Effect of Yttrium on Ce/Ni-Metakaolin Catalysts for CO2 Methanation
Abstract
:1. Introduction
2. Results
2.1. Structure of the Catalysts
2.2. Metal Distribution and Chemical Surface Composition of the Studied Catalysts
2.3. Catalyst Reducibility and Adsorption Property
2.4. In Situ DRIFTS Analysis
2.5. Catalytic Performance of All Catalysts and Stability Test
3. Materials and Methods
3.1. Catalyst Preparation
3.2. Catalytic Activity
3.3. Catalyst Characterization
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Pham, C.Q.; Bahari, M.B.; Kumar, P.S.; Ahmed, S.F.; Xiao, L.; Kumar, S.; Qazaq, A.S.; Siang, T.J.; Tran, H.-T.; Islam, A.; et al. Carbon dioxide methanation on heterogeneous catalysts: A review. Environ. Chem. Lett. 2022, 20, 3613–3630. [Google Scholar] [CrossRef]
- Porosoff, M.D.; Yan, B.; Chen, J.G. Catalytic reduction of CO2 by H2 for synthesis of CO, methanol and hydrocarbons: Challenges and opportunities. Energy Environ. Sci. 2016, 9, 62–73. [Google Scholar] [CrossRef]
- Senftle, T.P.; Carter, E.A. The Holy Grail: Chemistry Enabling an Economically Viable CO2 Capture, Utilization, and Storage Strategy. Acc. Chem. Res. 2017, 50, 472–475. [Google Scholar] [CrossRef]
- Rodemerck, U.; Holeňa, M.; Wagner, E.; Smejkal, Q.; Barkschat, A.; Baerns, M. Catalyst Development for CO2 Hydrogenation to Fuels. ChemCatChem 2013, 5, 1948–1955. [Google Scholar] [CrossRef]
- Mod, E.C.; Roy, S.; Ernst, J.; Kharchenko, P.V.; Kheradpour, P.; Negre, N.; Eaton, M.L.; Landolin, J.M.; Bristow, C.A.; Ma, L.; et al. Identification of functional elements and regulatory circuits by Drosophila mod ENCODE. Science 2010, 330, 1787–1797. [Google Scholar]
- Sarić, M.; Dijkstra, J.W.; Haije, W.G. Economic perspectives of Power-to-Gas technologies in bio-methane production. J. CO2 Util. 2017, 20, 81–90. [Google Scholar] [CrossRef]
- Lin, Q.; Liu, X.Y.; Jiang, Y.; Wang, Y.; Huang, Y.; Zhang, T. Crystal phase effects on the structure and performance of ruthenium nanoparticles for CO2 hydrogenation. Catal. Sci. Technol. 2014, 4, 2058–2063. [Google Scholar] [CrossRef]
- Beaumont, S.K.; Alayoglu, S.; Pushkarev, V.V.; Liu, Z.; Kruse, N.; Somorjai, G.A. Exploring surface science and restructuring in reactive atmospheres of colloidally prepared bimetallic CuNi and CuCo nanoparticles on SiO2 in situ using ambient pressure X-ray photoelectron spectroscopy. Faraday Discuss. 2013, 162, 31–44. [Google Scholar] [CrossRef]
- Yang, Y.; Liu, J.; Liu, F.; Wu, D. Reaction mechanism of CO2 methanation over Rh/TiO2 catalyst. Fuel 2020, 276, 118093. [Google Scholar] [CrossRef]
- Chen, B.; Qiu, J.; Xu, L.; Cui, Y. Ni-based mesoporous Ce0.8Zr0.2O2 catalyst with enhanced low-temperature performance for CO2 methanation. Catal. Commun. 2022, 171, 106515. [Google Scholar] [CrossRef]
