Anti-Inflammatory, Anti-Bacterial, and Anti-Fungal Activity of Oligomeric Proanthocyanidins and Extracts Obtained from Lignocellulosic Agricultural Waste
Abstract
:1. Introduction
2. Results and Discussion
2.1. Chemical Composition
2.2. Anti-Bacterial and Anti-Fungal Activity
2.3. Cytotoxicity Assessment
2.4. Hemolysis
2.5. Immunomodulating Activity
3. Materials and Methods
3.1. Materials
3.1.1. SBT Biomass
3.1.2. Chemicals
3.2. Methods
3.2.1. PAC-Rich Extract Isolation from SBT Biomass
3.2.2. Determination of PAC Content in the Extract
3.2.3. UHPLC-ESI-MS/MS Qualitative Analysis
3.2.4. Purification of PACs
3.2.5. Determination of the Anti-Microbial Activity
3.2.6. Cell Lines and Cultivation
3.2.7. Hemolysis Assay
3.2.8. Cytotoxicity Assay
3.2.9. Quantification of IL-8 and IL-6 Release from Human Peripheral Blood Mononuclear Cells (PBMNCs)
3.3. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Vaccineswork. Available online: https://www.gavi.org/vaccineswork/silent-pandemic-how-drug-resistant-superbugs-risk-becoming-worlds-number-one-killer (accessed on 4 December 2022).
- European Centre for Disease Prevention and Control. Available online: https://www.ecdc.europa.eu/en/publications-data/antimicrobial-resistance-surveillance-europe-2022-2020-data (accessed on 15 November 2022).
- Hall, C.W.; Mah, T.F. Molecular mechanisms of biofilm-based antibiotic resistance and tolerance in pathogenic bacteria. FEMS Microbiol. Rev. 2017, 41, 276–301. [Google Scholar] [CrossRef] [Green Version]
- Rasamiravaka, T.; Labtani, Q.; Duez, P.; El Jaziri, M. The formation of biofilms by Pseudomonas aeruginosa: A review of the natural and synthetic compounds interfering with control mechanisms. BioMed Res. Int. 2015, 2015, 759348. [Google Scholar] [CrossRef] [Green Version]
- Ramata-Stunda, A.; Petriņa, Z.; Valkovska, V.; Borodušķis, M.; Gibnere, L.; Gurkovska, E.; Nikolajeva, V. Synergistic effect of polyphenol-rich complex of plant and green propolis eExtracts with antibiotics against respiratory infections causing bacteria. Antibiotics 2022, 11, 160. [Google Scholar] [CrossRef] [PubMed]
- Mayer, F.L.; Wilson, D.; Hube, B. Candida albicans pathogenicity mechanisms. Virulence 2013, 4, 119–128. [Google Scholar] [CrossRef] [Green Version]
- Pfaller, M.A.; Diekema, D.J. Epidemiology of invasive mycoses in North America. Crit. Rev. Microbiol. 2010, 36, 1–53. [Google Scholar] [CrossRef] [PubMed]
- CDC: Centers for Decease Control and Prevention. Available online: https://www.cdc.gov/fungal/diseases/candidiasis/antifungal-resistant.html (accessed on 15 November 2022).
- Gyurkovska, V.; Alipieva, K.; Maciuk, A.; Dimitrova, P.; Ivanovska, N.; Haas, C.; Bley, T.; Georgiev, M. Anti-inflammatory activity of Devil’s claw in vitro systems and their active constituents. Food Chem. 2011, 125, 171–178. [Google Scholar] [CrossRef]
- Zhang, L.; Chen, J.; Liang, R.; Liu, C.; Chen, M.; Chen, J. Synergistic anti-inflammatory effects of lipophilic grape seed proanthocyanidin and camellia oil combination in LPS-stimulated RAW264.7 cells. Antioxidants 2022, 11, 289. [Google Scholar] [CrossRef]
- Chae, U.; Kim, H.S.; Kim, K.M. IDH2 Deficiency in microglia decreases the pro-inflammatory response via the ERK and NF-κB pathways. Inflammation 2018, 41, 1965–1973. [Google Scholar] [CrossRef] [PubMed]
- WHO and ECDC Report: Antimicrobial Resistance Remains a Health Threat in Europe. Available online: https://www.ecdc.europa.eu/en/news-events/who-and-ecdc-report-antimicrobial-resistance-remains-health-threat-europe (accessed on 10 November 2022).
