Pyrrole-Based Enaminones as Building Blocks for the Synthesis of Indolizines and Pyrrolo[1,2-a]pyrazines Showing Potent Antifungal Activity
Abstract
:1. Introduction
2. Results and Discussion
2.1. Chemistry
2.2. Antifungal Activity
2.3. Molecular Docking Study
3. Materials and Methods
3.1. General Information
3.2. Chemistry
- Ethyl 2-(2-formyl-1H-pyrrol-1-yl) acetate (8b). At 0 °C and under N2 atmosphere, NaH (60%, 0.051 g, 1.27 mmol) was added to a solution of 6 (0.100 g, 1.05 mmol) and anhydrous DMF (2.0 mL), and the mixture was stirred for 20 min. Then, 7b (0.210 g, 1.26 mmol) was added, and the solution was stirred at room temperature (rt) for 4 h. The reaction mixture was extracted with hexane/EtOAc (1:1, 15.0 mL). The organic layer was washed with brine (5.0 mL × 3) and dried (Na2SO4), and the solvent was removed under vacuum. The residue was purified by column chromatography over silica gel (hexane/EtOAc, 9:1) to obtain 8b (0.179 g, 94%) as a pale violet oil. Rf 0.64 (hexane/EtOAc, 1:1). IR (film): ῡ 3130, 2993, 2978, 2798, 1735, 1656, 1482, 1402, 1315, 1218, 1027, 752 cm−1. 1H NMR (400 MHz, CDCl3): δ 1.28 (t, J = 7.2 Hz, 3H, CO2CH2CH3), 4.22 (q, J = 7.2 Hz, 2H, CO2CH2CH3), 5.05 (s, 2H, CH2), 6.29 (dd, J = 4.0, 2.4 Hz, 1H, H-4′), 6.90–6.93 (m, 1H, H-5′), 6.98 (dd, J = 4.0, 1.6 Hz, 1H, H-3′), 9.52 (d, J = 0.8 Hz, 1H, CHO). 13C NMR (100 MHz, CDCl3): δ 14.1 (CO2CH2CH3), 50.2 (CH2), 61.6 (CO2CH2CH3), 110.2 (C-4′), 124.6 (C-3′) 131.7 (C-2′), 132.0 (C-5′), 168.3 (CO2CH2CH3), 179.7 (CHO). HRMS (EI): m/z [M+] calcd. for C9H11NO3: 181.0739; found: 181.0733.
- 1-(2-Oxo-2-phenylethyl)-1H-pyrrole-2-carbaldehyde (8c). Following the method described for 8b, a mixture of 6 (0.100 g, 1.05 mmol), NaH (60%, 0.505 g, 1.26 mmol), and 7c (0.251 g, 1.26 mmol) furnished 8c (0.200 g, 89%) as white needles. Rf 0.19 (hexane/EtOAc, 9:1); mp 114–115 °C. IR (film): ῡ 3112, 2938, 2812, 1702, 1648, 1402, 1366, 1330, 1222, 1080, 1019, 1005, 748, 690 cm−1. 1H NMR (300 MHz, CDCl3): δ 5.81 (s, 2H, CH2), 6.36 (dd, J = 4.2, 2.5 Hz, 1H, H-4), 6.94–6.98 (m, 1H, H-5), 7.04 (dd, J = 4.2, 1.5 Hz, 1H, H-3), 7.48–7.55 (m, 2H, H-3″), 7.59–7.67 (m, 1H, H-4″), 7.98–8.03 (m, H-2″), 9.51 (d, J = 0.9 Hz, 1H, CHO). 13C NMR (187.5 MHz, CDCl3): δ 54.7 (CH2), 110.3 (C-4), 124.7 (C-3), 128.0 (C-2″), 128.9 (C-3″), 131.6 (C-2), 132.5 (C-5), 133.8 (C-4″), 134.8 (C-1″), 179.8 (CHO), 192.9 (CO). HRMS (EI): m/z [M+] calcd. for C13H11NO2: 213.0790; found: 213.0790.
- 1-(2-(3-Methoxyphenyl)-2-oxoethyl)-1H-pyrrole-2-carbaldehyde (8d). Following the method described for 8b, a mixture of 6 (0.060 g, 0.63 mmol), NaH (60%, 0.030 g, 0.76 mmol), and 7c (0.174 g, 0.76 mmol) afforded 8d (0.070 g, 45%) as white needles. Rf 0.48 (hexane/EtOAc, 1:1); mp 106–107 °C. IR (KBr): ῡ 2939, 2799, 1694, 1649, 1591, 1403, 1260, 1192, 1024, 857, 754 cm−1. 1H NMR (750 MHz, CDCl3): δ 3.85 (s, 3H, CH3O), 5.79 (s, 2H, CH2), 6.35 (dd, J = 3.9, 2.6 Hz, 1H, H-4), 6.95 (br s, 1H, H-5), 7.03 (dd, J = 3.9, 1.5 Hz, 1H, H-3), 7.16 (ddd, J = 8.3, 2.6, 1.1 Hz, H-4″), 7.42 (t, J = 8.3 Hz, 1H, H-5″), 7.50 (dd, J = 2.6, 1.5 Hz, 1H, H-2″), 7.58 (dt, J = 7.5, 1.5 Hz, 1H, H-6″), 9.51 (d, J = 0.8 Hz, 1H, CHO). 13C NMR (187.5 MHz, CDCl3): δ 54.9 (CH2), 55.5 (CH3O), 110.3 (C-4), 112.4 (C-2″), 120.4 (C-4″), 120.5 (C-6″), 124.8 (C-3), 129.9 (C-5″), 131.6 (C-2), 132.5 (C-5), 136.1 (C-1″), 160.0 (C-3″), 179.8 (CHO), 192.8 (CO). HRMS (EI): m/z [M+] calcd. for C14H13NO3: 243.0895; found: 243.0891.
- 1-(2-(4-Methoxyphenyl)-2-oxoethyl)-1H-pyrrole-2-carbaldehyde (8e). Following the method described for 8b, a mixture of 6 (0.200 g, 2.10 mmol), NaH (60%, 0.100 g, 2.52 mmol), and 7e (0.577 g, 2.52 mmol) provided 8e (0.413 g, 72%) as white needles. Rf 0.70 (hexane/EtOAc, 1:1); mp 118–119 °C. IR (KBr): ῡ 2939, 1652, 1601, 1406, 1366, 1226, 1178, 1024, 846, 754 cm−1. 1H NMR (600 MHz, CDCl3): δ 3.88 (s,1H, CH3O), 5.77 (s, 2H, CH2), 6.35 (dd, J = 3.9, 2.4 Hz, 1H, H-4), 6.95 (br s, 1H, H-5), 6.96–6.99 (m, 2H, H-3″), 7.02 (dd, J = 3.9, 1.8 Hz, 1H, H-3), 7.97–8.00 (m, 2H, H-2″), 9.50 (d, J = 0.6 Hz, 1H, CHO). 13C NMR (150 MHz, CDCl3): δ 54.3 (CH2), 55.5 (CH3O), 110.2 (C-4), 114.1 (C-3″), 124.7 (C-3), 127.8 (C-1″), 130.4 (C-2″), 131.6 (C-2), 132.6 (C-5), 164.1 (C-4″), 179.8 (CHO), 191.3 (CO). HRMS (EI): m/z [M+] calcd. for C14H13NO3: 243.0895; found: 243.0885.
- 1-(2-(3,4-Dimethoxyphenyl)-2-oxoethyl)-1H-pyrrole-2-carbaldehyde (8f). Following the method described for 8b, a mixture of 6 (0.030 g, 0.32 mmol), NaH (60%, 0.015 g, 0.38 mmol), and 7f (0.098 g, 0.38 mmol) gave 8f (0.070 g, 81%) as white needles. Rf 0.13 (hexane/EtOAc, 1:1); 148–149 °C. IR (film): ῡ 3011, 1707, 1356, 1219, 1417, 762 cm−1. 1H NMR (600 MHz, CDCl3): δ 3.93 (s, 3H, CH3O), 3.97 (s, 3H, CH3O), 5.79 (s, 2H, CH2), 6.35 (dd, J = 3.9, 2.7 Hz, 1H, H-4), 6.94 (d, J = 8.1 Hz, 1H, H-5″), 6.96 (br s, 1H, H-5), 7.03 (dd, J = 3.9, 1.8 Hz, 1H, H-3), 7.53 (d, J = 2.1 Hz, 1H, H-2″), 7.66 (dd, J = 8.1, 2.1 Hz, 1H, H-6″), 9.52 (d, J = 0.6 Hz, 1H, CHO). 13C NMR (150 MHz, CDCl3): δ 54.2 (CH2), 56.0 (CH3O), 56.1 (CH3O), 110.2 (C-2″, C-4), 110.3 (C-5″), 122.6 (C-6″), 124.8 (C-3), 128.0 (C-1″), 131.7 (C-2), 132.6 (C-5), 149.3 (C-3″), 154.0 (C-4″), 179.9 (CHO), 191.5 (CO). HRMS (EI): m/z [M+] calcd. for C15H15NO4: 273.1001; found: 273.1002.
- 2-(2-Formyl-1H-pyrrol-1-yl)acetonitrile (8g). Following the method described for 8b, a mixture of 6 (0.050 g, 0.53 mmol), NaH (60%, 0.025 g, 0.63 mmol), and 7g (0.076 g, 0.63 mmol) produced 8g (0.036 g, 51%) as pale violet oil. Rf 0.64 (hexane/EtOAc, 1:1). IR (film): ῡ 3113, 2864, 2253, 1652, 1475, 1406, 1362, 1308, 1222, 1028, 748 cm−1. 1H NMR (750 MHz, CDCl3): δ 5.35 (s, 2H, CH2), 6.34 (dd, J = 3.9, 2.6 Hz, 1H, H-4′), 7.00 (dd, J = 3.9, 1.5 Hz, 1H, H-3′), 7.08 (br s, 1H, H-5′), 9.57 (d, J = 0.8 Hz, 1H, CHO). 13C NMR (187.5 MHz, CDCl3): δ 36.2 (CH2), 111.5 (C-4′), 114.5 (CN), 125.2 (C-3′), 130.7 (C-5′), 131.0 (C-2′), 179.9 (CHO). HRMS (EI): m/z [M+] calcd. for C7H6N2O: 134.0480; found: 134.0477.