- Matsumura, Y.; Ishibe, H. Durable copper–zinc catalysts modified with indium oxide in high temperature steam reforming of methanol for hydrogen production. J. Power Sources 2012, 209, 72–80. [Google Scholar] [CrossRef]
- Lorenz, H.; Jochum, W.; Klötzer, B.; Stöger-Pollach, M.; Schwarz, S.; Pfaller, K.; Penner, S. Novel methanol steam reforming activity and selectivity of pure In2O3. Appl. Catal. A Gen. 2008, 347, 34–42. [Google Scholar] [CrossRef]
- Wang, X.; Zhu, L.; Liu, Y.; Wang, S. CO2 methanation on the catalyst of Ni/MCM-41 promoted with CeO2. Sci. Total Environ. 2018, 625, 686–695. [Google Scholar] [CrossRef] [PubMed]
- Graça, I.; González, L.V.; Bacariza, M.C.; Fernandes, A.; Henriques, C.; Lopes, J.M.; Ribeiro, M.F. CO2 hydrogenation into CH4 on NiHNaUSY zeolites. Appl. Catal. B: Environ. 2014, 147, 101–110. [Google Scholar] [CrossRef]
- Xu, J.; Su, X.; Duan, H.; Hou, B.; Lin, Q.; Liu, X.; Pan, X.; Pei, G.; Geng, H.; Huang, Y.; et al. Influence of pretreatment temperature on catalytic performance of rutile TiO2-supported ruthenium catalyst in CO2 methanation. J. Catal. 2016, 333, 227–237. [Google Scholar] [CrossRef]
- Garbarino, G.; Bellotti, D.; Finocchio, E.; Magistri, L.; Busca, G. Methanation of carbon dioxide on Ru/Al2O3: Catalytic activity and infrared study. Catal. Today 2016, 277, 21–28. [Google Scholar] [CrossRef]
- Ren, J.; Zeng, F.; Mebrahtu, C.; Palkovits, R. Understanding promotional effects of trace oxygen in CO2 methanation over Ni/ZrO2 catalysts. J. Catal. 2022, 405, 385–390. [Google Scholar] [CrossRef]
- Preianò, M.; Pasqua, L.; Gallelli, L.; Galasso, O.; Gasparini, G.; Savino, R.; Terracciano, R. Simultaneous extraction and rapid visualization of peptidomic and lipidomic body fluids fingerprints using mesoporous aluminosilicate and MALDI-TOF MS. Proteomics 2012, 12, 3286–3294. [Google Scholar] [CrossRef]
- Sholeha, N.A.; Jannah, L.; Rohma, H.N.; Widiastuti, N.; Prasetyoko, D.; Jalil, A.A.; Bahruji, H. Synthesis of Zeolite NaY from Dealuminated Metakaolin as Ni Support for CO2 Hydrogenation to Methane. Clays Clay Miner. 2020, 68, 513–523. [Google Scholar] [CrossRef]
- Chouikhi, N.; Cecilia, J.A.; Vilarrasa-García, E.; Besghaier, S.; Chlendi, M.; Franco Duro, F.I.; Rodriguez Castellon, E.; Bagane, M. CO2 Adsorption of Materials Synthesized from Clay Minerals: A Review. Minerals 2019, 9, 514. [Google Scholar] [CrossRef]
- Li, D.; Zeng, L.; Li, X.; Wang, X.; Ma, H.; Assabumrungrat, S.; Gong, J. Ceria-promoted Ni/SBA-15 catalysts for ethanol steam reforming with enhanced activity and resistance to deactivation. Appl. Catal. B Environ. 2015, 176–177, 532–541. [Google Scholar] [CrossRef]
- Baysal, Z.; Kureti, S. CO2 methanation on Mg-promoted Fe catalysts. Appl. Catal. B Environ. 2020, 262, 118300. [Google Scholar] [CrossRef]
