Extending Ag Nanoparticles as Colorimetric Sensor to Industrial Zinc Electrolyte for Cobalt Ion Detection
Abstract
:1. Introduction
2. Results and Discussion
2.1. Interference of Zn2+ for Sensing Co2+
2.2. Detection of Trace Co2+ in High-Concentration of Zn2+
2.3. Mechanism Understanding for Co2+ Detection in High-Concentration Zn2+ Solution
3. Materials and Methods
3.1. Materials and Reagents
3.2. Preparation of PVP-AgNPs
3.3. Sensing Studies
3.4. Characterization
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Mazur, F.; Liu, L.; Li, H.; Huang, J.; Chandrawati, R. Core-satellite gold nanoparticle biosensors for monitoring cobalt ions in biological samples. Sens. Actuat. B-Chem. 2018, 268, 182–187. [Google Scholar] [CrossRef]
- Chen, Z.; Zhang, Z.; Qi, J.; You, J.; Ma, J.; Chen, L. Colorimetric detection of heavy metal ions with various chromogenic materials: Strategies and applications. J. Hazard. Mater. 2022, 441, 129889. [Google Scholar] [CrossRef] [PubMed]
- Thakkar, S.; Dumee, L.F.; Gupta, M.; Singh, B.R.; Yang, W. Nano-enabled sensors for detection of arsenic in water. Water Res. 2021, 188, 116538. [Google Scholar] [CrossRef]
- Kerdkok, D.; Apiratikul, N.; Tongraung, P.; Jittangprasert, P. Functionalized silver nanoparticles as selective colorimetric sensors for Fe3+. Iran. J. Sci. Technol. Trans. Sci. 2022, 46, 395–403. [Google Scholar] [CrossRef]
- Monisha; Shrivas, K.; Kant, T.; Patel, S.; Devi, R.; Dahariya, N.S.; Pervez, S.; Deb, M.K.; Rai, M.K.; Rai, J. Inkjet-printed paper-based colorimetric sensor coupled with smartphone for determination of mercury (Hg2+). J. Hazard. Mater. 2021, 414, 125440. [Google Scholar] [CrossRef]
- Chaiyo, S.; Siangproh, W.; Apilux, A.; Chailapakul, O. Highly selective and sensitive paper-based colorimetric sensor using thiosulfate catalytic etching of silver nanoplates for trace determination of copper ions. Anal. Chim. Acta 2015, 866, 75–83. [Google Scholar] [CrossRef]
- Ramachandiran, D.; Rajesh, K. Selective colorimetric and fluorimertic sensor of Hg (II) ion from silver nanoparticles using Acacia chundra leaves extract. Mater. Chem. Phys. 2022, 287, 126284. [Google Scholar] [CrossRef]
- Wang, H.; Da, L.; Yang, L.; Chu, S.; Yang, F.; Yu, S.; Jiang, C. Colorimetric fluorescent paper strip with smartphone platform for quantitative detection of cadmium ions in real samples. J. Hazard. Mater. 2020, 392, 122506. [Google Scholar] [CrossRef]
- Guo, Y.; Zhang, Y.; Shao, H.; Wang, Z.; Wang, X.; Jiang, X. Label-free colorimetric detection of cadmium ions in rice samples using gold nanoparticles. Anal. Chem. 2014, 86, 8530–8534. [Google Scholar] [CrossRef]
- Wang, F.; Dai, J.; Shi, H.; Luo, X.; Xiao, L.; Zhou, C.; Guo, Y.; Xiao, D. A rapid and colorimetric biosensor based on GR-5 DNAzyme and self-replicating catalyzed hairpin assembly for lead detection. Anal. Methods-UK 2020, 12, 2215–2220. [Google Scholar] [CrossRef]
- Zhao, J.; Wang, W.; Cai, Q.; Wang, F.; Xie, R.; Ju, X.; Liu, Z.; Chu, L. Efficient detection of hyperkalemia with highly transparent and ion-recognizable hydrogel grating sensors. Ind. Eng.Chem. Res. 2022, 61, 2483–2493. [Google Scholar] [CrossRef]
- Kamnoet, P.; Aeungmaitrepirom, W.; Menger, R.F.; Henry, C.S. Highly selective simultaneous determination of Cu(II), Co(II), Ni(II), Hg(II), and Mn(II) in water samples using microfluidic paper-based analytical devices. Analyst 2021, 146, 2229–2239. [Google Scholar] [CrossRef] [PubMed]