- Ethyl (Z)-3-(dimethylamino)-2-(2-formyl-1H-pyrrol-1-yl)acrylate (1b). In a threaded ACE glass pressure tube equipped with a magnetic stirring bar and sealed with a Teflon screw cap, a mixture of 8b (0.100 g, 0.55 mmol) and DMFDMA (0.329 g, 2.75 mmol) in anhydrous DMF (2.0 mL) was heated at 100 °C for 20 h. A mixture of CH2Cl2/toluene (10.0 mL/1.0 mL) was added, and the solvent was removed under vacuum. The residue was purified by column chromatography over silica gel (hexane/EtOAc, 7:3), resulting in 1b (0.057 g, 44%) as a yellow oil. Rf 0.16 (hexane/EtOAc, 1:1). IR (film): ῡ 2934, 1663, 1618, 1303, 1209, 1078, 749 cm−1. 1H NMR (750 MHz, CDCl3): δ 1.16 (t, J = 6.8 Hz, 3H, CO2CH2CH3), 2.65 (br, 6H, N(CH3)2), 4.04–4.16 (m, 2H, CO2CH2CH3), 6.29 (dd, J = 3.8, 2.3 Hz, H-4′), 6.82 (br t, J = 2.3 Hz, 1H, H-5′), 7.01 (dd, J = 3.8, 1.5 Hz, H-3′), 7.51 (s, 1H, H-3), 9.56 (s, 1H, CHO). 13C NMR (187.5 MHz, CDCl3): δ 14.5 (CO2CH2CH3), 34.9 (N(CH3)2), 60.1 (CO2CH2CH3), 97.9 (C-2), 110.2 (C-4′), 120.9 (C-3′), 134.2 (C-5′), 134.9 (C-2′), 146.0 (C-3), 166.9 (CO2Et), 179.8 (CHO). HRMS (EI): m/z [M+] calcd. for C12H16N2O3: 236.1161; found: 236.1159.
- (Z)-1-(1-(Dimethylamino)-3-oxo-3-phenylprop-1-en-2-yl)-1H-pyrrole-2-carbaldehyde (2a). Following the method described for 1b, a mixture of 8c (0.030 g, 0.14 mmol) and DMFDMA (0.084 g, 0.70 mmol) in anhydrous DMF (1.0 mL) delivered 2a (0.020 g, 53%) as a yellow oil. Rf 0.16 (hexane/EtOAc, 1:1). IR (film): ῡ 3097, 2928, 1637, 1543, 1413, 1388, 1323, 1095, 950, 878, 766, 708 cm−1. 1H NMR (750 MHz, CDCl3): δ 2.68 (br, 6H, N(CH3)2), 6.33 (dd, J = 3.9, 2.6 Hz, 1H, H-4), 6.89 (br s, 1H, H-5), 7.02 (dd, J = 3.9, 1.5 Hz, 1H, H-3), 7.31–7.36 (m, 3H, H-1′, H-3″), 7.37–7.40 (m, 1H, H-4″), 7.48–7.52 (m, 2H, H-2″), 9.60 (d, J = 0.9 Hz, 1H, CHO). 13C NMR (187.5 MHz, CDCl3): δ 29.6 (br, N(CH3)2), 110.6 (C-2′, C-4), 122.6 (C-3), 127.90 (C-2″), 127.93 (C-3″), 129.9 (C-4″), 134.39 (C-2), 134.43 (C-5), 139.9 (C-1″), 150.2 (C-1′), 179.4 (CHO), 190.9 (CO). HRMS (EI): m/z [M+] calcd. for C16H16N2O2: 268.1212; found: 268.1213.
- (Z)-1-(1-(Dimethylamino)-3-(3-methoxyphenyl)-3-oxoprop-1-en-2-yl)-1H-pyrrole-2-carbaldehyde (2b). Following the method described for 1b, a mixture of 8d (0.050 g, 0.21 mmol) and DMFDMA (0.125 g, 1.05 mmol) in anhydrous DMF (1.0 mL) formed 2b (0.035 g, 56%) as a pale violet oil. Rf 0.45 (hexane/EtOAc, 1:1). IR (film): ῡ 2925, 1663, 1588, 1424, 1322, 1042, 748 cm−1. 1H NMR (500 MHz, CDCl3): δ 2.70 (br, 6H, N(CH3)2), 3.79 (s, 3H, CH3O), 6.31–6.34 (m, 1H, H-4), 6.88 (br s, 1H, H-5), 6.92 (dm, J = 8.0 Hz, 1H, H-4″), 7.01–7.04 (m, 2H, H-2″, H-3), 7.06–7.10 (m, 1H, H-6″), 7.23 (t, J = 8.0 Hz, 1H, H-5″), 7.37 (br s, 1H, H-1′), 9.60 (s, 1H, CHO). 13C NMR (125 MHz, CDCl3): δ 36.5 (br, N(CH3)2), 55.2 (CH3O), 110.6 (C-4), 111.1 (C-2′), 112.7 (C-2″), 116.3 (C-4″), 120.3 (C-6″), 122.5 (C-3), 128.9 (C-5″), 129.5 (C-2), 134.4 (C-5), 141.1 (C-1″), 150.4 (C-1′), 159.2 (C-3″), 179.4 (CHO), 190.6 (CO). HRMS (EI): m/z [M+] calcd. for C17H18N2O3: 298.1317; found: 298.1311.
- (Z)-1-(1-(Dimethylamino)-3-(4-methoxyphenyl)-3-oxoprop-1-en-2-yl)-1H-pyrrole-2-carbaldehyde (2c). Following the method described for 1b, a mixture of 8e (0.100 g, 0.41 mmol) and DMFDMA (0.245 g, 2.05 mmol) in anhydrous DMF (1.0 mL) provided 2c (0.111 g, 90%) as a yellow oil. Rf 0.16 (hexane/EtOAc, 1:1). IR (film): ῡ 2939, 1663, 1600, 1584, 1560, 1386, 1325, 1243, 1096, 1021, 840, 765, 738 cm−1. 1H NMR (500 MHz, CDCl3): δ 2.67 (br, 6H, N(CH3)2), 3.79 (s, 3H, CH3O), 6.31 (dd, J = 4.2, 2.4 Hz, 1H, H-4), 6.80 (d, J = 8.4 Hz, 2H, H-3″), 6.87 (br s, 1H, H-5), 7.01 (dd, J = 4.2, 1.8 Hz, 1H, H-3), 7.35 (s, 1H, H-1′), 7.45 (d, J = 8.4 Hz, 1H, H-2″), 9.56 (s, 1H, CHO). 13C NMR (125 MHz, CDCl3): δ 34.8 (br, N(CH3)2), 55.2 (CH3O), 110.1 (C-2′), 110.6 (C-4), 113.2 (C-3″), 122.3 (C-3), 130.0 (C-2″), 132.1 (C-1″), 134.3 (C-2), 134.4 (C-5), 149.7 (C-1′), 161.2 (C-4″), 179.5 (CHO), 189.7 (CO). HRMS (EI): m/z [M+] calcd. for C17H18N2O3: 298.1317; found: 298.1314.
- (Z)-1-(3-(3,4-Dimethoxyphenyl)-1-(dimethylamino)-3-oxoprop-1-en-2-yl)-1H-pyrrole-2-carbaldehyde (2d). Following the method described for 1b, a mixture of 8f (0.050 g, 0.18 mmol) and DMFDMA (0.109 g, 0.90 mmol) in anhydrous DMF (1.0 mL) afforded 2d (0.050 g, 83%) as a brown solid. Rf 0.03 (hexane/EtOAc, 1:1); 138–140 °C. IR (film): ῡ 2929, 1738, 1639, 1564, 1509, 1410, 1311, 1096, 1018, 748 cm−1. 1H NMR (600 MHz, CDCl3): δ 2.69 (br, 6H, N(CH3)2), 3.82 (CH3O), 3.87 (CH3O), 6.31 (dd, J = 4.0, 2.1 Hz, 1H, H-4), 6.76 (d, J = 8.1 Hz, 1H, H-5″), 6.87 (br s, 1H, H-5), 7.02 (dd, J = 4.0, 1.8 Hz, 1H, H-3), 7.04 (br s, 1H, H-2″), 7.09 (br d, J = 8.1 Hz, 1H, H-6″), 7.43 (s, 1H, H-1′), 9.58 (CHO). 13C NMR (150 MHz, CDCl3): δ 42.0 (br, N(CH3)2), 55.8 (CH3O), 55.9 (CH3O), 110.00 (C-5″), 110.02 (C-2′), 110.6 (C-4), 111.2 (C-2″), 121.7 (C-6″), 122.2 (C-3), 132.2 (C-1″), 134.3 (C-5), 134.5 (C-2), 148.4 (C-3″), 149.6 (C-1′), 150.1 (C-4″), 179.4 (CHO), 189.4 (CO). HRMS (EI): m/z [M+] calcd. for C18H20N2O4: 328.1423; found: 328.1426.
- (Z)-3-(Dimethylamino)-2-(2-formyl-1H-pyrrol-1-yl)acrylonitrile (3a). (E)-3-(Dimethylamino)-2-(2-formyl-1H-pyrrol-1-yl)acrylonitrile (3a’). Following the method described for 1b, a mixture of 8g (0.077 g, 0.57 mmol) and DMFDMA (0.339 g, 2.85 mmol) in anhydrous DMF (2.0 mL) generated an inseparable mixture of 3a/3a’ (54:46, 0.030 g, 28%) as a pale violet oil. Rf 0.16 (hexane/EtOAc, 1:1). IR (film): ῡ 3095, 2922, 2803, 2184, 1650, 1365, 1130, 772 cm−1. 1H NMR (600 MHz, CDCl3): δ 2.63 (br, 6H, N(CH3)2), 3.16 (s, 6H, N(CH3)2), 6.25 (dd, J = 4.2, 2.4 Hz, 1H, H-4′), 6.31 (dd, J = 4.2, 2.4 Hz, 1H, H-4′), 6.68 (s, 1H, H-3), 6.73 (s, 1H, H-3), 6.87–6.89 (m, 1H, H-5′), 6.91–6.93 (m, 1H, H-5′), 6.96 (dd, J = 4.2, 1.8 Hz, 1H, H-3′), 6.99 (dd, J = 4.2, 1.8 Hz, 1H, H-3′), 9.63 (s, 1H, CHO), 9.66 (s, 1H, CHO). 13C NMR (150 MHz, CDCl3): δ 42.3 (br, N(CH3)2), 78.6 (C-2), 78.8 (C-2), 110.7 (C-4′), 111.2 (C-4′), 118.5 (CN), 120.24 (CN), 122.5 (2C-3′), 133.0 (C-5′), 133.2 (C-2′), 133.8 (C-5′), 134.5 (C-2′), 147.4 (C-3), 151.0 (C-3), 178.9 (CHO), 179.2 (CHO). HRMS (EI): m/z [M+] calcd. for C10H11N3O: 189.0902; found: 189.0900.