- Almand, E.A.; Moore, M.D.; Jaykus, L.A. Virus-bacteria interactions: An emerging topic in human infection. Viruses 2017, 9, 58. [Google Scholar] [CrossRef] [Green Version]
- Callaway, E. Beyond Omicron: What’s next for COVID’s viral evolution. Nature 2021, 600, 204–207. [Google Scholar] [CrossRef]
- Hussein, R.A.; El-Anssary, A.A. Plants secondary metabolites: The key drivers of the pharmacological actions of medicinal plants. In Herbal Medicine; InTechOpen: London, UK, 2019. [Google Scholar] [CrossRef] [Green Version]
- Mannino, G.; Chinigò, G.; Serio, G.; Genova, T.; Gentile, C.; Munaron, L.; Bertea, C.M. Proanthocyanidins and where to find them: A meta-analytic approach to investigate their chemistry, biosynthesis, distribution, and effect on human health. Antioxidants 2021, 10, 1229. [Google Scholar] [CrossRef] [PubMed]
- Rauf, A.; Imran, M.; Abu-Izneid, T.; Iahtisham-Ul-Haq; Patel, S.; Pan, X.; Naz, S.; Sanches, S.; Saeed, F.; Suleria, H.A.R. Proanthocyanidins: A comprehensive review. Biomed. Pharmacother. 2019, 116, 108999. [Google Scholar] [CrossRef]
- Janceva, S.; Andersone, A.; Lauberte, L.; Telysheva, G.; Krasilnikova, J.; Nokalne, I.; Janceva, J. Influence of extracts from bark of deciduous trees on the activity of the amylolytic enzyme-alpha amylase. Key Eng. Mater. 2021, 903, 34–39. [Google Scholar] [CrossRef]
- Janceva, S.; Lauberte, L.; Dizhbite, T.; Krasilnikova, J.; Telysheva, G.; Dzenis, M. Protective effects of proanthocyanidins extracts from the bark of deciduous trees in lipid systems. Holzforschung 2017, 71, 675–680. [Google Scholar] [CrossRef]
- Mannino, G.; Maffei, M.E. Metabolomics-based profiling, antioxidant power, and uropathogenic bacterial anti-adhesion activity of SP4TM, a formulation with a high content of Type-A proanthocyanidins. Antioxidants 2022, 11, 1234. [Google Scholar] [CrossRef] [PubMed]
- Zeng, Y.X.; Wang, S.; Wei, L.; Cui, Y.Y.; Chen, Y.H. Proanthocyanidins: Components, pharmacokinetics and biomedical properties. Am. J. Chin. Med. 2020, 48, 813–869. [Google Scholar] [CrossRef]
- Terra, X.; Montagut, G.; Bustos, M.; Llopiz, N.; Ardèvol, A.; Bladé, C.; Fernández-Larrea, F.; Pujadas, G.; Salvadó, J.; Arola, L.; et al. Grape-seed procyanidins prevent low-grade inflammation by modulating cytokine expression in rats fed a high-fat diet. Nutr. Biochem. 2009, 20, 210–218. [Google Scholar] [CrossRef]
- Koregol, A.C.; Kalburgi, N.B.; Puttarevanna, T.; Patil, R.S.; Singh, P.; Sulakod, K. Antimicrobial efficacy of grape seed extract in terminating the ramifications of plaque microorganisms: A randomized control study. Med. Pharm. Rep. 2022, 95, 185–190. [Google Scholar] [CrossRef] [PubMed]
- Kovács, D.; Palkovicsné, P.N.; Jerzsele, Á.; Süth, M.; Farkas, O. Protective effects of grape seed oligomeric proanthocyanidins in IPEC-J2-Escherichia coli/Salmonella typhimurium co-culture. Antibiotics 2022, 11, 110. [Google Scholar] [CrossRef] [PubMed]
- Maisuria, V.B.; Okshevsky, M.; Déziel, E.; Tufenkji, N. Proanthocyanidin interferes with intrinsic antibiotic resistance mechanisms of gram-negative bacteria. Adv. Sci. 2019, 6, 1802333. [Google Scholar] [CrossRef] [Green Version]
