMA-I&S [%] | n.d. | 70.7 | 87.9 ± 0.5 | 93.0 ± 0.3 |
Region 2 (impurity) [%] | n.d. | 28.0 | 10.5 ± 0.6 | 5.7 ± 0.3 |
Amount of reduced hydrolysed technetium-99m (TLC) | ||||
[99mTc]TcO2 [%] | n.d. | 0.3 | 0.2 ± 0.1 | 0.3 ± 0.1 |
Quality Control | Method | Criteria | Result (n = 3) |
---|---|---|---|
Appearance | visual inspection | clear and colourless | conforms |
pH value | pH indicator strips | 4–8 | 6.6 |
Radioactivity concentration | dose calibrator | 82 ± 16 MBq/mL | |
Identity of [99mTc]Tc-PSMA-I&S (comparison with reference) | HPLC | Rt = 8–12 min | conforms |
Impurity reduced hydrolysed Technetium-99m | Radio–iTLC | ≤3.0% | 0.3 ± 0.1% |
Free [99mTc]TcO4− | Radio–HPLC | ≤2.0% | 0.1 ± 0.03% |
Radiochemical purity of [99mTc]Tc-PSMA-I&S | Radio–HPLC | ≥91.0% | 93.0 ± 0.3% |
Tc-PSMA-I&S, PSMA-I&S and related substances | HPLC | ≤2.4 µg/mL | 1.5 ± 0.2 µg/mL |
Unspecific impurities | HPLC | ≤2.4 µg/mL | ≤1 µg/mL |
Ethanol content | gas chromatography | ≤10.0% (v/v) | conforms |
HEPES content | HPLC | ≤40 µg/mL | 4.4 ± 3.1 µg/mL |
Bacterial endotoxins | LAL test | ≤175 IU/V | conforms |
Sterility | Ph. Eur. | sterile | conforms |
Position | Materials | Details | |
---|---|---|---|
Modification 1 | 6 V | Silicone tubing to V-Vial (purge tube) | 40 cm, 2 blue Luer male fittings, short needle (Ø 0.60 × 30 mm) |
Modification 2 | 7 V | Silicone tubing to V-Vial (transfer tube) | 40 cm, 2 white Luer male fittings, long needle (Ø 0.90 × 70 mm) |
Modification 3 | 11 V | Silicone tubing to reaction vial (ventilation port) | Original part of the cassette |
Modification 4 | 12 V | Silicone tubing to MFC | Original part of the cassette |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Plhak, E.; Pichler, C.; Gößnitzer, E.; Aigner, R.M.; Kvaternik, H. Development of in-House Synthesis and Quality Control of [99mTc]Tc-PSMA-I&S. Molecules 2023, 28, 577. https://doi.org/10.3390/molecules28020577
Plhak E, Pichler C, Gößnitzer E, Aigner RM, Kvaternik H. Development of in-House Synthesis and Quality Control of [99mTc]Tc-PSMA-I&S. Molecules. 2023; 28(2):577. https://doi.org/10.3390/molecules28020577
Chicago/Turabian StylePlhak, Elisabeth, Christopher Pichler, Edith Gößnitzer, Reingard M. Aigner, and Herbert Kvaternik. 2023. "Development of in-House Synthesis and Quality Control of [99mTc]Tc-PSMA-I&S" Molecules 28, no. 2: 577. https://doi.org/10.3390/molecules28020577
APA StylePlhak, E., Pichler, C., Gößnitzer, E., Aigner, R. M., & Kvaternik, H. (2023). Development of in-House Synthesis and Quality Control of [99mTc]Tc-PSMA-I&S. Molecules, 28(2), 577. https://doi.org/10.3390/molecules28020577