- Methyl pyrrolo[1,2-a]pyrazine-4-carboxylate (4a). Method A: In a threaded ACE glass pressure tube equipped with a magnetic stirring bar and sealed with a Teflon screw cap, a mixture of NH4OAc (0.052 g, 0.675 mmol) and Li2CO3 (0.050 g, 0.675 mmol) in anhydrous DMF (1.0 mL) was stirred at rt for 20 min. Then, 1a (0.050 g, 0.225 mmol) was added, and the solution was heated at 70 °C for 4 h. The mixture was diluted with hexane/EtOAc (1:1, 15 mL) and washed with brine (5.0 mL × 3). The organic layer was dried (Na2SO4), and the solvent was removed under vacuum. The residue was purified by column chromatography over silica gel (hexane/EtOAc, 8:2) to give 4a (0.036 g, 90%) as a yellow solid. Rf 0.58 (hexane/EtOAc, 1:1); mp 93–95 °C.
- Method B: In a threaded ACE glass pressure tube equipped with a magnetic stirring bar and sealed with a Teflon screw cap, a mixture of 8a (0.030 g, 0.18 mmol), DMFDMA (0.114 g, 0.90 mmol), and NH4OAc (0.042 g, 0.54 mmol) was heated at 100 °C for 24 h. The mixture was suspended in CH2Cl2/PhMe (10:1, 11 mL), and the solvent was removed under vacuum. The residue was purified by column chromatography over silica gel (hexane/EtOAc, 1:1) to furnish 4a (0.018 g, 57%) as a yellow solid. Rf 0.58 (hexane/EtOAc, 1:1); mp 93–95 °C. IR (film): ῡ 3168, 2954, 1720, 1621, 1441, 1430, 1306, 1217, 1203, 1177, 1112, 764, 744 cm−1. 1H NMR (500 MHz, CDCl3): δ 4.01 (s, 3H, CO2CH3), 7.02 (s, 2H, H-7, H-8), 8.46 (s, 1H, H-3), 8.74 (s, 1H, H-6), 8.92 (s, 1H, H-1). 13C NMR (125 MHz, CDCl3): δ 52.4 (CO2CH3), 106.7 (C-8), 116.6 (C-7), 118.3 (C-4), 118.9 (C-6), 129.9 (C-8a), 134.8 (C-3), 148.1 (C-1), 163.3 (CO2CH3). HRMS (EI): m/z [M+] calcd. for C9H8N2O2: 176.0586; found: 176.0592.
- Ethyl pyrrolo[1,2-a]pyrazine-4-carboxylate (4b). Following method A described for 4a, a mixture of 1b (0.030 g, 0.13 mmol), NH4OAc (0.030 g, 0.39 mmol), and Li2CO3 (0.028 g, 0.39 mmol) was heated at 80 °C for 3 h to obtain 4b (0.016 g, 66%) as a yellow solid. Rf 0.67 (hexane/EtOAc, 1:1); mp 68–70 °C. IR (film): ῡ 3177, 3097, 2848, 1699, 1427, 1287, 1178, 1088, 1033, 734 cm−1. 1H NMR (750 MHz, CDCl3): δ 1.45 (t, J = 7.4 Hz, CO2CH2CH3), 4.47 (q, J = 7.4 Hz, CO2CH2CH3), 7.01–7.03 (m, 2H, H-7, H-8), 8.46 (s, 1H, H-3), 8.73–8.74 (m, 1H, H-6), 8.91 (s, 1H, H-1). 13C NMR (187.5 MHz, CDCl3): δ 14.3 (CO2CH2CH3), 61.6 (CO2CH2CH3), 106.6 (C-8), 116.5 (C-7), 118.9 (C-6), 129.9 (C-8a), 134.6 (C-3), 134.8 (C-4), 148.0 (C-1), 162.8 (CO2CH2CH3). HRMS (EI): m/z [M+] calcd. for C10H10N2O2: 190.0742; found: 190.0742.
- Phenyl(pyrrolo[1,2-a]pyrazin-4-yl)methanone (4c). Following method A described for 4a, a mixture of 2a (0.050 g, 0.187 mmol), NH4OAc (0.043 g, 0.56 mmol), and Li2CO3 (0.041 g, 0.56 mmol) was heated at 80 °C for 3 h to give 4c (0.036 g, 87%) as a yellow solid. Rf 0.48 (hexane/EtOAc, 1:1); mp 61–62 °C. Following method B described for 4a, a mixture of 8c (0.030 g, 0.141 mmol), DMFDMA (0.084 g, 0.70 mmol), and NH4OAc (0.054 g, 0.70 mmol) produced 4c (0.025 g, 80%) as a yellow solid. Rf 0.48 (hexane/EtOAc, 1:1); mp 61–62 °C. IR (film): ῡ 3101, 3040, 2924, 1633, 1467, 1290, 1203, 1052, 882, 741 cm−1. 1H NMR (750 MHz, CDCl3): δ 7.10 (d, J = 1.5 Hz, 2H, H-7′, H-8′), 7.53 (t, J = 7.5 Hz, 2H, H-3″), 7.63 (t, J = 7.5 Hz, 1H, H-4″), 7.81 (br d, J = 7.5 Hz, 2H, H-2″), 8.10 (s, 1H, H-3′), 8.92 (br m, 1H, H-6′), 8.94 (s, 1H, H-1′). 13C NMR (187.5 MHz, CDCl3): δ 107.4 (C-8′), 117.1 (C-7′), 119.6 (C-6′), 124.5 (C-8a’), 128.5 (C-3″), 129.6 (C-2″), 130.1 (C-4′), 132.5 (C-4″), 137.8 (C-1″), 139.0 (C-3′), 148 (C-1′), 190.9 (CO). HRMS (EI): m/z [M+] calcd. for C14H10N2O: 222.0793; found: 222.0794.
- (3-Methoxyphenyl)(pyrrolo[1,2-a]pyrazin-4-yl)methanone (4d). Following method A described for 4a, a mixture of 2b (0.030 g, 0.10 mmol), NH4OAc (0.023 g, 0.30 mmol), and Li2CO3 (0.022 g, 0.30 mmol) provided 4d (0.021 g, 83%) as a yellow solid. Rf 0.39 (hexane/EtOAc, 1:1); mp 88–89 °C. IR (film): ῡ 2970, 1734, 1594, 1424, 1298, 1250, 1171, 1028, 854, 741 cm−1. 1H NMR (600 MHz, CDCl3): δ 3.88 (s, 3H, CH3O), 7.09 (br s, 2H, H-7′, H-8′), 7.17 (dd, J = 8.0, 2.6 Hz, 1H, H-4″), 7.34 (br d, J = 1.2 Hz, 1H, H-2″), 7.36 (br d, J = 8.0 Hz, 1H, H-6″), 7.43 (t, J = 8.0 Hz, 1H, H-5″), 8.13 (s, 1H, H-3′), 8.91 (s, 1H, H-6′), 8.94 (s, 1H, H-1′). 13C NMR (150 MHz, CDCl3): δ 55.4 (CH3O), 107.5 (C-8′), 114.2 (C-2″), 117.2 (C-7′), 118.9 (C-4″), 119.6 (C-6′), 122.2 (C-6″), 124.6 (C-8a’), 129.5 (C-5″), 130.1 (C-4′), 138.9 (C-3′), 139.0 (C-1″), 147.9 (C-1′), 159.7 (C-3″), 190.6 (CO). HRMS (EI): m/z [M+] calcd. for C15H12N2O2: 252.0899; found: 252.0900.
- (4-Methoxyphenyl)(pyrrolo[1,2-a]pyrazin-4-yl)methanone (4e). Following method A described for 4a, a mixture of 2c (0.050 g, 0.168 mmol), NH4OAc (0.039 g, 0.50 mmol), and Li2CO3 (0.037 g, 0.50 mmol) formed 4e (0.036 g, 84%) as a yellow solid. Rf 0.29 (hexane/EtOAc, 1:1); mp 138–139 °C. IR (KBr): ῡ 2928, 1739, 1590, 1507, 1301, 1265, 1167, 1109, 1030, 845, 759, 719 cm−1. 1H NMR (600 MHz, CDCl3): δ 3.91 (s, 3H, CH3O), 7.00–7.03 (m, 2H, H-3″), 7.05 (br s, 1H, H-8′), 7.06 (br s, 1H, H-7′), 7.84–7.87 (m, 2H, H-2″), 8.05 (br s, 1H, H-3′), 8.74 (s, 1H, H-6′), 8.92 (s, 1H, H-1′). 13C NMR (150 MHz, CDCl3): δ 55.6 (CH3O), 106.9 (C-8′), 113.9 (C-3″), 116.8 (C-7′), 119.0 (C-6′), 124.8 (C-8a’), 130.0 (C-4′), 130.1 (C-1″), 132.2 (C-2″), 137.4 (C-3′), 147.7 (C-1′), 163.6 (C-4″), 189.3 (CO). HRMS (EI): m/z [M+] calcd. for C15H12N2O2: 252.0899; found: 252.0899.
- (3,4-Dimethoxyphenyl)(pyrrolo[1,2-a]pyrazin-4-yl)methanone (4f). Following method A described for 4a, a mixture of 2d (0.079 g, 0.24 mmol), NH4OAc (0.056 g, 0.72 mmol), and Li2CO3 (0.053 g, 0.72 mmol) afforded 4f (0.041 g, 60%) as a yellow solid. Rf 0.16 (hexane/EtOAc, 1:1); mp 148–149 °C. IR (KBr): ῡ 3158, 2943, 1632, 1594, 1509, 1414, 1260, 1171, 1014, 772 cm−1. 1H NMR (750 MHz, CDCl3): δ 3.95 (s, 3H, CH3O), 3.97 (s, 3H, CH3O), 6.94 (d, J = 8.8 Hz, 1H, H-5″), 7.04–7.06 (m, 2H, H-7′, H-8′), 7.44–7.47 (m, H-2″, H-6″), 8.06 (s, 1H, H-3′), 8.69 (br s, 1H, H-6′), 8.91 (s, 1H, H-1′). 13C NMR (187.5 MHz, CDCl3): δ 56.0 (CH3O), 56.1 (CH3O), 106.9 (C-8′), 110.0 (C-5″), 111.8 (C-2″), 116.8 (C-7′), 118.9 (C-6′), 124.7 (C-8a’), 124.8 (C-6″), 129.9 (C-4′), 130.1 (C-1″), 137.2 (C-3′), 147.6 (C-1′), 149.2 (C-3″), 153.4 (C-4″), 189.2 (CO). HRMS (EI): m/z [M+] calcd. for C16H14N2O3: 282.1005; found: 282.1004.