- Tatsuno, T.; Jinno, M.; Arima, Y.; Kawabata, T.; Hasegawa, T.; Yahagi, N.; Takano, F.; Ohta, T. Anti-inflammatory and anti-melanogenic proanthocyanidin oligomers from peanut skin. Biol. Pharm. Bull. 2012, 35, 909–916. [Google Scholar] [CrossRef] [Green Version]
- Janceva, S.; Lauberte, L.; Arshanitsa, A.; Akishin, A.; Dizhbite, T.; Telisheva, G. Optimization of Proanthocyanidins Extraction from Bark of Local Hardwood. Key Eng. Mater. 2017, 762, 163–170. [Google Scholar] [CrossRef]
- Janceva, S.; Andersone, A.; Lauberte, L.; Bikovens, O.; Nikolajeva, V.; Jashina, L.; Zaharova, N.; Telysheva, G.; Senkovs, M.; Rieksts, G.; et al. Sea Buckthorn (Hippophae rhamnoides) waste biomass after harvesting as a source of valuable biologically active compounds with nutraceutical and antibacterial potential. Plants 2022, 11, 642. [Google Scholar] [CrossRef]
- Álvarez-Martínez, F.J.; Barrajón-Catalán, E.; Micol, V. Tackling antibiotic resistance with compounds of natural origin: A comprehensive review. Biomedicines 2020, 8, 405. [Google Scholar] [CrossRef]
- Pal, S.K.; Shukla, Y. Herbal Medicine: Current Status and the future. Asian Pac. J. Cancer Prev. 2003, 4, 281–288. [Google Scholar] [PubMed]
- Cires, M.J.; Wong, X.; Carrasco-Pozo, C.; Gotteland, M. The gastrointestinal tract as a key target organ for the health-promoting effects of dietary proanthocyanidins. Front. Nutr. 2017, 3, 57. [Google Scholar] [CrossRef] [Green Version]
- Fortune Business Insights. Available online: https://www.fortunebusinessinsights.com/herbal-medicine-market-106320 (accessed on 9 December 2022).
- Centers for Disease Control and Prevention. Available online: https://www.cdc.gov/drugresistance/biggest-threats.html (accessed on 9 December 2022).
- Newton, H.J.; Sloan, J.; Bulach, D.M.; Seemann, T.; Allison, C.C.; Tauschek, M.; Robins-Browne, R.M.; Paton, J.C.; Whittam, T.S.; Paton, A.W.; et al. Shiga toxin-producing Escherichia coli strains negative for locus of enterocyte effacement. Emerg. Infect. Dis. 2009, 15, 372–380. [Google Scholar] [CrossRef]
- Adamczak, A.; Ożarowski, M.; Karpiński, T.M. Antibacterial activity of some flavonoids and organic acids widely distributed in plants. J. Clin. Med. 2020, 9, 109. [Google Scholar] [CrossRef] [Green Version]
- Awolola, G.V.; Koorbanally, N.A.; Chenia, H.; Shode, F.O.; Baijnath, H. Antibacterial and anti-biofilm activity of flavonoids and triterpenes isolated from the extracts of Ficus sansibarica Warb. subsp. Sansibarica (Moraceae) extracts. Afr. J. Tradit. Complem. Altern. Med. 2014, 11, 124–131. [Google Scholar] [CrossRef] [PubMed]
- Pacheco, A.G.; Alcântara, A.F.C.; Abreu, V.G.C.; Corrêa, G.M. Relationships between chemical structure and activity of triterpenes against gram-positive and gram-negative bacteria. In A Search for Antibacterial Agents; InTechOpen: London, UK, 2012. [Google Scholar] [CrossRef] [Green Version]
- Yazdanian, M.; Rostamzadeh, P.; Alam, M.; Abbasi, K.; Tahmasebi, E.; Tebyaniyan, H.; Ranjbar, R.; Seifalian, A.; Moghaddam, M.M.; Kahnamoei, M.B. Evaluation of antimicrobial and cytotoxic effects of Echinacea and Arctium extracts and Zataria essential oil. AMB Express 2022, 12, 75. [Google Scholar] [CrossRef] [PubMed]
