Head-to-Head Comparison of High-Performance Liquid Chromatography versus Nuclear Magnetic Resonance for the Quantitative Analysis of Carbohydrates in Yiqi Fumai Lyophilized Injection
Abstract
:1. Introduction
2. Results
2.1. Validation of Quantitative HPLC Analysis
2.2. Validation of qNMR Analysis
2.3. Sample Analysis
3. Discussion
4. Materials and Methods
4.1. Chemicals
4.2. Preparation of Standard Solutions and Samples for the HPLC Method
4.3. Sample Preparation for qNMR Method
4.4. HPLC Conditions
4.4.1. Derivatization and PMP-HPLC Conditions
4.4.2. HPLC-RID and HPLC-ELSD Conditions
4.5. qNMR Experimental Parameters
4.6. Calibration and Validation
4.7. Statistics
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Patrick, J.W.; Botha, F.C.; Birch, R.G. Metabolic engineering of sugars and simple sugar derivatives in plants. Plant Biotechnol. J. 2013, 11, 142–156. [Google Scholar] [CrossRef]
- Chandel, N.S. Carbohydrate Metabolism. Cold Spring Harb. Perspect. Biol. 2021, 13, a040568. [Google Scholar] [CrossRef] [PubMed]
- Mela, D.J. A proposed simple method for objectively quantifying free sugars in foods and beverages. Eur. J. Clin. Nutr. 2020, 74, 1366–1368. [Google Scholar] [CrossRef] [PubMed]
- Heiss, C.; Azadi, P. Carbohydrate Structure Analysis: Methods and Applications. SLAS Technol. 2020, 25, 305–306. [Google Scholar] [CrossRef] [PubMed]
- Bilskey, S.R.; Olendorff, S.A.; Chmielewska, K.; Tucker, K.R. A Comparative Analysis of Methods for Quantitation of Sugars during the Corn-to-Ethanol Fermentation Process. SLAS Technol. 2020, 25, 494–504. [Google Scholar] [CrossRef]
- Hohmann, M.; Koospal, V.; Bauer-Christoph, C.; Christoph, N.; Wachter, H.; Diehl, B.; Holzgrabe, U. Quantitative ¹H NMR analysis of egg yolk, alcohol, and total sugar content in egg liqueurs. J. Agric. Food Chem. 2015, 63, 4112–4119. [Google Scholar] [CrossRef]
- Ma, C.; Sun, Z.; Chen, C.; Zhang, L.; Zhu, S. Simultaneous separation and determination of fructose, sorbitol, glucose and sucrose in fruits by HPLC-ELSD. Food Chem. 2014, 145, 784–788. [Google Scholar] [CrossRef]
- Brokl, M.; Hernández-Hernández, O.; Soria, A.C.; Sanz, M.L. Evaluation of different operation modes of high performance liquid chromatography for the analysis of complex mixtures of neutral oligosaccharides. J. Chromatogr. A 2011, 1218, 7697–7703. [Google Scholar] [CrossRef]
- Jalaludin, I.; Kim, J. Comparison of ultraviolet and refractive index detections in the HPLC analysis of sugars. Food Chem. 2021, 365, 130514. [Google Scholar] [CrossRef]
- Wang, Z.F.; You, Y.L.; Li, F.F.; Kong, W.R.; Wang, S.Q. Research Progress of NMR in Natural Product Quantification. Molecules 2021, 26, 6308. [Google Scholar] [CrossRef]
- Pauli, G.F.; Gödecke, T.; Jaki, B.U.; Lankin, D.C. Quantitative 1H NMR. Development and potential of an analytical method: An update. J. Nat. Prod. 2012, 75, 834–851. [Google Scholar] [CrossRef] [Green Version]