- Pyrrolo[1,2-a]pyrazine-4-carbonitrile (4g). Following method A described for 4a, a mixture of 3a (0.032 g, 0.169 mmol), NH4OAc (0.039 g, 0.51 mmol), and Li2CO3 (0.038 g, 0.51 mmol) furnished 4g (0.013 g, 53%) as a brown solid. Rf 0.55 (hexane/EtOAc, 1:1); mp 128–130 °C. IR (film): ῡ 3010, 2600, 1741, 1366, 1212 cm−1. 1H NMR (600 MHz, CDCl3): δ 7.13 (s, 2H, H-7, H-8), 7.84 (s, 1H, H-6), 8.08 (br s, 1H, H-3), 9.00 (br s, 1H, H-1). 13C NMR (100 MHz, CDCl3): δ 104.5 (CN), 107.9 (C-8), 112.8 (C-4), 116.6 (C-6), 117.0 (C-7), 127.9 (C-8a), 136.3 (C-3), 148.1 (C-1). HRMS (EI): m/z [M+] calcd. for C8H5N3: 143.0483; found: 143.0485.
- Phenyl(pyrrolo[1,2-a]pyrazin-4-yl)methanol (4h). In a round-bottom flask equipped with a magnetic stirring bar, NaBH4 (0.051 g, 1.33 mmol) was slowly added to a solution of 4c (0.030 g, 0.13 mmol) in anhydrous THF (5.0 mL). After heating the reaction mixture at 60 °C for 2 h, MeOH (8.0 mL) was added dropwise and stirred at rt for 5.0 min. Then, a saturated aqueous solution of NH4Cl (8.0 mL) was added and stirred at rt for 20 min. The mixture was extracted with hexane/EtOAc (1:1, 15 mL) and brine (3 × 5.0 mL). The organic layer was dried (Na2SO4), and the solvent was removed under vacuum. The residue was purified by column chromatography over silica gel (hexane/EtOAc, 7:3), resulting in 4h (0.014 g, 48%) as a yellow solid. Rf 0.10 (hexane/EtOAc, 1:1); mp 150–152 °C. IR (film): ῡ 3042, 2820, 1618, 1451, 1318, 1048, 727, 704 cm−1. 1H NMR (600 MHz, CDCl3): δ 3.10 (br, 1H, OH), 5.98 (s, 1H, CHOH), 6.80 (s, 2H, H-7′, H-8′), 7.30–7.39 (m, 4H, H-6′, H-3″, H-4″), 7.43 (br s, 1H, H-3′), 7.44–7.46 (m, 2H, H-2″), 8.58 (s, 1H, H-1′). 13C NMR (187.5 MHz, CDCl3): δ 71.9 (CHOH), 104.5 (C-8′), 114.6 (C-6′), 115.3 (C-7′), 125.5 (C-3′), 126.6 (C-2″), 128.5 (C-4″), 128.83 (C-3″), 128.88 (C-8a’), 130.2 (C-4′), 138.6 (C-1″), 144.3 (C-1′). HRMS (EI): m/z [M+] calcd. for C14H12N2O: 224.0950; found: 224.0948.
- Methyl 2-(4-bromo-2-formyl-1H-pyrrol-1-yl)acetate (8h). In a round-bottom flask at 0 °C with a magnetic stirring bar, a solution of NBS (0.080 g, 0.45 mmol) in anhydrous CH2Cl2 (5.0 mL) was added dropwise to a solution of 8a (0.05 g, 0.30 mmol) in anhydrous DMF (5.0 mL). The mixture was stirred at rt for 2.0 h before adding a 10% aqueous solution of NaHSO3 (1.0 mL). It was then washed with brine (3 × 5.0 mL), the organic phase was dried (Na2SO4), and the solvent was removed under vacuum. The residue was purified by column chromatography over silica gel (hexane/EtOAc, 8:2) to afford 8h (0.066 g, 90%) as a violet oil. Rf 0.74 (hexane/EtOAc, 1:1). IR (film): ῡ 2922, 1692, 1661, 1393, 1215, 998, 768 cm−1. 1H NMR (500 MHz, CDCl3): δ 3.76 (s, 3H, CO2CH3), 5.01 (s, 2H, CH2), 6.90 (br s, 1H, H-5′), 6.95 (d, J = 2.0 Hz, 1H, H-3′), 9.45 (d, J = 0.5 Hz, 1H, CHO). 13C NMR (125 MHz, CDCl3): δ 50.1 (CH2), 52.6 (CO2CH3), 97.5 (C-4′), 125.2 (C-3′) 131.2 (C-5′), 131.6 (C-2′), 168.2 (CO2CH3), 179.3 (CHO). HRMS (EI): m/z [M+] calcd. for C8H8BrNO3: 244.9688; found: 244.9680.
- Methyl (Z)-2-(4-bromo-2-formyl-1H-pyrrol-1-yl)-3-(dimethylamino)acrylate (1c). Following the method described for 1b, a mixture of 8h (0.050 g, 0.20 mmol) and DMFDMA (0.121 g, 1.02 mmol) in anhydrous DMF (1.0 mL) gave 1c (0.041 g, 66%) as a pale violet oil. Rf 0.12 (hexane/EtOAc, 7:3). IR (film): ῡ 2921, 1666, 1621, 1212, 1084, 922, 755 cm−1. 1H NMR (600 MHz, CDCl3): δ 2.67 (br, 6H, N(CH3)2), 3.62 (s, 3H, CO2CH3), 6.81 (br s, 1H, H-5′), 6.99 (br s, 1H, H-3′), 7.50 (s, 1H, H-3), 9.49 (s, 1H, CHO). 13C NMR (125 MHz, CDCl3): δ 34.7 (N(CH3)2), 51.6 (CO2CH3), 96.6 (C-2), 98.2 (C-4′), 121.6 (C-3′), 132.9 (C-5′), 134.8 (C-2′), 146.4 (C-3), 166.9 (CO2CH3), 179.1 (CHO). HRMS (EI): m/z [M+] calcd. for C11H13BrN2O3: 300.0110; found: 300.0108.
- Methyl 7-bromopyrrolo[1,2-a]pyrazine-4-carboxylate (4i). Following method A described for 4a, a mixture of 1c (0.030 g, 0.10 mmol), NH4OAc (0.031 g, 0.40 mmol), and Li2CO3 (0.029 g, 0.40 mmol) provided 4i (0.017 g, 74%) as a yellow solid. Rf 0.38 (hexane/EtOAc, 1:1); mp 93–95 °C. IR (film): ῡ 3173, 3126, 2957, 1720, 1442, 1308, 1200, 1175 cm−1. 1H NMR (500 MHz, CDCl3): δ 4.01 (s, 3H, CO2CH3), 7.10 (br s, 1H, H-8), 8.45 (br s, 1H, H-3), 8.78 (s, 1H, H-6), 8.87 (br s, 1H, H-1). 13C NMR (125 MHz, CDCl3): δ 52.8 (CO2CH3), 107.2 (C-7), 109.2 (C-8), 117.7 (C-4), 119.5 (C-6), 129.6 (C-8a), 133.7 (C-3), 145.9 (C-1), 162.5 (CO2CH3). HRMS (EI): m/z [M+] calcd. for C9H7BrN2O2: 253.9691; found: 253.9681.
- Methyl 6-bromopyrrolo[1,2-a]pyrazine-4-carboxylate (4j). In a round-bottom flask at 0 °C with a magnetic stirring bar, a solution of NBS (0.040 g, 0.23 mmol) in anhydrous CH2Cl2 (5.0 mL) was added dropwise to a solution of 4a (0.040 g, 0.23 mmol) in anhydrous CH2Cl2 (5.0 mL). The mixture was stirred at rt for 2.0 h before adding a 10% aqueous solution of NaHSO3 (1.0 mL). It was then washed with brine (3 × 5.0 mL), the organic phase was dried (Na2SO4), and the solvent was removed under vacuum. The residue was purified by column chromatography over silica gel (hexane/EtOAc, 1:1) to obtain 4j (0.032 g, 55%) as a pale orange solid. Rf 0.32 (hexane/EtOAc, 1:1); mp 115–117 °C. IR (film): ῡ 3144, 2953, 1724, 1417, 1294, 1175, 957, 857, 773 cm−1. 1H NMR (600 MHz, CDCl3): δ 4.00 (s, 3H, CO2CH3), 7.03 (d, J = 2.4 Hz, 1H, H-8), 8.46 (s, 1H, H-3), 8.67 (dd, 1H, J = 2.4, 0.6 Hz, H-7), 8.92 (br s, 1H, H-1). 13C NMR (150 MHz, CDCl3): δ 52.6 (CO2CH3), 94.3 (C-6), 118.5 (C-8), 118.8 (C-7), 127.1 (C-4), 129.5 (C-8a), 135.2 (C-3), 147.2 (C-1), 162.8 (CO2CH3). HRMS (EI): m/z [M+] calcd. for C9H7BrN2O2: 253.9691; found: 253.9701.
- Methyl 6,7-dibromopyrrolo[1,2-a]pyrazine-4-carboxylate (4k). Following the method described for 4j, a mixture of 4a (0.030 g, 0.17 mmol) and NBS (0.063 g, 0.36 mmol) produced 4k (0.023 g, 40%) as an orange solid. Rf 0.61 (hexane/EtOAc, 1:1); mp 106–108 °C. IR (film): ῡ 3123, 2952, 2918, 2850, 1733, 1601, 1464, 1420, 1312, 1294, 1200, 1172, 1095, 862, 753 cm −1. 1H NMR (500 MHz, CDCl3): δ 4.02 (s, 3H, CO2CH3), 7.04 (s, 1H, H-8), 8.00 (s, 1H, H-3), 8.80 (s, 1H, H-1). 13C NMR (125 MHz, CDCl3): δ 53.0 (CO2CH3), 95.0 (C-6), 99.6 (C-7), 121.1 (C-4), 122.0 (C-8), 128.7 (C-8a), 133.1 (C-3), 145.8 (C-1), 161.6 (CO2CH3). HRMS (EI): m/z [M+] calcd. for C9H6N2O2Br2: 331.8796; found: 331.8792.