- Akullo, J.O.; Kiage, B.; Nakimbugwe, D.; Kinyuru, J. Effect of aqueous and organic solvent extraction on in-vitro antimicrobial activity of two varieties of fresh ginger (Zingiber officinale) and garlic (Allium sativum). Heliyon 2022, 8, e10457. [Google Scholar] [CrossRef]
- Bussmann, R.W.; Malca-García, G.; Glenn, A.; Sharon, D.; Chait, G.; Díaz, D.; Pourmand, K.; Jonat, B.; Somogy, S.; Guardado, G.; et al. Minimum inhibitory concentrations of medicinal plants used in Northern Peru as antibacterial remedies. J. Ethnopharmacol. 2010, 132, 101–108. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pereira, E.M.; Machado, B.T.; Leal, I.C.; Jesus, D.M.; Damaso, C.R.; Pinto, A.V.; Giambiagi-deMarval, M.; Kuster, R.M.; Santos, K.R. Tabebuia avellanedae naphthoquinones: Activity against methicillin-resistant staphylococcal strains, cytotoxic activity and in vivo dermal irritability analysis. Ann. Clin. Microbiol. Antimicrob. 2006, 5, 5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elisia, I.; Pae, H.B.; Lam, V.; Cederberg, R.; Hofs, E.; Krystal, G. Comparison of RAW264.7, human whole blood and PBMC assays to screen for immunomodulators. J. Immunol. Methods 2018, 452, 26–31. [Google Scholar] [CrossRef] [PubMed]
- Linli, Z.; Jun, C.; Hejing, L.; Changhong, L.; Mingshun, C. Anti-inflammatory effect of lipophilic grape seed proanthocyanidin in RAW 264.7 cells and a zebrafish model. J. Funct. Foods 2020, 75, 104217. [Google Scholar] [CrossRef]
- Andersen-Civil, A.I.S.; Leppä, M.M.; Thamsborg, S.M.; Salminen, J.-P.; Williams, A.R. Structure-function analysis of purified proanthocyanidins reveals a role for polymer size in suppressing inflammatory responses. Commun. Biol. 2021, 4, 896. [Google Scholar] [CrossRef] [PubMed]
- Jekabsone, A.; Sile, I.; Cochis, A.; Makrecka-Kuka, M.; Laucaityte, G.; Makarova, E.; Rimondini, L.; Bernotiene, R.; Raudone, L.; Vedlugaite, E.; et al. Investigation of Antibacterial and Antiinflammatory Activities of Proanthocyanidins from Pelargonium sidoides DC Root Extract. Nutrients 2019, 11, 2829. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Janceva, S.; Andersone, A.; Spulle, U.; Tupciauskas, R.; Papadopoulou, E.; Bikovens, O.; Andzs, M.; Zaharova, N.; Rieksts, G.; Telysheva, G. Eco-friendly adhesives based on the oligomeric condensed tannins-rich extract from alder bark for particleboard and plywood production. Materials 2022, 15, 3894. [Google Scholar] [CrossRef]
Peak No. | tR (min) | [M−H]−(m/z) | Fragments | Identification |
---|---|---|---|---|
1 | 0.41 | 341.1124 | 179; 161; 143; 119; 113; 101 | Sucrose, fructose, glucose |
2 | 0.47 | 191.0239 | 111; 173; 127; 85 | Quinic acid |
3 | 0.98 | 175.0778 | 159; 147 | Serotonin |
4 | 1.84 | 305.0706 | 179; 125 | Gallocatechin or its isomer epigallocatechin |
5 | 1.89 | 593.1289 | 407; 425; 305; 467; 289 | (epi)catechin-(epi)gallocatechin |
6 | 1.97 | 1185.2393 | 881; 593; 305; 289; 245 | Procyanidin tetramer |
7 | 2.06 | 1055.2609 | 881; 593; 305; 289 | Procyanidin tetramer |
8 | 2.30 | 865.1929 | 577; 289; 245 | Procyanidin trimer |
9 | 2.38 | 289.0754 | 245; 125 | Catechin/Epicatechin |
10 | 2.50 | 1153.2501 | 865; 577; 289; 245 | Procyanidin tetramer |
11 | 3.28 | 609.4297 | 301; 271 | Quercetin-3-O-rutinoside |
12 | 3.33 | 301.0027 | 286; 109 | Quercetin |
13 | 7.14 | 487.3439 | 293; 117 | Triterpenoid |
