Synthesis of Multifunctional Eu(III) Complex Doped Fe3O4/Au Nanocomposite for Dual Photo-Magnetic Hyperthermia and Fluorescence Bioimaging
Abstract
:1. Introduction
2. Results and Discussion
2.1. Characterization and Properties of the Multifunctional FOASET NC
2.2. In Vitro Fluorescence Bioimaging Test of HT29 Colorectal Cancer Cells
2.3. Heating Generation Efficiency for Hyperthermia
3. Materials and Methods
3.1. Materials
3.2. Synthesis of the Multifunctional FOASET NC
3.3. Methods
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhu, W.; Wei, Z.; Han, C.; Weng, X. Nanomaterials as promising theranostic tools in nanomedicine and their applications in clinical disease diagnosis and treatment. Nanomaterials 2021, 11, 3346. [Google Scholar] [CrossRef] [PubMed]
- Muthu, M.; Mei, L.; Feng, S.S. Nanotheranostics: Advanced nanomedicine for the integration of diagnosis and therapy. Nanomedicine 2014, 9, 1277–1280. [Google Scholar] [CrossRef] [PubMed]
- Félix, L.L.; Sanz, B.; Sebastián, V.; Torres, T.E.; Sousa, M.H.; Coaquira, J.A.H.; Ibarra, M.R.; Goya, G.F. Gold-decorated magnetic nanoparticles design for hyperthermia applications and as a potential platform for their surface functionalization. Sci. Rep. 2019, 9, 4185. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Belyanina, I.; Kolovskaya, O.; Zamay, S.; Gargaun, A.; Zamay, T.; Kichkailo, A. Targeted magnetic nanotheranostics of cancer. Molecules 2017, 22, 975. [Google Scholar] [CrossRef] [Green Version]
- de Oliveira, S.A.; Borges, R.; Rosa, D.S.; de Souza, A.C.S.; Seabra, A.B.; Baino, F.; Marchi, J. Strategies for cancer treatment based on photonic nanomedicine. Materials 2021, 14, 1435. [Google Scholar] [CrossRef]
- Deatsch, A.E.; Evans, B.A. Heating efficiency in magnetic nanoparticle hyperthermia. J. Magn. Magn. Mater. 2014, 354, 163–172. [Google Scholar] [CrossRef]
- Laurent, S.; Forge, D.; Port, M.; Roch, A.; Robic, C.; Elst, L.V.; Muller, R.N. Magnetic iron oxide nanoparticles: Synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem. Rev. 2008, 108, 2064–2110. [Google Scholar] [CrossRef]
- Luong, T.T.; Ha, T.P.; Tran, L.D.; Do, M.H.; Mai, T.T.; Pham, N.H.; Phan, H.B.T.; Pham, G.H.T.; Hoang, N.M.T.; Nguyen, Q.T.; et al. Design of carboxylated Fe3O4/poly(styrene-co-acrylic acid) ferrofluids with highly efficient magnetic heating effect. Colloids Surf. A Physicochem. Eng. Asp. 2011, 384, 23–30. [Google Scholar] [CrossRef]
- Daud, M.U.; Abbas, G.; Afzaal, M.; Naz, M.Y.; Fatima, N.G.; Ghuffar, A.; Irfan, M.; Mahnashi, M.H.; Legutko, S.; Petru, J.; et al. Finite element analysis of silver nanorods, spheres, ellipsoids and core–shell structures for hyperthermia treatment of cancer. Materials 2022, 15, 1786. [Google Scholar] [CrossRef]
- Tang, Z.; Ali, I.; Hou, Y.; Akakuru, O.U.; Zhang, Q.; Mushtaq, A.; Zhang, H.; Lu, Y.; Ma, X.; Ge, J.; et al. pH-Responsive Au@Pd bimetallic core–shell nanorods for enhanced synergistic targeted photothermal-augmented nanocatalytic therapy in the second near-infrared window. J. Mater. Chem. B 2022, 10, 6532–6545. [Google Scholar] [CrossRef]