- Bacariza, M.C.; Graça, I.; Bebiano, S.S.; Lopes, J.M.; Henriques, C. Magnesium as Promoter of CO2 Methanation on Ni-Based USY Zeolites. Energy Fuels 2017, 31, 9776–9789. [Google Scholar] [CrossRef]
- Li, J.F.; Xia, C.; Au, C.T.; Liu, B.S. Y2O3-promoted NiO/SBA-15 catalysts highly active for CO2/CH4 reforming. Int. J. Hydrog. Energy 2014, 39, 10927–10940. [Google Scholar] [CrossRef]
- Romero-Sáez, M.; Dongil, A.B.; Benito, N.; Espinoza-González, R.; Escalona, N.; Gracia, F. CO2 methanation over nickel-ZrO2 catalyst supported on carbon nanotubes: A comparison between two impregnation strategies. Appl. Catal. B Environ. 2018, 237, 817–825. [Google Scholar] [CrossRef]
- Lin, J.; Ma, C.; Wang, Q.; Xu, Y.; Ma, G.; Wang, J.; Wang, H.; Dong, C.; Zhang, C.; Ding, M. Enhanced low-temperature performance of CO2 methanation over mesoporous Ni/Al2O3-ZrO2 catalysts. Appl. Catal. B Environ. 2019, 243, 262–272. [Google Scholar] [CrossRef]
- Sun, C.; Świrk Da Costa, K.; Wierzbicki, D.; Motak, M.; Grzybek, T.; Da Costa, P. On the effect of yttrium promotion on Ni-layered double hydroxides-derived catalysts for hydrogenation of CO2 to methane. Int. J. Hydrog. Energy 2021, 46, 12169–12179. [Google Scholar] [CrossRef]
- Battumur, N.; Sergelenbaatar, N.; Bold, T.; Byambajav, E. Cerium-promoted nickel catalysts supported on yttrium-doped γ-alumina for carbon dioxide methanation. J. CO2 Util. 2023, 68, 102380. [Google Scholar] [CrossRef]
- Qin, Z.; Wang, X.; Dong, L.; Su, T.; Li, B.; Zhou, Y.; Jiang, Y.; Luo, X.; Ji, H. CO2 methanation on Co/TiO2 catalyst: Effects of Y on the support. Chem. Eng. Sci. 2019, 210, 115245. [Google Scholar] [CrossRef]
- Albarazi, A.; Beaunier, P.; Da Costa, P. Hydrogen and syngas production by methane dry reforming on SBA-15 supported nickel catalysts: On the effect of promotion by Ce0.75Zr0.25O2 mixed oxide. Int. J. Hydrog. Energy 2013, 38, 127–139. [Google Scholar] [CrossRef]
- Liu, C.; Zhou, J.; Ma, H.; Qian, W.; Zhang, H.; Ying, W. Antisintering and High-Activity Ni Catalyst Supported on Mesoporous Silica Incorporated by Ce/Zr for CO Methanation. Ind. Eng. Chem. Res. 2018, 57, 14406–14416. [Google Scholar] [CrossRef]
- Ye, R.-P.; Li, Q.; Gong, W.; Wang, T.; Razink, J.J.; Lin, L.; Qin, Y.-Y.; Zhou, Z.; Adidharma, H.; Tang, J.; et al. High-performance of nanostructured Ni/CeO2 catalyst on CO2 methanation. Appl. Catal. B Environ. 2020, 268, 118474. [Google Scholar] [CrossRef]
- Yu, Y.; Chan, Y.M.; Bian, Z.; Song, F.; Wang, J.; Zhong, Q.; Kawi, S. Enhanced performance and selectivity of CO2 methanation over g-C3N4 assisted synthesis of Ni CeO2 catalyst: Kinetics and DRIFTS studies. Int. J. Hydrog. Energy 2018, 43, 15191–15204. [Google Scholar] [CrossRef]
- Zhao, K.; Wang, W.; Li, Z. Highly efficient Ni/ZrO2 catalysts prepared via combustion method for CO2 methanation. J. CO2 Util. 2016, 16, 236–244. [Google Scholar] [CrossRef]