- Methyl (E)-3-(1-(2-methoxy-2-oxoethyl)-1H-pyrrol-2-yl)acrylate (10a). At 0 °C and under N2 atmosphere, NaH (60%, 0.032 g, 0.80 mmol) was added to a solution of 9a (0.100 g, 0.66 mmol) in anhydrous DMF (2.0 mL), and the mixture was stirred for 15 min. Then, 7a (0.124 g, 0.80 mmol) was added, and the solution was stirred at rt for 3 h. The reaction mixture was extracted with a hexane/EtOAc (1:1, 15.0 mL), the organic layer was washed with brine (5.0 mL × 3) and dried (Na2SO4), and the solvent was removed under vacuum. The residue was purified by column chromatography over silica gel (hexane/EtOAc, 9:1), resulting in 10a (0.088 g, 60%) as a white solid. Rf 0.32 (hexane/EtOAc, 7:3); mp 116–118 °C. IR (film): ῡ 2960, 1753, 1688, 1623, 1467, 1294, 1171, 1080, 987, 745 cm−1. 1H NMR (600 MHz, CDCl3): δ 3.76 (s, 3H, =CHCO2CH3), 3.77 (s, 3H, CH2CO2CH3), 4.75 (s, 2H, CH2), 6.15 (d, J = 15.6 Hz, 1H, H-2), 6.24–6.26 (m, 1H, H-4′), 6.72 (dd, J = 3.8, 1.4 Hz, 1H, H-3′), 6.78 (br t, J = 1.4 Hz, 1H, H-5′), 7.43 (d, J = 15.6 Hz, 1H, H-3). 13C NMR (150 MHz, CDCl3): δ 48.2 (CH2), 51.5 (CH2CO2CH3), 52.7 (=CHCO2CH3), 110.4 (C-4′), 112.3 (C-3′), 113.5 (C-2), 126.8 (C-5′), 129.4 (C-2′), 131.5 (C-3), 167.9 (=CHCO2CH3), 168.4 (CH2CO2CH3). HRMS (EI): m/z [M+] calcd. for C11H13NO4: 223.0845; found: 223.0845.
- Methyl (E)-3-(5-formyl-1-(2-methoxy-2-oxoethyl)-1H-pyrrol-2-yl)acrylate (8i). At 0 °C and under N2 atmosphere, POCl3 (0.220 g, 1.44 mmol) was added to DMF (0.105 g, 1.44 mmol), and the mixture was stirred for 10 min. Subsequently, 10a (0.200 g, 0.90 mmol) in anhydrous CH2Cl2 (6.0 mL) was added dropwise, and the solution was stirred at 0 °C for 3 h. The reaction mixture was quenched with a 2N aqueous solution of NaOH until pH 8.0, and then CH2Cl2 (21.0 mL) was added. The mixture was washed with brine (7.0 mL × 3), the organic layer was dried (Na2SO4), and the solvent was removed under vacuum. The residue was purified by column chromatography over silica gel (hexane/EtOAc, 9:1) to furnish 8i (0.142 g, 63%) as a pale brown solid. Rf 0.67 (hexane/EtOAc, 1:1); mp 108–110 °C. IR (film): ῡ 2960, 1741, 1704, 1663, 1198, 1168, 980, 778 cm−1. 1H NMR (500 MHz, CDCl3): δ 3.75 (s, 3H, CH2CO2CH3), 3.77 (s, 3H, =CHCO2CH3), 5.24 (s, 2H, CH2), 6.41 (d, J = 15.8 Hz, 1H, H-2), 6.70 (d, J = 4.0 Hz, 1H, H-3′), 6.97 (d, J = 4.0 Hz, 1H, H-4′), 7.41 (d, J = 15.8 Hz, 1H, H-3), 9.53 (CHO). 13C NMR (125 MHz, CDCl3) δ 46.3 (CH2), 52.0 (CO2CH3), 52.8 (CO2CH3), 111.4 (C-3′), 121.1 (C-2), 124.6 (C-4′), 129.7 (C-3), 133.7 (C-5′), 137.7 (C-2′), 166.7 (=CHCO2CH3), 168.3 (CH2CO2CH3), 180.2 (CHO). HRMS (EI): m/z [M+] calcd. for C12H13NO5: 251.0794; found: 251.0785.
- Methyl (Z)-3-(dimethylamino)-2-(2-formyl-5-((E)-3-methoxy-3-oxoprop-1-en-1-yl)-1H-pyrrol-1-yl)acrylate (11). Following the method described for 1b, a mixture of 8i (0.090 g, 0.36 mmol) and DMFDMA (0.213 g, 1.79 mmol) in anhydrous DMF (1.0 mL) afforded 11 (0.031 g, 28%) as a pale violet oil. Rf 0.16 (hexane/EtOAc, 1:1). IR (film): ῡ 2957, 1619, 1435, 1164, 1103, 1037, 762 cm−1. 1H NMR (750 MHz, CDCl3): δ 2.46 (br, 6H, N(CH3)2), 3.63 (s, 3H, CO2CH3-1), 3.78 (s, 3H, =CHCO2CH3), 6.41 (d, J = 16.1 Hz, 1H, H-2″), 6.74 (d, J = 3.8 Hz, 1H, H-4′), 7.05 (d, J = 3.8 Hz, 1H, H-3′) 7.41 (d, J = 16.1 Hz, 1H, H-1″), 7.67 (s, 1H, H-3), 9.61 (s, 1H, CHO). 13C NMR (187.5 MHz, CDCl3): δ 36.4 (br, N(CH3)2), 51.6 (CO2CH3-1), 51.8 (=CHCO2CH3), 93.4 (C-2), 111.2 (C-4′), 119.5 (C-2″), 120.6 (C-3′), 131.6 (C-1″), 136.8 (C-2′), 139.0 (C-5′), 147.4 (C-3), 166.8 (CO2CH3-1), 167.0 (=CHCO2CH3), 180.0 (CHO). HRMS (EI): m/z [M+] calcd. for C15H18N2O5: 306.1216; found: 306.1214.
- Methyl (E)-6-(3-methoxy-3-oxoprop-1-en-1-yl)pyrrolo[1,2-a]pyrazine-4-carboxylate (4l). Following method A described for 4a, a mixture of 11 (0.030 g, 0.10 mmol), NH4OAc (0.023 g, 0.30 mmol), and Li2CO3 (0.022 g, 0.30 mmol) was heated at 70 °C for 7 h to give 4l (0.015 g, 61%) as a yellow solid. Rf 0.25 (hexane/EtOAc, 1:1); mp 100–102 °C. IR (film): ῡ 2917, 2852, 1717, 1623, 1717, 1623, 1427, 1330, 1262, 1171, 1099, 1066 cm−1. 1H NMR (600 MHz, CDCl3): δ 3.82 (s, 3H, =CHCO2CH3), 4.04 (s, 3H, CO2CH3-4), 6.39 (d, J = 15.6 Hz, 1H, H-2′), 7.18 (d, J = 4.2 Hz, 1H, H-8), 7.35 (d, J = 4.2 Hz, 1H, H-7), 7.70 (d, J = 15.6 Hz, 1H, H-1′), 8.24 (s, 1H, H-3), 8.93 (br s, 1H, H-1). 13C NMR (187.5 MHz, CDCl3): δ 51.8 (=CHCO2CH3), 53.0 (CO2CH3-4), 108.5 (C-8), 115.9 (C-2′), 118.1 (C-7), 120.9 (C-4), 126.9 (C-6), 132.01 (C-8a), 133.3 (C-1′), 135.2 (C-3), 147.9 (C-1), 163.3 (CO2CH3-4), 167.1 (=CHCO2CH3). HRMS (EI): m/z [M+] calcd. for C13H12N2O4: 260.0797; found: 260.0795.
- Ethyl (E)-3-(1-(2-methoxy-2-oxoethyl)-1H-pyrrol-2-yl)acrylate (10c). Following the method described for 10a, a mixture of 9b (0.100 g, 0.60 mmol), NaH (60%, 0.029 g, 0.72 mmol), and 7a (0.110 g, 0.72 mmol) formed 10c (0.10 g, 70%) as a pale brown solid. Rf 0.67 (hexane/EtOAc, 1:1); mp 56–57 °C. IR (film): ῡ 2997, 2949, 1742, 1692, 1626, 1474, 1290, 1171, 1080, 983, 745 cm−1. 1H NMR (400 MHz, CDCl3): δ 1.31 (t, J = 7.2 Hz, 3H, CO2CH2CH3), 3.77 (s, 3H, CO2CH3), 4.22 (q, J = 7.2 Hz, 2H, CO2CH2CH3), 4.75 (s, 2H, CH2), 6.16 (d, J = 15.6 Hz, 1H, H-2), 6.26–6.26 (ddd, J = 4.0, 3.0, 0.8 Hz, 1H, H-4′), 6.71 (dd, J = 4.0, 1.4 Hz, 1H, H-3′), 6.78 (dd, J = 3.0, 1.4 Hz, 1H, H-5′), 7.44 (d, J = 15.6 Hz, 1H, H-3). 13C NMR (100 MHz, CDCl3): δ 14.3 (CO2CH2CH3), 48.2 (CH2), 52.7 (CO2CH3), 60.2 (CO2CH2CH3), 110.4 (C-4′), 112.1 (C-3′), 114.0 (C-2), 126.7 (C-5′), 129.4 (C-2′), 131.3 (C-3), 167.5 (CO2CH2CH3), 168.4 (CO2CH3). HRMS (EI): m/z [M+] calcd. for C12H15NO4: 237.1001; found: 237.1001.
- Methyl (Z)-3-(dimethylamino)-2-(2-((E)-3-methoxy-3-oxoprop-1-en-1-yl)-1H-pyrrol-1-yl)acrylate (12a). Following the method described for 1b, a mixture of 10a (0.119 g, 0.53 mmol) and DMFDMA (0.318 g, 2.67 mmol) in anhydrous DMF (1.0 mL) provided 12a (0.134 g, 90%) as a pale violet oil. Rf 0.33 (hexane/EtOAc, 7:3). IR (film): ῡ 2949, 1690, 1615, 1308, 1208, 1164, 1103, 1079, 1034 cm−1. 1H NMR (400 MHz, CDCl3): δ 2.70 (br, 6H, N(CH3)2), 3.62 (s, 3H, =CHCO2CH3), 3.73 (s, 3H, CO2CH3-1), 6.15 (d, J = 15.8 Hz, 1H, H-2″), 6.23 (ddd, J = 3.7, 2.4, 0.4 Hz, 1H, H-4′), 6.78 (dd, J = 3.7, 1.5 Hz, 1H, H-3′), 6.71 (dd, J = 2.4, 1.5 Hz, H-5′), 7.37 (d, J = 15.8 Hz, 1H, H-1″), 7.57 (s, 1H, H-3). 13C NMR (100 MHz, CDCl3): δ 35.2 (N(CH3)2), 46.7 (N(CH3)2), 51.3 (CO2CH3-1), 51.5 (=CHCO2CH3), 96.3 (C-2), 110.1 (C-4′), 111.7 (C-3′), 112.5 (C-2″), 130.1 (C-5′), 132.3 (C-2′), 133.6 (C-1″), 147.1 (C-3), 167.6 (CO2CH3-1), 168.2 (=CHCO2CH3). HRMS (EI): m/z [M+] calcd. for C14H18N2O4: 278.1267; found: 278.1263.