- Xu, R.D.; Huang, L.P.; Zhou, J.F.; Zhan, P.; Guan, Y.; Kong, Y. Effects of tungsten carbide on electrochemical properties and microstructural features of Al/Pb-PANI-WC composite inert anodes used in zinc electrowinning. Hydrometallurgy 2012, 125, 8–15. [Google Scholar] [CrossRef]
- Nelson, A.; Wang, W.; Demopoulos, G.P.; Houlachi, G. The removal of cobalt from zinc electrolyte by cementation: A critical review. Miner. Process. Extr. Metall. 2000, 20, 325–356. [Google Scholar] [CrossRef]
- Zhu, H.Q.; Du, J.; Li, Y.G.; Zhang, T.M.; Cheng, F. Selective determination of trace cobalt in zinc electrolytes by second-derivative catalytic polarography. J. Cent. South Univ. 2019, 26, 207–218. [Google Scholar] [CrossRef]
- Bobrowski, A. Review of adsorptive stripping voltammetric methods for cobalt determination in the presence of a zinc matrix. Fresenius J. Anal. Chem. 1994, 349, 613–619. [Google Scholar] [CrossRef]
- Oleszczuk, N.; Castro, J.T.; da Silva, M.M.; Maria das Graças, A.K.; Welz, B.; Vale, M.G.R. Method development for the determination of manganese, cobalt and copper in green coffee comparing direct solid sampling electrothermal atomic absorption spectrometry and inductively coupled plasma optical emission spectrometry. Talanta 2007, 73, 862–869. [Google Scholar] [CrossRef]
- Ghasemi, J.; Shahabadi, N.; Seraji, H.R. Spectrophotometric simultaneous determination of cobalt, copper and nickel using nitroso-R-salt in alloys by partial least squares. Anal. Chim. Acta 2004, 510, 121–126. [Google Scholar] [CrossRef]
- Gauthama, B.; Narayana, B.; Sarojini, B.; Suresh, N.; Sangappa, Y.; Kudva, A.K.; Satyanarayana, G.; Raghu, S.V. Colorimetric “off–on” fluorescent probe for selective detection of toxic Hg2+ based on rhodamine and its application for in-vivo bioimaging. Microchem. J. 2021, 166, 106233. [Google Scholar] [CrossRef]
- Xu, X.; Niu, X.; Li, X.; Li, Z.; Du, D.; Lin, Y. Nanomaterial-based sensors and biosensors for enhanced inorganic arsenic detection: A functional perspective. Sens. Actuat. B-Chem. 2020, 315, 128100. [Google Scholar] [CrossRef]
- Da Maia, R. Determination of cobalt in the presence of high concentrations of zinc by differential pulse polarography. Fresenius’ Z. Anal. Chem. 1988, 330, 624–626. [Google Scholar]
- Mrzljak, R.I.; Bond, A.M.; Cardwell, T.J.; Cattrall, R.W.; Knight, R.W.; Newman, O.M.G.; Champion, B.R.; Hey, J.; Bobrowski, A. On-line monitoring of cobalt ion zinc plant electrolyte by differential pulse adsorptive stripping voltammetry. Anal. Chim. Acta 1993, 281, 281–290. [Google Scholar] [CrossRef]
- Zhang, M.H.; Liang, Y.Z. Rapid and simultaneous determination of copper, cadmium, nickel, and cobalt in zinc electrolyte solutions by complex adsorption wave polarography. J. Trace Microprobe Tech. 2007, 20, 1–14. [Google Scholar] [CrossRef]
- Korolczuk, M.; Grabarczyk, M.; Moroziewicz, A. Determination of traces of cobalt in zinc matrix by catalytic adsorptive stripping voltammetry at bismuth film electrode. Electroanalysis 2007, 19, 2155–2158. [Google Scholar] [CrossRef]
- Amirjani, A.; Haghshenas, D.F. Ag nanostructures as the surface plasmon resonance (SPR)˗based sensors: A mechanistic study with an emphasis on heavy metallic ions detection. Sens. Actuat. B-Chem. 2018, 273, 1768–1779. [Google Scholar] [CrossRef]