- Rahmani, S.; Rezaei, M.; Meshkani, F. Preparation of highly active nickel catalysts supported on mesoporous nanocrystalline γ-Al2O3 for CO2 methanation. J. Ind. Eng. Chem. 2014, 20, 1346–1352. [Google Scholar] [CrossRef]
- Sun, J.; Wang, Y.; Zou, H.; Guo, X.; Wang, Z.-J. Ni catalysts supported on nanosheet and nanoplate γ-Al2O3 for carbon dioxide methanation. J. Energy Chem. 2019, 29, 3–7. [Google Scholar] [CrossRef]
- Jing, J.-Y.; Yang, Z.-F.; Huo, J.-M.; Bai, H.-C.; Li, W.-Y. Metal precursor impregnation sequence effect on the structure and performance of Ni Co/MgO catalyst. Int. J. Hydrog. Energy 2019, 44, 8089–8098. [Google Scholar] [CrossRef]
- Wan, H.; He, Y.; Su, Q.; Liu, L.; Cui, X. Slag-based geopolymer microspheres as a support for CO2 methanation. Fuel 2022, 319, 123627. [Google Scholar] [CrossRef]
- Sun, C.; Świrk Da Costa, K.; Wang, Y.; Scheidl, K.S.; Breiby, D.W.; Rønning, M.; Hu, C.; Da Costa, P. Tailoring the yttrium content in Ni-Ce-Y/SBA-15 mesoporous silicas for CO2 methanation. Catal. Today 2021, 382, 104–119. [Google Scholar] [CrossRef]
- Sun, C.; Beaunier, P.; La Parola, V.; Liotta, L.F.; Da Costa, P. Ni/CeO2 Nanoparticles Promoted by Yttrium Doping as Catalysts for CO2 Methanation. ACS Appl. Nano Mater. 2020, 3, 12355–12368. [Google Scholar] [CrossRef]
- Németh, M.; Schay, Z.; Srankó, D.; Károlyi, J.; Sáfrán, G.; Sajó, I.; Horváth, A. Impregnated Ni/ZrO2 and Pt/ZrO2 catalysts in dry reforming of methane: Activity tests in excess methane and mechanistic studies with labeled 13CO2. Appl. Catal. A Gen. 2015, 504, 608–620. [Google Scholar] [CrossRef]
- Singha, R.K.; Shukla, A.; Yadav, A.; Adak, S.; Iqbal, Z.; Siddiqui, N.; Bal, R. Energy efficient methane tri-reforming for synthesis gas production over highly coke resistant nanocrystalline Ni–ZrO2 catalyst. Appl. Energy 2016, 178, 110–125. [Google Scholar] [CrossRef]
- Du, X.; Zhang, D.; Shi, L.; Gao, R.; Zhang, J. Morphology Dependence of Catalytic Properties of Ni/CeO2 Nanostructures for Carbon Dioxide Reforming of Methane. J. Phys. Chem. C 2012, 116, 10009–10016. [Google Scholar] [CrossRef]
- Atribak, I.; Bueno-Lopez, A.; Garcia-Garcia, A. Role of yttrium loading in the physico-chemical properties and soot combustion activity of ceria and ceria-zirconia catalysts. J. Mol. Catal. A-Chem. 2009, 300, 103–110. [Google Scholar] [CrossRef]
- Singha, R.K.; Shukla, A.; Yadav, A.; Sivakumar Konathala, L.N.; Bal, R. Effect of metal-support interaction on activity and stability of Ni-CeO2 catalyst for partial oxidation of methane. Appl. Catal. B Environ. 2017, 202, 473–488. [Google Scholar] [CrossRef]
- Jia, X.; Zhang, X.; Rui, N.; Hu, X.; Liu, C.-J. Structural effect of Ni/ZrO2 catalyst on CO2 methanation with enhanced activity. Appl. Catal. B Environ. 2019, 244, 159–169. [Google Scholar] [CrossRef]