- Ethyl (Z)-3-(dimethylamino)-2-(2-((E)-3-ethoxy-3-oxoprop-1-en-1-yl)-1H-pyrrol-1-yl)acrylate (12b). In a MW glass vial equipped with a magnetic stirring bar and sealed with a cap, a mixture of 10b (0.300 g, 1.20 mmol) and tert-butoxy bis(dimethylamino)methane (0.625 g, 3.60 mmol) was heated at 125 °C for 2.0 h under MW irradiation (200 W) and a N2 atmosphere. The crude mixture was suspended and stirred in CH2Cl2/toluene (10:1, 11 mL), and the solvent was removed under vacuum. The residue was purified by column chromatography over silica gel (hexane/EtOAc, 7:3), resulting in 12b (0.150 g, 41%) as a pale brown oil. Rf 0.52 (hexane/EtOAc, 1:1). IR (film): ῡ 2977, 1690, 1615, 1301, 1212, 1161, 1079, 1034 cm−1. 1H NMR (500 MHz, CDCl3): δ 1.16 (t, J = 7.0 Hz, 3H, CO2CH2CH3), 1.29 (t, J = 7.0 Hz, 3H, CO2CH2CH3), 2.29 (br, 3H, N(CH3)2), 3.01 (br, 3H, N(CH3)2), 4.05–4.17 (m, 2H, CO2CH2CH3), 4.17–4.23 (m, 2H, CO2CH2CH3), 6.15 (d, J = 15.5 Hz, 1H, H-2″), 6.23 (dd, J = 4.0, 2.5 Hz, 1H, H-4′), 6.67 (dd, J = 4.0, 1.5 Hz, 1H, H-3′), 6.71 (dd, J = 2.5, 1.5 Hz, 1H, H-5′), 7.37 (d, J = 15.5 Hz, 1H, H-1″), 7.56 (s, 1H, H-3). 13C NMR (125 MHz, CDCl3): δ 14.4 (CO2CH2CH3), 14.5 (CO2CH2CH3), 38.6 (N(CH3)2), 59.98 (CO2CH2CH3), 60.03 (CO2CH2CH3), 96.3 (C-2), 110.0 (C-4′), 111.6 (C-3′), 112.7 (C-2″), 130.1 (C-5′), 132.4 (C-2′), 133.4 (C-1″), 146.9 (C-3), 167.2 (CO2CH2CH3-1), 168.9 (=CHCO2CH3). HRMS (EI): m/z [M+] calcd. for C16H22N2O4: 306.1580; found: 306.1573.
- Methyl (Z)-3-(dimethylamino)-2-(2-((E)-3-ethoxy-3-oxoprop-1-en-1-yl)-1H-pyrrol-1-yl)acrylate (12c). Following the method described for 1b, a mixture of 10c (0.060 g, 0.25 mmol) and DMFDMA (0.151 g, 1.25 mmol) in anhydrous DMF (2.0 mL) afforded 12c (0.068 g, 92%) as a pale violet oil. Rf 0.48 (hexane/EtOAc, 1:1). IR (film): ῡ 2923, 1697, 1618, 1308, 1212, 1158, 1079, 1308, 1034 cm−1. 1H NMR (500 MHz, CDCl3): δ 1.29 (t, J = 7.2 Hz, 3H, CO2CH2CH3), 2.26 (br, 3H, N(CH3)2), 3.05 (br, 3H, N(CH3)2), 3.63 (s, 3H, CO2CH3), 4.20 (q, J = 7.2 Hz, 2H, CO2CH2CH3), 6.15 (d, J = 16.0 Hz, 1H, H-2″), 6.24 (br d, J = 3.3 Hz, 1H, H-4′), 6.68 (br d, J = 3.3 Hz, 1H, H-3′), 6.71 (br t, J = 1.7 Hz, 1H, H-5′), 7.38 (d, J = 16.0 Hz, 1H, H-1″), 7.57 (s, 1H, H-3). 13C NMR (125 MHz, CDCl3): δ 14.4 (CO2CH2CH3), 35.0 (N(CH3)2), 47.4 (N(CH3)2), 51.5 (CO2CH3), 60.1 (CO2CH2CH3), 96.3 (C-2), 110.1 (C-4′), 111.6 (C-3′), 113.0 (C-2″), 130.1 (C-5′), 132.4 (C-2′), 133.3 (C-1″), 147.1 (C-3), 167.7 (CO2CH3), 167.8 (CO2CH2CH3). HRMS (EI): m/z [M+] calcd. for C15H20N2O4: 292.1423; found: 292.1414.
- Dimethyl indolizine-5,7-dicarboxylate (5a). At rt and under N2 atmosphere, a solution of AlCl3 (0.043 g, 0.321 mmol) in nitrobenzene (1.0 M) was added to a solution of 12a (0.030 g, 0.17 mmol) in anhydrous CH2Cl2 (5.0 mL). The mixture was stirred at rt for 2 h before adding CH2Cl2 (15 mL). It was then washed with brine (5.0 mL × 3) and dried (Na2SO4), and the solvent was removed under vacuum. The residue was purified by column chromatography over silica gel (hexane/EtOAc, 9:1) to give 5a (0.024 g, 66%) as a yellow solid. Rf 0.80 (hexane/EtOAc, 1:1); mp 110–112 °C. IR (film): ῡ 2919, 1707, 1625, 1434, 1232, 1195, 1161, 1082, 758, 730 cm−1. 1H NMR (750 MHz, CDCl3): δ 3.94 (s, 3H, CO2CH3-5), 4.00 (s, 3H, CO2CH3-7), 6.95 (dd, J = 3.8, 0.9 Hz, 1H, H-1), 7.02 (dd, J = 3.8, 1.9 Hz, 1H, H-2), 8.17 (br d, J = 1.5 Hz, 1H, H-6), 8.41 (br d, J = 1.5 Hz, 1H, H-8), 8.84 (br s, 1H, H-3). 13C NMR (187.5 MHz, CDCl3): δ 52.2 (CO2CH3-7), 52.4 (CO2CH3-5), 107.6 (C-1), 116.0 (C-5), 116.7 (C-2), 118.0 (C-6), 119.4 (C-3), 123.0 (C-7), 127.2 (C-8), 133.5 (C-8a), 163.1 (CO2CH3-5), 165.9 (CO2CH3-7). HRMS (EI): m/z [M+] calcd. for C12H11NO4: 233.0688; found: 233.0687.
- Diethyl indolizine-5,7-dicarboxylate (5b). Following the method described for 5a, a mixture of 12b (0.060 g, 0.20 mmol) and AlCl3 (0.078 g, 0.39 mmol) in anhydrous CH2Cl2 (2.0 mL) was stirred at rt for 2h. After the further addition of AlCl3 (0.078 g, 0.39 mmol), the mixture was stirred for 2 h to obtain 5b (0.016 g, 31%) as a yellow solid. Rf 0.81 (hexane/EtOAc, 7:3); mp 55–57 °C. IR (film): ῡ 2923, 2851, 1707, 1226, 1198, 1182, 1024 cm−1. 1H NMR (500 MHz, CDCl3): δ 1.42 (t, J = 7.0 Hz, 3H, CO2CH2CH3), 1.45 (t, J = 7.0 Hz, 3H, CO2CH2CH3), 4.39 (q, J = 7.0 Hz, 2H, CO2CH2CH3), 4.46 (q, J = 7.0 Hz, 2H, CO2CH2CH3), 6.94 (br d, J = 4.0 Hz, 1H, H-1), 7.02 (dd, J = 4.0, 3.0 Hz, 1H, H-2), 8.17 (d, J = 1.5 Hz, 1H, H-6), 8.41 (d, J = 1.5 Hz, 1H, H-8), 8.85 (br s, 1H, H-3). 13C NMR (125 MHz, CDCl3): δ 14.33 (CO2CH2CH3), 14.41 (CO2CH2CH3), 61.1 (CO2CH2CH3), 61.6 (CO2CH2CH3), 107.4 (C-1), 116.4 (C-5), 116.6 (C-2), 117.8 (C-6), 119.4 (C-3), 123.2 (C-7), 127.0 (C-8), 133.5 (C-8a), 162.7 (CO2Et), 165.6 (CO2Et). HRMS (EI): m/z [M+] calcd. for C12H11NO4: 233.0688; found: 233.0687.
- 7-Ethyl 5-methyl indolizine-5,7-dicarboxylate (5c). Following the method described for 5a, a mixture of 12c (0.030 g, 0.10 mmol) and AlCl3 (0.028 g, 0.20 mmol) in anhydrous CH2Cl2 (2.0 mL) furnished 5c (0.013 g, 52%) as a yellow solid. Rf 0.87 (hexane/EtOAc, 1:1); mp 133–135 °C. IR (film): ῡ 2987, 1704, 1256, 1232, 1198, 1168, 1018, 751 cm−1. 1H NMR (600 MHz, CDCl3): δ 1.42 (t, J = 7.2 Hz, 3H, CO2CH2CH3), 4.00 (s, 3H, CO2CH3), 4.40 (q, J = 7.2 Hz, 2H, CO2CH2CH3), 6.94 (br d, J = 4.2 Hz, 1H, H-1), 7.02 (dd, J = 4.2, 2.0 Hz, 1H, H-2), 8.16 (br d, J = 1.8 Hz, H-6), 8.41 (s, 1H, H-8), 8.84 (br s, 1H, H-3). 13C NMR (150 MHz, CDCl3): δ 14.4 (CO2CH2CH3), 52.4 (CO2CH3), 61.1 (CO2CH2CH3), 107.5 (C-1), 116.4 (C-5), 116.6 (C-2), 118.1 (C-6), 119.4 (C-3), 123.0 (C-7), 127.1 (C-8), 133.5 (C-8a), 163.1 (CO2CH3), 165.5 (CO2CH2CH3). HRMS (EI): m/z [M+] calcd. for C13H13NO4: 247.0845; found: 247.0840.
