Revisiting the Use of Quantum Chemical Calculations in LogPoctanol-water Prediction
Abstract
:1. Introduction
2. Methods for logP Empirical Predictions
3. Applications of Quantum Mechanics Based Molecular Descriptors for logP Prediction
4. Direct Prediction of logP via Free Energy of Solvation Calculations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dearden, J.C. Prediction of physicochemical properties. Methods Mol Biol. 2012, 929, 93–138. [Google Scholar]
- Wildman, S.A.; Crippen, G.M. Prediction of physicochemical parameters by atomic contributions. J. Chem. Inf. Comput. Sci. 1999, 39, 868–873. [Google Scholar] [CrossRef]
- Basak, S.C.; Harriss, D.K.; Magnuson, V.R. Comparative study of lipophilicity versus topological molecular descriptors in biological correlations. J. Pharm. Sci. 1984, 73, 429–437. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.H.; Le, J.; Abraham, M.H.; Hersey, A.; Eddershaw, P.J.; Luscombe, C.N.; Butina, D.; Beck, G.; Sherborne, B.; Cooper, I.; et al. Evaluation of human intestinal absorption data and subsequent derivation of a quantitative structure-activity relationship (QSAR) with the Abraham descriptors. J. Pharm. Sci. 2001, 90, 749–784. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guha, R.; Willighagen, E. A Survey of Quantitative Descriptions of Molecular Structure. Curr. Top. Med. Chem. 2012, 12, 1946–1956. [Google Scholar] [CrossRef] [Green Version]
- Spjuth, O.; Willighagen, E.L.; Guha, R.; Eklund, M.; Wikberg, J.E.E. Towards interoperable and reproducible QSAR analyses: Exchange of datasets. J. Cheminformatics 2010, 2, 5. [Google Scholar] [CrossRef] [Green Version]
- Lombardo, F.; Shalaeva, M.Y.; Tupper, K.A.; Gao, F.; Abraham, M.H. ElogPoct: A Tool for Lipophilicity Determination in Drug Discovery. J. Med. Chem. 2000, 43, 2922–2928. [Google Scholar] [CrossRef]
- Guillot, A.; Henchoz, Y.; Moccand, C.; Guillarme, D.; Veuthey, J.L.; Carrupt, P.A.; Martel, S. Lipophilicity Determination of Highly Lipophilic Compounds by Liquid Chromatography. Chem. Biodivers. 2009, 6, 1828–1836. [Google Scholar] [CrossRef]
- Fujita, T.; Iwasa, J.; Hansch, C. A New Substituent Constant, π, Derived from Partition Coefficients. J. Am. Chem. Soc. 1964, 86, 5175–5180. [Google Scholar] [CrossRef]
- Sawant, P.D.; Luu, D.; Ye, R.; Buchta, R. Drug release from hydroethanolic gels. Effect of drug’s lipophilicity (logP), polymer-drug interactions and solvent lipophilicity. Int. J. Pharm. 2010, 396, 45–52. [Google Scholar] [CrossRef]
- Lipinski, C.A. Lead- and drug-like compounds: The rule-of-five revolution. Drug Discov. Today Technol. 2004, 1, 337–341. [Google Scholar] [CrossRef]
- Sangster, J. Octanol-Water Partition Coefficients: Fundamentals and Physical Chemistry; Wiley Series in Solution Chemistry; Wiley: New York, NY, USA, 1997; Volume 2. [Google Scholar]
- Yang, Y.; Engkvist, O.; Llinas, A.; Chen, H. Beyond Size, Ionization State, and Lipophilicity: Influence of Molecular Topology on Absorption, Distribution, Metabolism, Excretion, and Toxicity for Druglike Compounds. J. Med. Chem. 2012, 55, 3667–3677. [Google Scholar] [CrossRef]
- Kerns, E.H.; Di, L. Pharmaceutical Profiling in Drug Discovery. Drug Discov. Today 2003, 8, 316–323. [Google Scholar] [CrossRef]
- Aligas, I.; Gobbi, A.; Lee, M.-L.; Sellers, B.D. Comparison of logP and logD correction models trained with public and proprietary data sets. J. Comput.-Aided Mol. Des. 2022, 36, 253–262. [Google Scholar] [CrossRef] [PubMed]
- Skyner, R.E.; McDonagh, J.L.; Groom, C.R.; van Mourik, T.; Mitchell, J.B.O. A review of methods for the calculation of solution free energies and the modelling of systems in solution. Phys. Chem. Chem. Phys. 2015, 17, 6174–6191. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- da Silva, C.O.; da Silva, E.C.; Nascimento, M.A.C. Ab Initio Calculations of Absolute pKa Values in Aqueous Solution I. Carboxylic Acids. J. Phys. Chem. B 1999, 103, 11194–11199. [Google Scholar] [CrossRef]