- Li, Y.; Men, Y.; Liu, S.; Wang, J.; Wang, K.; Tang, Y.; An, W.; Pan, X.; Li, L. Remarkably efficient and stable Ni/Y2O3 catalysts for CO2 methanation: Effect of citric acid addition. Appl. Catal. B Environ. 2021, 293, 120206. [Google Scholar] [CrossRef]
- Coleman, L.J.I.; Epling, W.; Hudgins, R.R.; Croiset, E. Ni/Mg–Al mixed oxide catalyst for the steam reforming of ethanol. Appl. Catal. A Gen. 2009, 363, 52–63. [Google Scholar] [CrossRef]
- Chen, X.; He, Y.; Cui, X.; Liu, L. High value utilization of waste blast furnace slag: New Ni-CeO2/hBFS catalyst for low temperature CO2 methanation. Fuel 2023, 338, 127309. [Google Scholar] [CrossRef]
- Lee, S.M.; Lee, Y.H.; Moon, D.H.; Ahn, J.Y.; Nguyen, D.D.; Chang, S.W.; Kim, S.S. Reaction Mechanism and Catalytic Impact of Ni/CeO2–x Catalyst for Low-Temperature CO2 Methanation. Ind. Eng. Chem. Res. 2019, 58, 8656–8662. [Google Scholar] [CrossRef]
- Tan, M.; Wang, X.; Wang, X.; Zou, X.; Ding, W.; Lu, X. Influence of calcination temperature on textural and structural properties, reducibility, and catalytic behavior of mesoporous γ-alumina-supported Ni–Mg oxides by one-pot template-free route. J. Catal. 2015, 329, 151–166. [Google Scholar] [CrossRef]
- Saw, E.T.; Oemar, U.; Tan, X.R.; Du, Y.; Borgna, A.; Hidajat, K.; Kawi, S. Bimetallic Ni–Cu catalyst supported on CeO2 for high-temperature water–gas shift reaction: Methane suppression via enhanced CO adsorption. J. Catal. 2014, 314, 32–46. [Google Scholar] [CrossRef]
- Panagiotopoulou, P. Methanation of CO2 over alkali-promoted Ru/TiO2 catalysts: II. Effect of alkali additives on the reaction pathway. Appl. Catal. B Environ. 2018, 236, 162–170. [Google Scholar] [CrossRef]
- Marwood, M.; Doepper, R.; Renken, A. In-situ surface and gas phase analysis for kinetic studies under transient conditions the catalytic hydrogenation of CO2. Appl. Catal. A Gen. 1997, 151, 223–246. [Google Scholar] [CrossRef]
- Westermann, A.; Azambre, B.; Bacariza, M.C.; Graça, I.; Ribeiro, M.F.; Lopes, J.M.; Henriques, C. Insight into CO2 methanation mechanism over NiUSY zeolites: An operando IR study. Appl. Catal. B Environ. 2015, 174–175, 120–125. [Google Scholar] [CrossRef]
- Daroughegi, R.; Meshkani, F.; Rezaei, M. Enhanced low-temperature activity of CO2 methanation over ceria-promoted Ni-Al2O3 nanocatalyst. Chem. Eng. Sci. 2021, 230, 116194. [Google Scholar] [CrossRef]
- Summa, P.; Swirk, K.; Wierzbicki, D.; Motak, M.; Alxneit, I.; Ronning, M.; Da Costa, P. Co-Precipitated Ni-Mg-Al Hydrotalcite-Derived Catalyst Promoted with Vanadium for CO2 Methanation. Molecules 2021, 26, 6506. [Google Scholar] [CrossRef]
- Bacariza, M.C.; Graça, I.; Lopes, J.M.; Henriques, C. Ni-Ce/Zeolites for CO2 Hydrogenation to CH4: Effect of the Metal Incorporation Order. ChemCatChem 2018, 10, 2773–2781. [Google Scholar] [CrossRef]