- Peiravi, M.; Eslami, H.; Ansari, M.; Zare-Zardini, H. Magnetic hyperthermia: Potentials and limitations. J. Indian Chem. Soc. 2022, 99, 100269. [Google Scholar] [CrossRef]
- Nemati, Z.; Alonso, J.; Rodrigo, I.; Das, R.; Garaio, E.; García, J.Á.; Orue, I.; Phan, M.-H.; Srikanth, H. Improving the heating efficiency of iron oxide nanoparticles by tuning their shape and size. J. Phys. Chem. C 2018, 122, 2367–2381. [Google Scholar] [CrossRef]
- Gonzalez-Fernandez, M.A.; Torres, T.E.; Andres-Verges, M.; Costo, R.; de la Presa, P.; Serna, C.J.; Morales, M.P.; Marquina, C.; Ibarra, M.R.; Goya, G.F. Magnetic nanoparticles for power absorption: Optimizing size, shape and magnetic properties. J. Solid State Chem. 2009, 182, 2779–2784. [Google Scholar] [CrossRef]
- Yao, X.; Niu, X.; Ma, K.; Huang, P.; Grothe, J.; Kaskel, S.; Zhu, Y. Graphene quantum dots-capped magnetic mesoporous silica nanoparticles as a multifunctional platform for controlled drug delivery, magnetic hyperthermia, and photothermal therapy. Small 2017, 13, 1602225. [Google Scholar] [CrossRef] [PubMed]
- Huong, L.T.T.; Nam, N.H.; Doan, D.H.; Nhung, H.T.M.; Quang, B.T.; Nam, P.H.; Thong, P.Q.; Phuc, N.X.; Thu, H.P. Folate attached, curcumin loaded Fe3O4 nanoparticles: A novel multifunctional drug delivery system for cancer treatment. Mater. Chem. Phys. 2016, 172, 98–104. [Google Scholar] [CrossRef]
- Dheyab, M.A.; Aziz, A.A.; Jameel, M.S.; Khaniabadi, P.M. Recent advances in synthesis, medical applications and challenges for gold-coated iron oxide: Comprehensive study. Nanomaterials 2021, 11, 2147. [Google Scholar] [CrossRef]
- Ma, C.; Shao, H.; Zhan, S.; Hou, P.; Zhang, X.; Chai, Y.; Liu, H. Bi-phase dispersible Fe3O4@Au core–shell multifunctional nanoparticles: Synthesis, characterization and properties. Compos. Interfaces 2019, 26, 537–549. [Google Scholar] [CrossRef]
- Nha, T.T.N.; Nam, P.H.; Phuc, N.X.; Nguyen, V.Q.; Nam, N.H.; Manh, D.H.; Tam, L.T.; Linh, N.T.N.; Khanh, B.T.V.; Lu, L.T.; et al. Sensitive MnFe2O4–Ag hybrid nanoparticles with photothermal and magnetothermal properties for hyperthermia applications. RSC Adv. 2021, 11, 30054. [Google Scholar] [CrossRef]
- Tian, C.; Tang, Z.; Hou, Y.; Mushtaq, A.; Naz, S.; Yu, Z.; Farheen, J.; Iqbal, M.Z.; Kong, X. Facile Synthesis of Multifunctional Magnetoplasmonic Au-MnO Hybrid Nanocomposites for Cancer Theranostics. Nanomaterials 2022, 12, 1370. [Google Scholar] [CrossRef]
- Dar, G.; Iqbal, M.Z.; Akakuru, O.U.; Yao, C.; Awiaz, G.; Wu, A. Facile synthesis of Au@Mn3O4 magneto-plasmonic nanoflowers for T1-weighted magnetic resonance imaging and photothermal therapy of cancer. J. Mater. Chem. B 2020, 8, 8356–8367. [Google Scholar] [CrossRef]
- Murar, M.; Albertazzi, L.; Pujals, S. Advanced optical imaging-guided nanotheranostics towards personalized cancer drug delivery. Nanomaterials 2022, 12, 399. [Google Scholar] [CrossRef]
- Le, Q.M.; Tran, T.H.; Nguyen, T.H.; Hoang, T.K.; Nguyen, T.B.; Do, K.T.; Tran, K.A.; Nguyen, D.H.; Le, T.L.; Nguyen, T.Q.; et al. Development of a fluorescent label tool based on lanthanide nanophosphors for viral biomedical application. Adv. Nat. Sci. Nanosci. Nanotechnol. 2012, 3, 035003. [Google Scholar] [CrossRef] [Green Version]