3.3. Evaluation of Antifungal Activity
3.4. Docking Studies
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Dehnavi, F.; Alizadeh, S.R.; Ebrahimzadeh, M.A. Pyrrolopyrazine derivatives: Synthetic approaches and biological activities. Med. Chem. Res. 2021, 30, 1981–2006. [Google Scholar] [CrossRef]
- Karmakar, A.; Ramalingam, S.; Basha, M.; Indasi, G.K.; Belema, M.; Meanwell, N.A.; Dhar, T.G.M.; Rampulla, R.; Mathur, A.; Gupta, A.; et al. Facile access to 1,4-disubstituted pyrrolo[1,2-a]pyrazines from a-aminoacetonitriles. Synthesis 2020, 52, 441–449. [Google Scholar] [CrossRef]
- Mokrov, G.V.; Deeva, O.A.; Gudasheva, T.A.; Yarkov, S.A.; Yarkova, M.A.; Seredenin, S.B. Design, synthesis and anxiolytic-like activity of 1-arylpyrrolo[1,2-a]pyrazine-3-carboxamides. Bioorg. Med. Chem. 2015, 23, 3368–3378. [Google Scholar]
- Kim, J.; Park, M.; Choi, J.; Singh, D.K.; Kwon, H.J.; Kim, S.H.; Kim, I. Design, synthesis, and biological evaluation of novel pyrrolo[1,2-a]pyrazine derivatives. Bioorg. Med. Chem. Lett. 2019, 29, 1350–1356. [Google Scholar] [CrossRef]
- Seo, Y.; Lee, J.H.; Park, S.; Namkung, W.; Kim, I. Expansion of chemical space based on a pyrrolo[1,2-a]pyrazine core: Synthesis and its anticancer activity in prostate cancer and breast cancer cells. Eur. J. Med. Chem. 2020, 188, 111988. [Google Scholar] [CrossRef] [PubMed]
- Vijay, K.; Devi, T.S.; Sree, K.K.; Elgorban, A.M.; Kumar, P.; Govarthanan, M.; Kavitha, T. In vitro screening and in silico prediction of antifungal metabolites from rhizobacterium Achromobacter kerstersii JKP9. Arch. Microbiol. 2020, 10, 2855–2864. [Google Scholar] [CrossRef] [PubMed]
- Ito, S.; Yamamoto, Y.; Nishikawa, T. A concise synthesis of peramine, a metabolite of endophytic fungi. Biosci. Biotech. Bioch. 2018, 82, 2053–2058. [Google Scholar] [CrossRef]
- Micheli, F.; Bertani, B.; Bozzoli, A.; Crippa, L.; Cavanni, P.; Di Fabio, R.; Donati, D.; Marzorati, P.; Merlo, G.; Paio, A.; et al. Phenylethynyl-pyrrolo[1,2-a]pyrazine: A new potent and selective tool in the mGluR5 antagonists arena. Bioorg. Med. Chem. Lett. 2008, 18, 1804–1809. [Google Scholar] [CrossRef] [PubMed]
- Melo, I.S.; Santos, S.N.; Rosa, L.H.; Parma, M.M.; Silva, L.J.; Queiroz, S.C.N.; Pellizari, V.H. Isolation and biological activities of an endophytic Mortierella alpina strain from the Antarctic moss Schistidium antarctici. Extremophiles 2014, 18, 15–23. [Google Scholar] [CrossRef]
- Rajivgandhi, G.; Vijayan, R.; Maruthupandy, M.; Vaseeharan, B.; Manoharan, N. Antibiofilm effect of Nocardiopsis sp. GRG1 (KT235640) compound against biofilm forming Gram negative bacteria on UTIs. Microb. Pathog. 2018, 118, 190–198. [Google Scholar] [CrossRef]
- Kiran, G.S.; Priyadharsini, S.; Sajayan, A.; Ravindran, A.; Selvin, J. An antibiotic agent pyrrolo[1,2-a]pyrazine-1,4-dione,hexahydro isolated from a marine bacteria Bacillus tequilensis MSI45 effectively controls multi-drug resistant Staphylococcus aureus. RSC Adv. 2018, 8, 17837. [Google Scholar] [CrossRef] [PubMed]
- Sharma, V.; Kumar, V. Indolizine: A biologically active moiety. Med. Chem. Res. 2014, 23, 3593–3606. [Google Scholar] [CrossRef]
- Singh, G.S.; Mmatli, E.E. Recent progress in synthesis and bioactivity studies of indolizines. Eur. J. Med. Chem. 2011, 46, 5237–5257. [Google Scholar] [CrossRef]
- Park, S.; Kim, E.H.; Kim, J.; Kim, S.H.; Kim, I. Biological evaluation of indolizine-chalcone hybrids as new anticancer agents. Eur. J. Med. Chem. 2018, 144, 435–443. [Google Scholar] [CrossRef]
- Huang, W.; Zuo, T.; Jin, H.; Liu, Z.; Yang, Z.; Yu, X.; Zhang, L.; Zhang, L. Design, synthesis, and biological evaluation of indolizine derivatives as HIV-1 VIF-ElonginC interaction inhibitors. Mol. Divers. 2013, 17, 221–243. [Google Scholar] [CrossRef]
- Dawood, K.M.; Abdel-Gawad, H.; Ellithey, M.; Mohamed, H.A.; Hegazi, B. Synthesis, anticonvulsant, and anti-inflammatory activities of some new benzofuran-based heterocycles. Arch. Pharm. Chem. Life Sci. 2006, 339, 133–140. [Google Scholar] [CrossRef] [PubMed]
- Gundersen, L.-L.; Malterud, K.E.; Negussie, A.H.; Rise, F.; Teklu, S.; Østby, O.B. Indolizines as novel potent inhibitors of 15-lipoxygenase. Bioorg. Med. Chem. 2003, 11, 5409–5415. [Google Scholar] [CrossRef]
- Gundersen, L.-L.; Charnock, C.; Negussie, A.H.; Rise, F.; Teklu, S. Synthesis of indolizine derivatives with selective antibacterial activity against Mycobacterium tuberculosis. Eur. J. Pharm. Sci. 2007, 30, 26–35. [Google Scholar] [CrossRef]
- Venugopala, K.N.; Chandrashekharappa, S.; Pillay, M.; Abdallah, H.H.; Mahomoodally, F.M.; Bhandary, S.; Chopra, D.; Attimarad, M.; Aldhubiad, B.E.; Nair, A.B.; et al. Computational, crystallographic studies, cytotoxicity and anti-tubercular activity of substituted 7-methoxy-indolizine analogues. PLoS ONE 2019, 14, e0217270. [Google Scholar] [CrossRef]
- Park, S.; Jung, Y.; Kim, I. Diversity-oriented decoration of pyrrolo[1,2-a]pyrazines. Tetrahedron 2014, 70, 7534–7550. [Google Scholar] [CrossRef]
- Sari, O.; Seybek, A.F.; Kaya, S.; Menges, N.; Erdem, S.S.; Balci, M. Mechanistic insights into the reaction of N-propargylated pyrrole- and indole-carbaldehyde with ammonia, alkyl amines, and branched amines: A synthetic and theoretical investigation. Eur. J. Org. Chem. 2019, 2019, 5261–5274. [Google Scholar] [CrossRef]
- Alfonsi, M.; Dell’Acqua, M.; Facoetti, D.; Arcadi, A.; Abbiati, G.; Rossi, E. Microwave-promoted synthesis of N-heterocycles by tandem imination/annulation of γ- and δ-ketoalkynes in the presence of ammonia. Eur. J. Org. Chem. 2009, 2009, 2852–2862. [Google Scholar] [CrossRef]
- Beccalli, E.M.; Broggini, G.; Martinelli, M.; Paladino, G. Pd-catalyzed intramolecular cyclization of pyrrolo-2-carboxamides: Regiodivergent routes to pyrrolo-pyrazines and pyrrolo-pyridines. Tetrahedron 2005, 61, 1077–1082. [Google Scholar] [CrossRef]
- Sobenina, L.N.; Sagitova, E.F.; Ushakov, I.A.; Trofimov, B.A. Transition-metal-free synthesis of pyrrolo[1,2-a]pyrazines via intramolecular cyclization of N-propargyl(pyrrolyl)enaminones. Synthesis 2017, 49, 4065–4081. [Google Scholar] [CrossRef]
- Kim, M.; Jung, Y.; Kim, I. Domino Knoevenagel condensation/intramolecular aldol cyclization route to diverse indolizines with densely functionalized pyridine units. J. Org. Chem. 2013, 78, 10395–10404. [Google Scholar] [CrossRef]
- Ge, Y.-Q.; Jia, J.; Yang, H.; Zhao, G.-L.; Zhan, F.-X.; Wang, J. A facile approach to indolizines via tandem reaction. Heterocycles 2009, 78, 725–736. [Google Scholar] [CrossRef]
- Lee, J.H.; Kim, I. Cycloaromatization approach to polysubstituted indolizines from 2-acetylpyrroles: Decoration of the pyridine unit. J. Org. Chem. 2013, 78, 1283–1288. [Google Scholar] [CrossRef] [PubMed]
- Park, S.; Kim, I. Electron-withdrawing group effect in aryl group of allyl bromides for the successful synthesis of indolizines via a novel [3+3] annulation approach. Tetrahedron 2015, 71, 1982–1991. [Google Scholar] [CrossRef]
- Zhong, W.; Zhu, H.; Zou, H. ‘One-pot’ cascade approach to 5,6-dihydroindolizines and indolizines from pyrrole-2-carbaldehydes and nitroethylenes. Tetrahedron 2017, 73, 3181–3187. [Google Scholar] [CrossRef]
- Escalante, C.H.; Carmona-Hernández, F.A.; Hernández-López, A.; Martínez-Mora, E.I.; Delgado, F.; Tamariz, J. Cascade synthesis of indolizines and pyrrolo[1,2-a]pyrazines from 2-formyl-1-propargylpyrroles. Org. Biomol. Chem. 2022, 20, 396–409. [Google Scholar] [CrossRef]
- Hazra, A.; Mondal, S.; Maity, A.; Naskar, S.; Saha, P.; Paira, R.; Sahu, K.B.; Paira, P.; Ghosh, S.; Sinha, C.; et al. Amberlite-IRA-402 (OH) ion exchange resin mediated synthesis of indolizines, pyrrolo[1,2-a]quinolines and isoquinolines: Antibacterial and antifungal evaluation of the products. Eur. J. Med. Chem. 2011, 46, 2132–2140. [Google Scholar] [CrossRef]
- Cruz, M.C.; Tamariz, J. An efficient synthesis of benzofurans and their application in the preparation of natural products of the genus Calea. Tetrahedron 2005, 61, 10061–10072. [Google Scholar] [CrossRef]