- Simmler, C.; Napolitano, J.G.; McAlpine, J.B.; Chen, S.N.; Pauli, G.F. Universal quantitative NMR analysis of complex natural samples. Curr. Opin. Biotechnol. 2014, 25, 51–59. [Google Scholar] [CrossRef] [Green Version]
- Klikarová, J.; Rotondo, A.; Cacciola, F.; Česlová, L.; Dugo, P.; Mondello, L.; Rigano, F. The Phenolic Fraction of Italian Extra Virgin Olive Oils: Elucidation Through Combined Liquid Chromatography and NMR Approaches. Food Anal. Methods 2019, 12, 1759–1770. [Google Scholar] [CrossRef]
- Han, X.; Zhang, Y.; Qiao, O.; Ji, H.; Zhang, X.; Wang, W.; Li, X.; Wang, J.; Li, D.; Ju, A.; et al. Proteomic Analysis Reveals the Protective Effects of Yiqi Fumai Lyophilized Injection on Chronic Heart Failure by Improving Myocardial Energy Metabolism. Front. Pharmacol. 2021, 12, 719532. [Google Scholar] [CrossRef] [PubMed]
- Wan, M.; Yin, K.; Yuan, J.; Ma, S.; Xu, Q.; Li, D.; Gao, H.; Gou, X. YQFM alleviated cardiac hypertrophy by apoptosis inhibition and autophagy regulation via PI(3)K/AKT/mTOR pathway. J. Ethnopharmacol. 2022, 285, 114835. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Zhao, Z.; Hou, Y.; Tang, E.; Zhao, G.; Wang, S.; Bi, Y.; Zhong, C.; Ren, M.; Zhang, J.; et al. Assessment of Complementary Treatment with Yiqi Fumai Lyophilized Injection on Acute Decompensated Ischemic Heart Failure (ACT-ADIHF): Rationale and Design of a Multicenter, Randomized, Controlled Trial. Cardiovasc. Drugs Ther. 2018, 32, 295–300. [Google Scholar] [CrossRef]
- Liu, C.; Ju, A.; Zhou, D.; Li, D.; Kou, J.; Yu, B.; Qi, J. Simultaneous Qualitative and Quantitative Analysis of Multiple Chemical Constituents in YiQiFuMai Injection by Ultra-Fast Liquid Chromatography Coupled with Ion Trap Time-of-Flight Mass Spectrometry. Molecules 2016, 21, 640. [Google Scholar] [CrossRef] [Green Version]
- Yuan, G.Y.; Liu, Z.L.; Lai, Q.; Fu, F.; Zhang, L.; Kou, J.P.; Yu, B.Y.; Li, F. HPLC-QTOF/MS-based metabolomics to explore the molecular mechanisms of Yiqi Fumai Lyophilized Injection in heart failure mice. J. Sep. Sci. 2021, 44, 2545–2563. [Google Scholar] [CrossRef] [PubMed]
- Zheng, H.R.; Chu, Y.; Zhou, D.Z.; Ju, A.C.; Li, W.; Li, X.; Xia, Y.; Polachi, N.; Li, D.K.; Zhou, S.P.; et al. Integrated pharmacokinetics of ginsenosides after intravenous administration of YiQiFuMai powder injection in rats with chronic heart failure by UFLC-MS/MS. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2018, 1072, 282–289. [Google Scholar] [CrossRef]
- Li, D.T.; Sun, K.; Huang, P.; Pan, C.S.; Yan, L.; Ayan, A.; Liu, Y.Y.; Fan, J.Y.; Fang, W.G.; Han, J.Y. Yiqifumai injection and its main ingredients attenuate lipopolysaccharide-induced cerebrovascular hyperpermeability through a multi-pathway mode. Microcirculation 2019, 26, e12553. [Google Scholar] [CrossRef]