- Citra, M.J. Estimating the pKa of Phenols, Carboxylic Acids and Alcohols from Semiempirical Quantum Chemical Methods. Chemosphere 1999, 38, 191–206. [Google Scholar] [CrossRef] [PubMed]
- Duprat, A.F.; Huynh, T.; Dreyfus, G. Toward a Principled Methodology for Neural Network Design and Performance Evaluation in QSAR. Application to the Prediction of logP. J. Chem. Inf. Comput. Sci. 1998, 38, 586–594. [Google Scholar] [CrossRef] [PubMed]
- Liao, S.Y.; Chen, J.C.; Qian, L.; Shen, Y.; Zheng, K.C. QSAR, action mechanism and molecular design of flavone and isoflavone derivatives with cytotoxicity against HeLa. Eur. J. Med. Chem. 2008, 43, 2159–2170. [Google Scholar] [CrossRef]
- Khan, D.A.U. Descriptors and their selection methods in QSAR analysis: Paradigm for drug design. Drug Discov. Today 2016, 21, 1291–1302. [Google Scholar]
- Mikulski, D.; Górniak, R.; Molski, M. A theoretical study of the structure–radical scavenging activity of trans-resveratrol analogues and cis-resveratrol in gas phase and water environment. Eur. J. Med. Chem. 2010, 45, 1015–1027. [Google Scholar] [CrossRef] [PubMed]
- Leo, A.J.; Jow, P.Y.C.; Silipo, C.; Hansch, C. Calculation of hydrophobic constant (log P) from π and f constants. J. Med. Chem. 1975, 18, 865–868. [Google Scholar] [CrossRef] [PubMed]
- Hansch, C.; Leo, A.J. Substituent Constants for Correlation Analysis in Chemistry and Biology; Wiley: New York, NY, USA, 1979. [Google Scholar]
- Leo, A.J. Calculating log Poct from structures. Chem. Rev. 1993, 93, 1281–1306. [Google Scholar] [CrossRef]
- Bodor, N.; Buchwald, P. Molecular Size Based Approach To Estimate Partition Properties for Organic Solutes. J. Phys. Chem. B 1997, 101, 3404–3412. [Google Scholar] [CrossRef]
- Mannhold, R.; Dross, K. Calculation Procedures for Molecular Lipophilicity: A Comparative Study. Quant. Struct.-Act. Relat. 1996, 15, 403–409. [Google Scholar] [CrossRef]
- Mannhold, R.; Poda, G.I.; Osterman, C.; Tetko, I.V. Calculation of molecular lipophilicity: State-of-the-art and comparison of log P methods on more than 96,000 compounds. J. Pharma. Sci. 2009, 98, 861–893. [Google Scholar] [CrossRef] [PubMed]
- Baldi, P. Deep learning in biomedical data science. Ann. Rev. Biomed. Data Sci. 2018, 1, 181–205. [Google Scholar] [CrossRef]
- Boobier, S.; Osbourne, A.; Mitchell, J.O.B. Can human experts predict solubility better than computers? J. Cheminformatics 2017, 9, 63. [Google Scholar] [CrossRef]
- Lusci, A.; Pollastri, G.; Baldi, P. Deep Architectures and Deep Learning in Chemoinformatics: The Prediction of Aqueous Solubility for Drug-Like Molecules. J. Chem. Inf. Model. 2013, 53, 1563–1575. [Google Scholar] [CrossRef] [Green Version]
- Panteleev, J.; Gao, H.; Jia, L. Recent applications of machine learning in medicinal chemistry. Bioorg. Med. Chem. Lett. 2018, 28, 2807–2815. [Google Scholar] [CrossRef]
- Fuchs, J.-A.; Grisoni, F.; Kossenjans, M.; Hiss, J.A.; Schneider, G. Lipophilicity prediction of peptides and peptide derivatives by consensus machine learning. Med. Chem. Commun. 2018, 9, 1538–1546. [Google Scholar] [CrossRef]
- Cartier, A.; Rivail, J.-L. Electronic descriptors in quantitative structure—Activity relationships. Chemom. Intell. Lab. Sys. 1987, 1, 335–347. [Google Scholar] [CrossRef]
- Klopman, G.; Iroff, L.D. Calculation of partition coefficients by the charge density method. J. Comput. Chem. 1981, 2, 157–160. [Google Scholar] [CrossRef]
- Bodor, N.; Gabanyi, Z.; Wong, C.-K. A new method for the estimation of partition coefficient. J. Am. Chem. Soc. 1989, 111, 3783–3786. [Google Scholar] [CrossRef]