14 | 7.79 | 471.3486 | 452; 265; 117 | Triterpenoid |
15 | 7.86 | 471.3490 | 265; 117 | Triterpenoid |
16 | 8.07 | 455.3535 | 277; 117 | Triterpenoid |
17 | 8.01 | 617.3828 | 255; 117 | Acylated triterpenoid |
SBT Cultivars | E.coli MIC/MBC, mg/mL | P. aeruginosa MIC/MBC, mg/mL | S. aureus MIC/MBC, mg/mL | B. cereus MIC/MBC, mg/mL | C. albicans MIC/MFC, mg/mL |
---|---|---|---|---|---|
50% EtOH extracts | |||||
Maria Bruvele | 0.2/0.2 | 0.39/0.78 | 0.2/0.39 | 0.39/50 | 0.2/>50 |
Bot. Lub. | 0.39/0.39 | 0.78/1.56 | 0.39/0.78 | 0.78/50 | 0.2/>50 |
Tatiana | 0.39/0.39 | 3.13/3.13 | 0.2/0.78 | 0.78/50 | 0.39/>50 |
Leikora | 0.39/0.39 | 0.78/1.56 | 0.39/0.78 | 0.39/12.5 | 12.5/25 |
Duet | 0.2/0.2 | 0.78/0.78 | 0.39/0.78 | 0.39/12.5 | 12.5/25 |
Otto | 0.2/0.2 | 0.78 /1.56 | 0.39/0.78 | 0.39/12.5 | 6.25/25 |
Clara | 0.2/0.2 | 0.78/1.56 | 1.56/3.13 | 0.39/12.5 | 12.5/25 |
Tarmo | 0.78/0.78 | 0.78/1.56 | 0.78/0.78 | 0.39/12.5 | 6.25/12.5 |
Water extracts | |||||
Maria Bruvele | 0.39/0.39 | 0.39/3.13 | 0.39/0.78 | 0.78/>50 | 0.39/>50 |
Bot. Lub. | 0.78/50 | 0.78/50 | 0.39/12.2 | 0.78/>50 | 0.39/>50 |
Tatiana | 0.39/0.39 | 0.78/1.56 | 0.39/0.78 | 0.78/>50 | 0.39/>50 |
Leikora | 0.39/0.39 | 1.56/1.56 | 1.56/1.56 | 0.78/25 | 12.5/12.5 |
Duet | 0.39/>50 | 1.56/>50 | 12.5/12.5 | 1.56/25 | 12.5/25 |
Otto | 0.78/>50 | 6.25/50 | 6.25/12.5 | 0.78/25 | 12.5/25 |
Clara | 0.39/0.39 | 1.56/1.56 | 0.78/0.78 | 0.78/25 | 12.5/25 |
Tarmo | 0.39/0.39 | 0.78/1.56 | 0.78/1.56 | 0.78/25 | 12.5/12.5 |
Samples | B. cereus MIC/MBC, mg/mL | C.albicans MIC/MFC, mg/mL |
---|---|---|
Maria Bruvele 50% EtOH extract | 0.39/50 | 0.20/>50 |
Maria Bruvele water extract | 0.78/>50 | 0.39/>50 |
PACs | 0.63/1.25 | 1.25/>2.5 |
Impurities | 1.56/>50 | 12.5/>50 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Andersone, A.; Janceva, S.; Lauberte, L.; Ramata-Stunda, A.; Nikolajeva, V.; Zaharova, N.; Rieksts, G.; Telysheva, G. Anti-Inflammatory, Anti-Bacterial, and Anti-Fungal Activity of Oligomeric Proanthocyanidins and Extracts Obtained from Lignocellulosic Agricultural Waste. Molecules 2023, 28, 863. https://doi.org/10.3390/molecules28020863
Andersone A, Janceva S, Lauberte L, Ramata-Stunda A, Nikolajeva V, Zaharova N, Rieksts G, Telysheva G. Anti-Inflammatory, Anti-Bacterial, and Anti-Fungal Activity of Oligomeric Proanthocyanidins and Extracts Obtained from Lignocellulosic Agricultural Waste. Molecules. 2023; 28(2):863. https://doi.org/10.3390/molecules28020863
Chicago/Turabian StyleAndersone, Anna, Sarmite Janceva, Liga Lauberte, Anna Ramata-Stunda, Vizma Nikolajeva, Natalija Zaharova, Gints Rieksts, and Galina Telysheva. 2023. "Anti-Inflammatory, Anti-Bacterial, and Anti-Fungal Activity of Oligomeric Proanthocyanidins and Extracts Obtained from Lignocellulosic Agricultural Waste" Molecules 28, no. 2: 863. https://doi.org/10.3390/molecules28020863
APA StyleAndersone, A., Janceva, S., Lauberte, L., Ramata-Stunda, A., Nikolajeva, V., Zaharova, N., Rieksts, G., & Telysheva, G. (2023). Anti-Inflammatory, Anti-Bacterial, and Anti-Fungal Activity of Oligomeric Proanthocyanidins and Extracts Obtained from Lignocellulosic Agricultural Waste. Molecules, 28(2), 863. https://doi.org/10.3390/molecules28020863