- Liao, Y.; He, Y.; Cui, X.; Liu, L. Elemental Fe conditioning for the synthesis of highly selective and stable high entropy catalysts for CO2 methanation. Fuel 2023, 355, 129494. [Google Scholar] [CrossRef]
Sample | Surface Area (m2·g−1) | Pore Volume (cm3·g−1) | Pore Diameter (nm) | Ni Loading (wt.%) a |
---|---|---|---|---|
Ni-MK | 15.8 | 0.0828 | 20.8 | 13.64 |
Ce/Ni-MK | 26.8 | 0.1227 | 18.2 | 12.96 |
Y-Ce/Ni-MK | 28.3 | 0.1309 | 18.5 | 12.92 |
Sample | Binding Energy(eV) | Atomic Ratio (%) | |||||
---|---|---|---|---|---|---|---|
Ni2p3/2 | Ce3d5/2 | Os1 | Y3d5/2 | Ni0/(Ni0 + Ni2+) | Ce3+/(Ce3++Ce4+) | Oα/(Oα + Oβ) | |
Ni-MK | 856.0 | – | 529.4 | – | 5.5 | – | 3.9 |
Ce/Ni-MK | 856.0 | 881.9 | 529.4 | – | 7.7 | 32.6 | 10.5 |
Y-Ce/Ni-MK | 856.2 | 881.9 | 529.5 | 157.4 | 10.2 | 42.0 | 15.3 |
Sample | Temperature (℃) | H2 Consumption (μmol/g) a | Total H2 Uptake (μmol/g) a | ||||
---|---|---|---|---|---|---|---|
α | β | γ | α | β | γ | ||
Ni-MK | - | 261 | - | - | 1654.0 | - | 1654.0 |
Ce/Ni-MK | 216 | 259 | - | 486.3 | 1698.5 | - | 2184.8 |
Y-Ce/Ni-MK | 200 | 251 | 851 | 687.3 | 1820.5 | - | 2507.3 |
Sample | Weak Basic Sites (μmol/g) a | Medium Basic Sites (μmol/g) a | Strong Basic Sites (μmol/g) a | Total Basicity (μmol/g) a |
---|---|---|---|---|
Ni-MK | 60.5 | 168.3 | 135.8 | 364.6 |
Ce/Ni-MK | 60.7 | 204.1 | 147.6 | 412.4 |
Y-Ce/Ni-MK | 165.0 | 190.5 | 170.3 | 525.8 |
Catalyst | H2:CO2 | Space Velocity (mL·g−1⋅h−1) | CO2 Conversion (%) | CH4 Selectivity (%) | Reaction Temperature (℃) | Ref. |
---|---|---|---|---|---|---|
Y-Ce/Ni-MK | 4:1 | 12,000 | 78.4 | 99.8 | 300 | This Work |
25Ni-5Ce-Al2O3 | 3.5:1 | 9000 | 72 | 98 | 300 | [56] |
Ni-CP-V2.0 | 4:1 | 12,000 | 68 | 96 | 300 | [57] |
15Ni10Ce10Y/SBA-15 | 4:1 | 12,000 | 20 | 97 | 300 | [39] |
20Ce/15Ni/CsUSY(38) | 4:1 | - | 66 | 98 | 300 | [58] |
HEO-4-900/H2 | 4:1 | 9000 | 62 | 98 | 300 | [59] |
Chemical Composition (Oxide) | SiO2 | Al2O3 | Fe2O3 | K2O | Na2O | MgO |
---|---|---|---|---|---|---|
Metakaolin (wt.%) | 48.75 | 42.34 | 0.48 | 0.089 | 0.39 | 0.13 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Ye, Q.; Xu, X.; Dhmees, A.S.; Cui, X. Effect of Yttrium on Ce/Ni-Metakaolin Catalysts for CO2 Methanation. Molecules 2023, 28, 7079. https://doi.org/10.3390/molecules28207079
Wang Y, Ye Q, Xu X, Dhmees AS, Cui X. Effect of Yttrium on Ce/Ni-Metakaolin Catalysts for CO2 Methanation. Molecules. 2023; 28(20):7079. https://doi.org/10.3390/molecules28207079
Chicago/Turabian StyleWang, Yuyi, Quan Ye, Xinyu Xu, Abdelghaffar S. Dhmees, and Xuemin Cui. 2023. "Effect of Yttrium on Ce/Ni-Metakaolin Catalysts for CO2 Methanation" Molecules 28, no. 20: 7079. https://doi.org/10.3390/molecules28207079
APA StyleWang, Y., Ye, Q., Xu, X., Dhmees, A. S., & Cui, X. (2023). Effect of Yttrium on Ce/Ni-Metakaolin Catalysts for CO2 Methanation. Molecules, 28(20), 7079. https://doi.org/10.3390/molecules28207079