- Bodor, N.; Huang, M.-J. Predicting partition coefficients for isomeric diastereoisomers of some tripeptide analogs. J. Comput. Chem. 1991, 12, 1182–1186. [Google Scholar] [CrossRef]
- Makovskaya, V.; Dean, J.R.; Tomlinson, W.R.; Comber, M. Octanol-water partition coefficients of substituted phenols and their correlation with molecular descriptors. Anal. Chim. Acta 1995, 315, 193–200. [Google Scholar] [CrossRef]
- Larsson, M.; Mishra, B.K.; Tysklind, M.; Linusson, A.; Anderson, P.L. On the use of electronic descriptors for QSAR modelling of PCDDs, PCDFs and dioxin-like PCBs. SAR QSAR Environ. Res. 2013, 24, 461–479. [Google Scholar] [CrossRef] [PubMed]
- Du, Q.; Liu, P.-J.; Mezey, P.G. Theoretical Derivation of Heuristic Molecular Lipophilicity Potential: A Quantum Chemical Description for Molecular Solvation. J. Chem. Inf. Model. 2005, 45, 347–353. [Google Scholar] [CrossRef]
- Ginex, T.; Vazquez, J.; Gilbert, E.; Herrero, E.; Luque, L.J. Lipophilicity in drug design: An overview of lipophilicity descriptors in 3D-QSAR studies. Future Med. Chem. 2019, 11, 1177–1193. [Google Scholar] [CrossRef]
- Mennucci, B. Continuum Solvation Models: What Else Can We Learn from Them? J. Phys. Chem. Lett. 2010, 1, 1666–1674. [Google Scholar] [CrossRef]
- Marenich, A.V.; Cramer, C.J.; Truhlar, D.G. Performance of SM6, SM8, and SMD on the SAMPL1 Test Set for the Prediction of Small-Molecule Solvation Free Energies. J. Phys. Chem. B 2009, 113, 4536–4543. [Google Scholar] [CrossRef] [Green Version]
- Zafar, A.; Reynisson, J. Hydration Free Energy as a Molecular Descriptor in Drug Design: A Feasibility Study. Mol. Inform. 2016, 35, 207–214. [Google Scholar] [CrossRef] [PubMed]
- Kolář, M.; Fanfrlík, J.; Lepšík, M.; Forti, F.; Luque, F.J.; Hobza, P. Assessing the Accuracy and Performance of Implicit Solvent Models for Drug Molecules: Conformational Ensemble Approaches. J. Phys. Chem. B 2013, 117, 5950–5962. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Zhang, H.; Wu, T.; Wang, Q.; van der Spoel, D. Comparison of Implicit and Explicit Solvent Models for the Calculation of Solvation Free Energy in Organic Solvents. J. Chem. Theor. Comput. 2017, 13, 1034–1043. [Google Scholar] [CrossRef]
- Klamt, A.; Eckert, F.; Hornig, M.; Beck, M.E.; Bürger, T. Prediction of aqueous solubility of drugs and pesticides with COSMO-RS. J. Comput. Chem. 2002, 23, 275–281. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Klamt, A.; Eckert, F.; Reinisch, J.; Wichmann, K. Prediction of cyclohexane-water distribution coefficients with COSMO-RS on the SAMPL5 data set. J. Comput. Aided Mol. Des. 2016, 30, 959–967. [Google Scholar] [CrossRef]
- Ouimet, J.A.; Paluch, A.S. Predicting octanol/water partition coefcients for the SAMPL6 challenge using the SM12, SM8, and SMD solvation models. J. Comput.-Aided Mol. Des. 2020, 34, 575–588. [Google Scholar] [CrossRef]
- Kundi, V.; Ho, J. Predicting Octanol-Water Partition Coefficients: Are Quantum Mechanical Implicit Solvent Models Better than Empirical Fragment-Based Methods? J. Phys. Chem. B 2019, 123, 6810–6822. [Google Scholar] [CrossRef]
- Patel, C.; Roy, D. Octanol-Water Partition Coefficients of Fluorinated Drug Molecules with Continuum Solvation Models. J. Phys. Chem. A 2022, 126, 4185–4190. [Google Scholar] [CrossRef]
- Takahashi, T.; Matsui, T.; Hengphasatporn, K.; Shigeta, Y. A Practical Prediction of LogPo/w through Semiempirical Electronic Structure Calculations with Dielectric Continuum Model. Bul. Chem. Soc. Jpn. 2021, 94, 1807–1814. [Google Scholar] [CrossRef]
- Breindl, A.; Beck, B.; Clark, T.; Glen, R.C. Prediction of the n-Octanol/Water Partition Coefficient, logP, Using a Combination of Semiempirical MO-Calculations and a Neural Network. Mol. Model. Ann. 1997, 3, 142–155. [Google Scholar] [CrossRef]