- Yao, Y.; Tian, D.; Li, H. Cooperative binding of bifunctionalized and click-synthesized silver nanoparticles for colorimetric Co2+ sensing. ACS Appl. Mater. Interfaces 2010, 2, 684–690. [Google Scholar] [CrossRef]
- Zafer, M.; Keskin, C.S.; Ozdemir, A. Highly sensitive determination of Co(II) ions in solutions by using modified silver nanoparticles. Spectrochim. Acta A 2020, 239, 118487. [Google Scholar] [CrossRef]
- Mochi, F.; Burratti, L.; Fratoddi, I.; Venditti, I.; Battocchio, C.; Carlini, L.; Iucci, G.; Casalboni, M.; De Matteis, F.; Casciardi, S.; et al. Plasmonic Sensor Based on Interaction between Silver Nanoparticles and Ni2+ or Co2+ in Water. Nanomaterials 2018, 8, 488. [Google Scholar] [CrossRef] [Green Version]
- Rajar, K.; Alveroglu, E.; Caglar, M.; Caglar, Y. Highly selective colorimetric onsite sensor for Co2+ ion detection by povidone capped silver nanoparticles. Mater. Chem. Phys. 2021, 273, 125082. [Google Scholar] [CrossRef]
- Slistan-Grijalva, A.; Herrera-Urbina, R.; Rivas-Silva, J.F.; Ávalos-Borja, M.; Castillón-Barraza, F.F.; Posada-Amarillas, A. Classical theoretical characterization of the surface plasmon absorption band for silver spherical nanoparticles suspended in water and ethylene glycol. Phys. E 2005, 27, 104–112. [Google Scholar] [CrossRef]
- Yousefi, S.; Saraji, M. Optical aptasensor based on silver nanoparticles for the colorimetric detection of adenosine. Spectrochim. Acta A 2019, 213, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Shanmugaraj, K.; Sasikumar, T.; Campos, C.H.; Ilanchelian, M.; Mangalaraja, R.V.; Torres, C.C. Colorimetric determination of cysteamine based on the aggregation of polyvinylpyrrolidone-stabilized silver nanoparticles. Spectrochim. Acta A 2020, 236, 118281. [Google Scholar] [CrossRef] [PubMed]
- Boruah, B.S.; Daimari, N.K.; Biswas, R. Functionalized silver nanoparticles as an effective medium towards trace determination of arsenic (III) in aqueous solution. Results Phys. 2019, 12, 2061–2065. [Google Scholar] [CrossRef]
- Guanggui, M.; Runde, W.; Jingyuan, Z. Zinc Hydrometallurgy; Central South University Press: Changsha, China, 2001; pp. 277–278. [Google Scholar]
- Tozawa, K.; Nishimura, T.; Akahori, M.; Malaga, M.A. Comparison between purification processes for zinc leach solutions with arsenic and antimony trioxides. Hydrometallurgy 1992, 30, 445–461. [Google Scholar] [CrossRef]
- Gong, Y.; Zhang, W.; Xiong, Z. Zinc-ion concentration control based on mechanical model of zinc electrowinning process. CIESC J. 2013, 12, 019. [Google Scholar]
- Cinti, S.; Fiore, L.; Massoud, R.; Cortese, C.; Moscone, D.; Palleschi, G.; Arduini, F. Low-cost and reagent-free paper-based device to detect chloride ions in serum and sweat. Talanta 2018, 179, 186–192. [Google Scholar] [CrossRef]
- Doan, V.-D.; Phan, T.L.; Vasseghian, Y.; Evgenievna, L.O. Efficient and fast degradation of 4-nitrophenol and detection of Fe (III) ions by Poria cocos extract stabilized silver nanoparticles. Chemosphere 2022, 286, 131894. [Google Scholar] [CrossRef]
- Kazemi, E.; Dadfarnia, S.; Shabani, A.M.H.; Fattahi, M.R.; Khodaveisi, J. Indirect spectrophotometric determination of sulfadiazine based on localized surface plasmon resonance peak of silver nanoparticles after cloud point extraction. Spectrochim. Acta A 2017, 187, 30–35. [Google Scholar] [CrossRef]
- Weng, W.; Yang, J.; Zhou, J.; Gu, D.; Xiao, W. Template-free electrochemical formation of silicon nanotubes from silica. Adv. Sci. 2020, 7, 2001492. [Google Scholar] [CrossRef]