- Resch-Genger, U.; Grabolle, M.; Cavaliere-Jaricot, S.; Nitschke, R.; Nann, T. Quantum dots versus organic dyes as fluorescent labels. Nat. Methods 2008, 5, 763–775. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Zhao, C.; Gao, G.; Xu, L.; Wang, G.; Zhu, P. Multifunctional NaLnF4@MOF-Ln nanocomposites with dual-mode luminescence for drug delivery and cell imaging. Nanomaterials 2019, 9, 1274. [Google Scholar] [CrossRef] [Green Version]
- Vinh, L.T.; Huong, T.T.; Phuong, H.T.; Khuyen, H.T.; Hung, N.M.; Thao, D.T.; Minh, L.Q. Folic acid-conjugated silica-modified TbPO4·H2O nanorods for biomedical applications. J. Nanomater. 2021, 2021, 9888856. [Google Scholar] [CrossRef]
- Khuyen, H.T.; Huong, T.T.; Huong, N.T.; Ha, V.T.T.; Van, N.D.; Nghia, V.X.; Anh, T.K.; Minh, L.Q. Luminescence properties of a nanotheranostics based on a multifunctional Fe3O4/Au/Eu [1-(2-naphthoyl)-3,3,3-trifluoroacetone]3 nanocomposite. Opt. Mater. 2020, 109, 110229. [Google Scholar] [CrossRef]
- Reddy, M.; Divya, V.; Pavithran, R. Visible-light sensitized luminescent europium(III)-β-diketonate complexes: Bioprobes for cellular imaging. Dalton Trans. 2013, 42, 15249–15262. [Google Scholar] [CrossRef]
- Monteiro, J.H.S.K. Recent advances in luminescence imaging of biological systems using lanthanide(III) luminescent complexes. Molecules 2020, 25, 2089. [Google Scholar] [CrossRef] [PubMed]
Sample | H, f (Oe, kHz) | P (W/cm2) | dT/dt (°C/s) | SAR (W/g) |
---|---|---|---|---|
FOASET NC | 200 Oe, 340 kHz | 0.054 | 118.80 | |
0.25 W/cm2 | 0.062 | 136.48 | ||
200 Oe, 340 kHz | 0.25 W/cm2 | 0.091 | 200.25 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khuyen, H.T.; Huong, T.T.; Van, N.D.; Huong, N.T.; Vu, N.; Lien, P.T.; Nam, P.H.; Nghia, V.X. Synthesis of Multifunctional Eu(III) Complex Doped Fe3O4/Au Nanocomposite for Dual Photo-Magnetic Hyperthermia and Fluorescence Bioimaging. Molecules 2023, 28, 749. https://doi.org/10.3390/molecules28020749
Khuyen HT, Huong TT, Van ND, Huong NT, Vu N, Lien PT, Nam PH, Nghia VX. Synthesis of Multifunctional Eu(III) Complex Doped Fe3O4/Au Nanocomposite for Dual Photo-Magnetic Hyperthermia and Fluorescence Bioimaging. Molecules. 2023; 28(2):749. https://doi.org/10.3390/molecules28020749
Chicago/Turabian StyleKhuyen, Hoang Thi, Tran Thu Huong, Nguyen Duc Van, Nguyen Thanh Huong, Nguyen Vu, Pham Thi Lien, Pham Hong Nam, and Vu Xuan Nghia. 2023. "Synthesis of Multifunctional Eu(III) Complex Doped Fe3O4/Au Nanocomposite for Dual Photo-Magnetic Hyperthermia and Fluorescence Bioimaging" Molecules 28, no. 2: 749. https://doi.org/10.3390/molecules28020749
APA StyleKhuyen, H. T., Huong, T. T., Van, N. D., Huong, N. T., Vu, N., Lien, P. T., Nam, P. H., & Nghia, V. X. (2023). Synthesis of Multifunctional Eu(III) Complex Doped Fe3O4/Au Nanocomposite for Dual Photo-Magnetic Hyperthermia and Fluorescence Bioimaging. Molecules, 28(2), 749. https://doi.org/10.3390/molecules28020749