- Fizer, O.; Fizer, M.; Sidey, V.; Studenyak, Y.; Mariychuk, R. Benchmark of different charges for prediction of the partitioning coefficient through the hydrophilic/lipophilic index. J. Mol. Model. 2018, 24, 141. [Google Scholar] [CrossRef] [PubMed]
- Gusarov, S.; Ziegler, T.; Kovalenko, A. Self-Consistent Combination of the Three-Dimensional RISM Theory of Molecular Solvation with Analytical Gradients and the Amsterdam Density Functional Package. J. Phys. Chem. A 2006, 110, 6083–6090. [Google Scholar] [CrossRef] [PubMed]
- Casanova, D.; Gusarov, S.; Kovalenko, A.; Zeigler, T. Evaluation of the SCF Combination of KS-DFT and 3D-RISM-KH; Solvation Effect on Conformational Equilibria, Tautomerization Energies, and Activation Barriers. J. Chem. Theor. Comput. 2007, 3, 458–476. [Google Scholar] [CrossRef] [PubMed]
- Hlushak, S.; Stoyanov, S.R.; Kovalenko, A. A 3D-RISM-KH Molecular Theory of Solvation Study of the Effective Stacking Interactions of Kaolinite Nanoparticles in Aqueous Electrolyte Solution Containing Additives. J. Phys. Chem. C. 2016, 120, 21344–21357. [Google Scholar] [CrossRef]
- Yokogawa, D.; Sato, H.; Imai, T.; Sakaki, S. A highly parallelizable integral equation theory for three dimensional solvent distribution function: Application to biomolecules. J. Chem. Phys. 2009, 130, 06411. [Google Scholar] [CrossRef] [Green Version]
- Ano, S.; Hosoya, T.; Sakaki, S. A 3D-RISM-SCF method with dual solvent boxes for a highly polarized system: Application to 1,6-anhydrosugar formation reaction of phenyl α- and β-D-glucosides under basic conditions. Phys. Chem. Chem. Phys. 2013, 15, 6368–6381. [Google Scholar] [CrossRef]
- Ano, S.; Nakagaki, M.; Sakaki, S. Theoretical study of one-electron-oxidized salen complexes of group 7 (Mn(III), Tc(III), and Re(III)) and group 10 metals (Ni(II), Pd(II), and Pt(II)) with the 3D-RISM-GMC-QDPT method: Localized vs. delocalized ground and excited states in solution. Phys. Chem. Chem. Phys. 2017, 19, 16831–16849. [Google Scholar] [CrossRef]
- Ano, S.; Mori, T.; Sakaki, S. 3D-RISM-MP2 Approach to Hydration Structure of Pt(II) and Pd(II) Complexes: Unusual H-Ahead Mode vs. Usual O-Ahead One. J. Chem. Theory. Comput. 2016, 12, 1189–1206. [Google Scholar] [CrossRef]
- Luchko, T.; Blinov, N.; Limon, G.C.; Joyce, K.P.; Kovalenko, A. SAMPL5: 3D-RISM partition coefficient calculations with partial molar volume corrections and solute conformational sampling. J. Comput. Aided Mol. Des. 2016, 30, 1115. [Google Scholar] [CrossRef]
- Huang, W.J.; Blinov, N.; Kovalenko, A. Octanol-Water Partition Coefficient from 3D-RISM-KH Molecular Theory of Solvation with Partial Molar Volume Correction. J. Phys. Chem. B 2015, 119, 5588–5597. [Google Scholar] [CrossRef] [PubMed]
- Roy, D.; Blinov, N.; Kovalenko, A. Predicting Accurate Solvation Free Energy in n-Octanol Using 3D-RISM-KH Molecular Theory of Solvation: Making Right Choices. J. Phys. Chem. B 2017, 121, 92688–99273. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Roy, D.; Patel, C. Revisiting the Use of Quantum Chemical Calculations in LogPoctanol-water Prediction. Molecules 2023, 28, 801. https://doi.org/10.3390/molecules28020801
Roy D, Patel C. Revisiting the Use of Quantum Chemical Calculations in LogPoctanol-water Prediction. Molecules. 2023; 28(2):801. https://doi.org/10.3390/molecules28020801
Chicago/Turabian StyleRoy, Dipankar, and Chandan Patel. 2023. "Revisiting the Use of Quantum Chemical Calculations in LogPoctanol-water Prediction" Molecules 28, no. 2: 801. https://doi.org/10.3390/molecules28020801
APA StyleRoy, D., & Patel, C. (2023). Revisiting the Use of Quantum Chemical Calculations in LogPoctanol-water Prediction. Molecules, 28(2), 801. https://doi.org/10.3390/molecules28020801