- Li, X.; Li, Y.; Mou, H.; Gao, Y.; Hwang, H.; Wang, P. The optimization of saccharification of desulfurated red seaweed-derived polysaccharides and analysis of their composition. Prep. Biochem. Biotechnol. 2014, 44, 40–55. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Chen, F.; Wang, Y.; Wang, L.; Fu, H.; Zheng, F.; Beecher, L. Optimization of reactions between reducing sugars and 1-phenyl-3-methyl-5-pyrazolone (PMP) by response surface methodology. Food Chem. 2018, 254, 158–164. [Google Scholar] [CrossRef] [PubMed]
- Jayaprakasha, G.K.; Patil, B.S. A metabolomics approach to identify and quantify the phytochemicals in watermelons by quantitative (1)HNMR. Talanta 2016, 153, 268–277. [Google Scholar] [CrossRef] [Green Version]
- Gad, H.A.; El-Ahmady, S.H.; Abou-Shoer, M.I.; Al-Azizi, M.M. Application of chemometrics in authentication of herbal medicines: A review. Phytochem. Anal. 2013, 24, 1–24. [Google Scholar] [CrossRef] [PubMed]
Method | Compound | Y (Peak Area) = kcA + d | r | Linearity Range (mg/mL) | LLOQ (mg/mL) |
---|---|---|---|---|---|
PMP-HPLC | Glucose | Y = 17,739X + 6829.8 | 0.9998 | 0.01~1.00 | 0.01 |
Maltose | Y = 9116.4X + 1027.0 | 1.0000 | 0.01~1.00 | 0.01 | |
HPLC-RID | Fructose | Y = 103,246X + 6774.8 | 0.9998 | 0.10~2.08 | 0.10 |
Glucose | Y = 116,724X + 2647.4 | 0.9993 | 0.10~2.13 | 0.10 | |
Sucrose | Y = 83,425.0X + 8358.1 | 0.9994 | 0.10~2.07 | 0.10 | |
Maltose | Y = 67,678.0X−2551.7 | 0.9997 | 0.10~2.05 | 0.10 | |
HPLC-ELSD | Fructose | Y = 1.3246X +0.6774 | 0.9999 | 0.10~2.00 | 0.10 |
Glucose | Y = 1.3425X + 0.8358 | 0.9994 | 0.20~4.00 | 0.20 | |
Sucrose | Y = 1.0548X−0.6375 | 0.9995 | 0.20~4.00 | 0.20 | |
Maltose | Y = 1.1267X−0.2551 | 0.9996 | 0.20~4.00 | 0.20 |
Method | Compound | Recovery (%±RSD) |
---|---|---|
PMP-HPLC | glucose | 99.4 ± 3.3 |
maltose | 102.4 ± 2.9 | |
HPLC-RID | fructose | 100.1 ± 0.4 |
glucose | 101.4 ± 3.2 | |
sucrose | 97.3 ± 2.5 | |
maltose | 99.7 ± 2.8 | |
HPLC-ELSD | fructose | 98.6 ± 1.2 |
glucose | 100.6 ± 1.5 | |
sucrose | 99.6 ± 3.0 | |
maltose | 100.1 ± 2.5 |
Compound | δH (ppm) | Multiplicity, JHH (Hz) |
---|---|---|
fructose | 4.16 | d, J = 7.8 Hz |
4.01 | d, J = 3.1 Hz | |
3.98 | d, J = 1.8 Hz | |
3.81 | d, J = 0.8 Hz | |
3.77 | d, J = 3.1 Hz | |
3.68 | d, J = 2.0 Hz | |
glucose | 5.18 | d, J = 3.7 Hz |
4.59 | d, J = 7.9 Hz | |
3.84 | d, J = 2.4 Hz | |
3.46 | t, J = 2.1 Hz | |
3.40 | d, J = 2.2 Hz | |
3.20 | d, J = 1.4 Hz | |
sucrose | 5.41 | d, J = 3.7 Hz |
4.04 | t, J = 8.3 Hz | |
3.76 | d, J = 2.6 Hz | |
3.68 | t, J = 2.0 Hz | |
3.44 | d, J = 1.0 Hz | |
maltose | 5.29 | d, J = 3.7 Hz |
5.20 | d, J = 3.7 Hz | |
4.60 | d, J = 7.8 Hz | |
3.90 | t, J = 2.4 Hz | |
3.86 | d, J = 1.4 Hz | |
3.25 | d, J = 1.6 Hz |
Method | Compound | Recovery (% ± RSD) |