- Weng, W.; Zhou, J.; Gu, D.; Xiao, W. Thermoelectrochemical formation of Fe/Fe3C@hollow N-doped carbon in molten salts for enhanced catalysis. J. Mater. Chem. A 2020, 8, 4800–4806. [Google Scholar] [CrossRef]
- Weng, W.; Zeng, C.; Xiao, W. In situ pyrolysis concerted formation of Si/C hybrids during molten salt electrolysis of SiO2@polydopamine. ACS Appl. Mater. Inter. 2019, 11, 9156–9163. [Google Scholar] [CrossRef] [PubMed]
- Annadhasan, M.; Kasthuri, J.; Rajendiran, N. Green synthesis of gold nanoparticles under sunlight irradiation and their colorimetric detection of Ni2+ and Co2+ ions. RSC Adv. 2015, 5, 11458–11468. [Google Scholar] [CrossRef]
- Huang, W.Y.; Xu, G.C. Characterization of nano-Ag/PVP composites synthesized via ultra-violet irradiation. J. Coal Sci. Eng. 2010, 16, 188–192. [Google Scholar] [CrossRef]
- Weng, W.; Wang, S.; Xiao, W.; Lou, X.W. Direct conversion of rice husks to nanostructured SiC/C for CO2 photoreduction. Adv. Mater. 2020, 32, 2001560. [Google Scholar] [CrossRef]
- Qian, M.; Xu, M.; Guo, M.; Isimjan, T.T.; Shoko, E.; Shi, Z.; Yang, X. Synergistically catalytic enhanced of Zn–N/Co–N dual active sites as highly efficient and durable bifunctional electrocatalyst for rechargeable zinc-air battery. J. Power Sources 2021, 506, 230221. [Google Scholar] [CrossRef]
- Wang, W.; Shang, N.; Wang, J.; Nie, X.; Du, C.; Zhou, X.; Cheng, X.; Gao, W.; Liu, X.; Huang, J. A stable single-atom Zn catalyst synthesized by a ligand-stabilized pyrolysis strategy for selective oxidation of C–H bonds. Green Chem. 2022, 24, 6008–6015. [Google Scholar] [CrossRef]
- El-Safty, S.A. Functionalized hexagonal mesoporous silica monoliths with hydrophobic azo-chromophore for enhanced Co(II) ion monitoring. Adsorption 2009, 15, 227–239. [Google Scholar] [CrossRef]
- Atrian-Blasco, E.; Gonzalez, P.; Santoro, A.; Alies, B.; Faller, P.; Hureau, C. Cu and Zn coordination to amyloid peptides: From fascinating chemistry to debated pathological relevance. Coordin. Chem. Rev. 2018, 375, 38–55. [Google Scholar] [CrossRef]
- Satheeshkumar, E.; Yang, J.; Srinivasadesikan, V.; Lin, M.C. Simultaneous production and surface functionalization of silver nanoparticles for label-free colorimetric detection of copper ion. Anal. Sci. 2017, 33, 1115–1121. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiao, N.; Weng, W.; Tang, D.; Tan, W.; Zhang, L.; Deng, Z.; Chi, X.; Ku, J.; Zhong, S. Extending Ag Nanoparticles as Colorimetric Sensor to Industrial Zinc Electrolyte for Cobalt Ion Detection. Molecules 2023, 28, 592. https://doi.org/10.3390/molecules28020592
Xiao N, Weng W, Tang D, Tan W, Zhang L, Deng Z, Chi X, Ku J, Zhong S. Extending Ag Nanoparticles as Colorimetric Sensor to Industrial Zinc Electrolyte for Cobalt Ion Detection. Molecules. 2023; 28(2):592. https://doi.org/10.3390/molecules28020592
Chicago/Turabian StyleXiao, Ni, Wei Weng, Ding Tang, Wen Tan, Liye Zhang, Zheyuan Deng, Xiaopeng Chi, Jiangang Ku, and Shuiping Zhong. 2023. "Extending Ag Nanoparticles as Colorimetric Sensor to Industrial Zinc Electrolyte for Cobalt Ion Detection" Molecules 28, no. 2: 592. https://doi.org/10.3390/molecules28020592
APA StyleXiao, N., Weng, W., Tang, D., Tan, W., Zhang, L., Deng, Z., Chi, X., Ku, J., & Zhong, S. (2023). Extending Ag Nanoparticles as Colorimetric Sensor to Industrial Zinc Electrolyte for Cobalt Ion Detection. Molecules, 28(2), 592. https://doi.org/10.3390/molecules28020592