---|---|---|
qNMR ISM | fructose | 96.5 ± 2.5 |
glucose | 101.2 ± 2.2 | |
sucrose | 97.1 ± 2.3 | |
maltose | 100.8 ± 2.3 | |
qNMR ESM | fructose | 97.5 ± 2.6 |
glucose | 102.2 ± 1.2 | |
sucrose | 100.3 ± 3.3 | |
maltose | 97.6 ± 2.1 |
Compound | Y (Peak Area) = kcA + d | r | Linearity Range (mg/mL) | LLOQ (mg/mL) |
---|---|---|---|---|
Fructose | Y = 0.2013X + 0.0200 | 0.9999 | 1.36~21.72 | 1.36 |
Glucose | Y = 0.4489X − 0.0850 | 0.9999 | 0.33~5.22 | 0.33 |
Sucrose | Y = 0.2679X − 0.0237 | 0.9996 | 0.33~5.22 | 0.33 |
Maltose | Y = 0.1116X − 0.0007 | 0.9998 | 0.22~3.54 | 0.22 |
Compound | Samples | Method | ||||
---|---|---|---|---|---|---|
PMP -HPLC | HPLC -RID | HPLC -ELSD | qNMR ISM | qNMR ESM | ||
Fructose | S1 | / | 14.382 ± 0.043 | 14.398 ± 0.047 | 14.375 ± 0.042 | 13.928 ± 0.035 |
S2 | / | 12.795 ± 0.030 | 12.776 ± 0.024 | 12.716 ± 0.030 | 12.609 ± 0.028 | |
S3 | / | 12.675 ± 0.047 | 12.686 ± 0.039 | 12.417 ± 0.032 | 12.528 ± 0.026 | |
S4 | / | 11.862 ± 0.036 | 11.874 ± 0.021 | 12.469 ± 0.024 | 12.849 ± 0.035 | |
S5 | / | 13.627 ± 0.034 | 13.608 ± 0.036 | 13.452 ± 0.028 | 14.013 ± 0.031 | |
S6 | / | 11.893 ± 0.020 | 11.876 ± 0.033 | 12.675 ± 0.016 | 12.817 ± 0.011 | |
S7 | / | 13.265 ± 0.031 | 13.273 ± 0.043 | 11.513 ± 0.016 | 12.073 ± 0.024 | |
S8 | / | 12.832 ± 0.037 | 12.840 ± 0.021 | 13.529 ± 0.030 | 13.316 ± 0.022 | |
S9 | / | 13.041 ± 0.032 | 13.027 ± 0.035 | 12.891 ± 0.027 | 13.012 ± 0.030 | |
S10 | / | 12.647 ± 0.026 | 12.641 ± 0.034 | 14.107 ± 0.026 | 13.816 ± 0.031 | |
Glucose | S1 | 3.075 ± 0.013 | 3.082 ± 0.017 | 3.076 ± 0.013 | 3.045 ± 0.016 | 3.217 ± 0.018 |
S2 | 3.071 ± 0.016 | 3.068 ± 0.012 | 3.053 ± 0.011 | 3.472 ± 0.012 | 3.731 ± 0.009 | |
S3 | 3.032 ± 0.014 | 3.016 ± 0.008 | 3.026 ± 0.010 | 3.159 ± 0.010 | 3.263 ± 0.006 | |
S4 | 3.419 ± 0.007 | 3.431 ± 0.018 | 3.427 ± 0.015 | 3.721 ± 0.011 | 3.857 ± 0.015 | |
S5 | 3.637 ± 0.011 | 3.654 ± 0.014 | 3.647 ± 0.016 | 3.186 ± 0.014 | 3.504 ± 0.008 | |
S6 | 3.032 ± 0.010 | 3.025 ± 0.006 | 3.036 ± 0.013 | 3.597 ± 0.006 | 3.062 ± 0.011 | |
S7 | 3.416 ± 0.012 | 3.426 ± 0.012 | 3.432 ± 0.009 | 3.258 ± 0.010 | 3.146 ± 0.007 | |
S8 | 3.357 ± 0.020 | 3.373 ± 0.007 | 3.357 ± 0.011 | 3.489 ± 0.013 | 3.322 ± 0.009 | |
S9 | 3.673 ± 0.013 | 3.635 ± 0.012 | 3.626 ± 0.005 | 3.084 ± 0.010 | 3.140 ± 0.012 | |
S10 | 3.326 ± 0.010 | 3.347 ± 0.015 | 3.338 ± 0.014 | 3.721 ± 0.011 | 3.508 ± 0.007 | |
Sucrose | S1 | / | 3.626 ± 0.010 | 3.638 ± 0.012 | 3.075 ± 0.014 | 3.184 ± 0.009 |
S2 | / | 3.413 ± 0.016 | 3.442 ± 0.008 | 3.128 ± 0.015 | 3.319 ± 0.011 | |
S3 | / | 3.241 ± 0.007 | 3.235 ± 0.010 | 3.025 ± 0.005 | 3.137 ± 0.008 | |
S4 | / | 3.655 ± 0.017 | 3.646 ± 0.013 | 3.408 ± 0.009 | 3.627 ± 0.015 | |
S5 | / | 2.967 ± 0.011 | 2.982 ± 0.010 | 3.029 ± 0.005 | 3.176 ± 0.009 | |
S6 | / | 3.180 ± 0.016 | 3.174 ± 0.012 | 3.073 ± 0.010 | 3.112 ± 0.018 | |
S7 | / | 2.982 ± 0.009 | 2.967 ± 0.013 | 3.128 ± 0.016 | 3.035 ± 0.012 | |
S8 | / | 3.553 ± 0.021 | 3.564 ± 0.025 | 3.029 ± 0.011 | 3.247 ± 0.013 | |
S9 | / | 3.425 ± 0.013 | 3.441 ± 0.012 | 3.317 ± 0.011 | 3.245 ± 0.010 | |
S10 | / | 3.105 ± 0.007 | 3.123 ± 0.012 | 3.268 ± 0.010 | 3.409 ± 0.013 | |
Maltose | S1 | 2.503 ± 0.008 | 2.525 ± 0.011 | 2.540 ± 0.009 | 2.582 ± 0.006 | 2.692 ± 0.010 |
S2 | 2.926 ± 0.015 | 2.913 ± 0.019 | 2.907 ± 0.007 | 2.846 ± 0.012 | 2.918 ± 0.016 | |
S3 | 3.341 ± 0.022 | 3.338 ± 0.024 | 3.341 ± 0.028 | 3.022 ± 0.015 | 3.109 ± 0.016 | |
S4 | 2.782 ± 0.015 | 2.797 ± 0.020 | 2.806 ± 0.021 | 2.795 ± 0.015 | 2.817 ± 0.011 | |
S5 | 2.657 ± 0.018 | 2.638 ± 0.014 | 2.646 ± 0.011 | 2.687 ± 0.024 | 2.538 ± 0.014 | |
S6 | 2.281 ± 0.013 | 2.273 ± 0.011 | 2.257 ± 0.015 | 2.294 ± 0.011 | 2.226 ± 0.009 | |
S7 | 2.743 ± 0.017 | 2.758 ± 0.020 | 2.763 ± 0.018 | 2.746 ± 0.016 | 2.808 ± 0.021 | |
S8 | 2.586 ± 0.016 | 2.571 ± 0.021 | 2.546 ± 0.013 | 2.612 ± 0.018 | 2.589 ± 0.012 | |
S9 | 2.069 ± 0.011 | 2.082 ± 0.009 | 2.097 ± 0.007 | 2.024 ± 0.008 | 2.135 ± 0.005 | |
S10 | 2.265 ± 0.019 | 2.248 ± 0.016 | 2.263 ± 0.013 | 2.258 ± 0.015 | 2.209 ± 0.009 |
Variable | F (4,45) | F (3,36) | F Critical (p = 0.05) | p |
---|---|---|---|---|
Fructose | / | 0.157 | 1.95 | 0.924 |
Glucose | 0.237 | / | 1.95 | 0.916 |
Sucrose | / | 1.437 | 1.95 | 0.248 |
Maltose | 0.013 | / | 1.95 | 0.999 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xie, Y.; Zheng, D.; Yang, T.; Zhang, Z.; Xu, W.; Liu, H.; Li, W. Head-to-Head Comparison of High-Performance Liquid Chromatography versus Nuclear Magnetic Resonance for the Quantitative Analysis of Carbohydrates in Yiqi Fumai Lyophilized Injection. Molecules 2023, 28, 765. https://doi.org/10.3390/molecules28020765
Xie Y, Zheng D, Yang T, Zhang Z, Xu W, Liu H, Li W. Head-to-Head Comparison of High-Performance Liquid Chromatography versus Nuclear Magnetic Resonance for the Quantitative Analysis of Carbohydrates in Yiqi Fumai Lyophilized Injection. Molecules. 2023; 28(2):765. https://doi.org/10.3390/molecules28020765
Chicago/Turabian StyleXie, Yuesheng, Dayong Zheng, Ting Yang, Zhenzhen Zhang, Wenwu Xu, Houru Liu, and Wei Li. 2023. "Head-to-Head Comparison of High-Performance Liquid Chromatography versus Nuclear Magnetic Resonance for the Quantitative Analysis of Carbohydrates in Yiqi Fumai Lyophilized Injection" Molecules 28, no. 2: 765. https://doi.org/10.3390/molecules28020765
APA StyleXie, Y., Zheng, D., Yang, T., Zhang, Z., Xu, W., Liu, H., & Li, W. (2023). Head-to-Head Comparison of High-Performance Liquid Chromatography versus Nuclear Magnetic Resonance for the Quantitative Analysis of Carbohydrates in Yiqi Fumai Lyophilized Injection. Molecules, 28(2), 765. https://doi.org/10.3390/molecules28020765