- Correa, C.; Cruz, M.C.; Jiménez, F.; Zepeda, L.G.; Tamariz, J. A new synthetic route of 2-aroyl- and 2-benzyl-benzofurans and their application in the total synthesis of a metabolite isolated from Dorstenia gigas. Aust. J. Chem. 2008, 61, 991–999. [Google Scholar] [CrossRef]
- Labarrios, E.; Jerezano, A.; Jiménez, F.; Cruz, M.C.; Delgado, F.; Zepeda, L.G.; Tamariz, J. Efficient synthetic approach to substituted benzo[b]furans and benzo[b]thiophenes by iodine-promoted cyclization of enaminones. J. Heterocycl. Chem. 2014, 51, 954–971. [Google Scholar] [CrossRef]
- Cruz, M.C.; Jiménez, F.; Delgado, F.; Tamariz, J. Regioselective and versatile synthesis of indoles via intramolecular Friedel-Crafts heteroannulation of enaminones. Synlett 2006, 2006, 749–755. [Google Scholar] [CrossRef]
- Jerezano, A.V.; Labarrios, E.M.; Jiménez, F.E.; Cruz, M.C.; Pazos, D.C.; Gutiérrez, R.U.; Delgado, F.; Tamariz, J. Iodine-mediated one-pot synthesis of indoles and 3-dimethylaminoindoles via annulation of enaminones. Arkivoc 2014, 2014, 18–53. [Google Scholar] [CrossRef]
- Stanovnik, B.; Svete, J. Alkyl 2-substituted 3-(dimethylamino)propenoates and related compounds—versatile reagents in heterocyclic chemistry. Synlett 2000, 2000, 1077–1091. [Google Scholar] [CrossRef]
- Gottam, S.; Gaddam, V.; Kanaparthy, S. Gold-catalyzed reactions using N-propargyl β-enaminones. Arkivoc 2022, 2002, 1–18. [Google Scholar] [CrossRef]
- Martínez-Mora, E.I.; Caracas, M.A.; Escalante, C.H.; Espinoza-Hicks, C.; Quiroz-Florentino, H.; Delgado, F.; Tamariz, J. 2-Formylpyrroles as building blocks in a divergent synthesis of pyrrolizines. Synthesis 2016, 48, 1055–1068. [Google Scholar] [CrossRef]
- Madrigal-Aguilar, D.A.; Gonzalez-Silva, A.; Rosales-Acosta, B.; Bautista-Crescencio, C.; Ortiz-Álvarez, J.; Escalante, C.H.; Sánchez-Navarrete, J.; Hernández-Rodríguez, C.; Chamorro-Cevallos, G.; Tamariz, J.; et al. Antifungal activity of fibrate-based compounds and substituted pyrroles that inhibit the enzyme 3-hydroxy-methyl-glutaryl-CoA reductase of Candida glabrata (CgHMGR), thus decreasing yeast viability and ergosterol synthesis. Microbiol. Spectr. 2022, 10, e01642-21. [Google Scholar] [CrossRef]
- Wang, M.-Z.; Xu, H.; Liu, T.-W.; Feng, Q.; Yu, S.-J.; Wang, S.-H.; Li, Z.-M. Design, synthesis and antifungal activities of novel pyrrole alkaloid analogs. Eur. J. Med. Chem. 2011, 46, 1463–1472. [Google Scholar] [CrossRef]
- Martínez-Mora, E.I.; Caracas, M.A.; Escalante, C.H.; Madrigal, D.A.; Quiroz-Florentino, H.; Delgado, F.; Tamariz, J. Divergent and selective functionalization of 2-formylpyrrole and its application in the total synthesis of the aglycone alkaloid pyrrolemarumine. J. Mex. Chem. Soc. 2016, 60, 23–33. [Google Scholar] [CrossRef]
- Pedersen, T.R.; Tobert, J.A. Simvastatin: A review. Expert Opin. Pharmacother. 2004, 5, 2583–2596. [Google Scholar] [CrossRef]
- Andrade-Pavón, D.; Ortiz-Álvarez, J.; Sánchez-Sandoval, E.; Tamariz, J.; Hernández-Rodríguez, C.; Ibarra, J.A.; Villa-Tanaca, L. Inhibition of recombinant enzyme 3-hydroxy-3-methylglutaryl-CoA reductase from Candida glabrata by α-asarone-based synthetic compounds as antifungal agents. J. Biotechnol. 2019, 292, 64–67. [Google Scholar] [CrossRef] [PubMed]
- Shi, N.; Zheng, Q.; Zhang, H. Molecular dynamics investigations of binding mechanism for triazoles inhibitors to CYP51. Front. Mol. Biosci. 2020, 7, 586540. [Google Scholar] [CrossRef] [PubMed]
- Ademe, M.; Girma, F. Candida auris: From multidrug resistance to pan-resistant strains. Infect. Drug Resist. 2020, 13, 1287–1294. [Google Scholar] [CrossRef] [PubMed]
- Ben-Ami, R.; Berman, J.; Novikov, A.; Bash, E.; Shachor-Meyouhas, Y.; Zakin, S.; Maor, Y.; Tarabia, J.; Schechner, V.; Adler, A.; et al. Multidrug-resistant Candida haemulonii and C. auris, Tel Aviv, Israel. Emerg. Infect. Dis. 2017, 23, 195–203. [Google Scholar] [CrossRef]
- Di Santo, R.; Tafi, A.; Costi, R.; Botta, M.; Artico, M.; Corelli, F.; Forte, M.; Caporuscio, F.; Angiolella, L.; Palamara, A.T. Antifungal agents. 11. N-Substituted derivatives of 1-[(aryl)(4-aryl-1H-pyrrol-3-yl)methyl]-1H-imidazole: Synthesis, anti-Candida activity, and QSAR studies. J. Med. Chem. 2005, 48, 5140–5153. [Google Scholar] [CrossRef]
- Onnis, V.; De Logu, A.; Cocco, M.T.; Fadda, R.; Meleddu, R.; Congiu, C. 2-Acylhydrazino-5-arylpyrrole derivatives: Synthesis and antifungal activity evaluation. Eur. J. Med. Chem. 2009, 44, 1288–1295. [Google Scholar] [CrossRef] [PubMed]
- Sortino, M.; Garibotto, F.; Filho, V.C.; Gupta, M.; Enriz, R.; Zacchino, S. Antifungal, cytotoxic and SAR studies of a series of N-alkyl, N-aryl and N-alkylphenyl-1,4-pyrrolediones and related compounds. Bioorg. Med. Chem. 2011, 19, 2823–2834. [Google Scholar] [CrossRef]
- Yurttaş, L.; Özkay, Y.; Kaplancıklı, Z.A.; Tunalı, Y.; Karaca, H. Synthesis and antimicrobial activity of some new hydrazone-bridged thiazole-pyrrole derivatives. J. Enzym. Inhib. Med. Chem. 2013, 28, 830–835. [Google Scholar] [CrossRef] [PubMed]
- Kheder, N.A. Hydrazonoyl chlorides as precursors for synthesis of novel bis-pyrrole derivatives. Molecules 2016, 21, 326. [Google Scholar] [CrossRef] [PubMed]
- Hilmy, K.M.H.; Khalifa, M.M.A.; Hawata, M.A.A.; Keshk, R.M.A.; El-Torgman, A.A. Synthesis of new pyrrolo[2,3-d]pyrimidine derivatives as antibacterial and antifungal agents. Eur. J. Med. Chem. 2010, 45, 5243–5250. [Google Scholar] [CrossRef] [PubMed]
- Jose, G.; Kumara, T.H.S.; Sowmya, H.B.V.; Sriram, D.; Row, T.N.G.; Hosamani, A.A.; More, S.S.; Janardhan, B.; Harish, B.G.; Telkar, S.; et al. Synthesis, molecular docking, antimycobacterial and antimicrobial evaluation of new pyrrolo[3,2-c]pyridine Mannich bases. Eur. J. Med. Chem. 2017, 131, 275–288. [Google Scholar] [CrossRef]
- Wójcicka, A.; Becan, L.; Junka, A.; Bartoszewicz, M.; Secewicz, A.; Trynda, J.; Wietrzyk, J. Synthesis and biological activity of novel 6-phenyl-1H-pyrrolo[3,4-c]pyridine-1,3-dione derivatives. Acta Pol. Pharm. 2017, 74, 435–443. [Google Scholar] [PubMed]
- Bangalore, P.K.; Pedapati, R.K.; Pranathi, A.N.; Batchu, U.R.; Misra, S.; Estharala, M.; Sriram, D.; Kantevari, S. Aryl-n-hexanamide linked enaminones of usnic acid as promising antimicrobial agents. Mol. Divers. 2023, 27, 811–836. [Google Scholar] [CrossRef]
- Mendieta-Moctezuma, A.; Rugerio-Escalona, C.; Villa-Ruano, N.; Gutiérrez, R.U.; Jiménez-Montejo, F.E.; Fragoso-Vázquez, M.J.; Correa-Basurto, J.; Cruz-López, M.C.; Delgado, F.; Tamariz, J. Synthesis and biological evaluation of novel chromonyl enaminones as α-glucosidase inhibitors. Med. Chem. Res. 2019, 28, 831–848. [Google Scholar] [CrossRef]
- Shen, Y.; Sun, Y.; Sang, Z.; Sun, C.; Dai, Y.; Deng, Y. Synthesis, characterization, antibacterial and antifungal evaluation of novel monosaccharide esters. Molecules 2012, 17, 8661–8673. [Google Scholar] [CrossRef]
- Bao, L.; Wang, S.; Song, D.; Wang, J.; Cao, X.; Ke, S. Synthesis and bio-evaluation of natural butenolides-acrylate conjugates. Molecules 2019, 24, 1304. [Google Scholar] [CrossRef]
- Farghaly, A.-R.; El-Kashef, H. Pyrazoles and pyrazolo[4,3-e]pyrrolo[1,2-a]pyrazines, I. Synthesis and antimicrobial activity. Monatsh. Chem. 2005, 136, 217–227. [Google Scholar] [CrossRef]
- Faghih-Mirzaei, E.; Seifi, M.; Abaszadeh, M.; Zomorodian, K.; Helali, H. Design, synthesis, biological evaluation and molecular modeling study of novel indolizine-1-carbonitrile derivatives as potential anti-microbial agents. Iran. J. Pharm. Res. 2018, 17, 883–895. [Google Scholar] [PubMed]
- Meng, X.Y.; Zhang, H.X.; Mezei, M.; Cui, M. Molecular docking: A powerful approach for structure-based drug discovery. Curr. Comput. Aided Drug Des. 2011, 7, 146–157. [Google Scholar] [CrossRef]
- Feng, Y.; Yan, Y.; He, J.; Tao, H.; Wu, Q.; Huang, S.-Y. Docking and scoring for nucleic acid-ligand interactions: Principles and current status. Drug Discov. Today 2022, 27, 838–847. [Google Scholar] [CrossRef]
- Vakser, I.A. Protein-protein docking: From interaction to interactome. Biophys. J. 2014, 107, 1785–1793. [Google Scholar] [CrossRef] [PubMed]
- Andrade-Pavón, D.; Cuevas-Hernández, R.I.; Trujillo-Ferrara, J.G.; Hernández-Rodríguez, C.; Ibarra, J.A.; Villa-Tanaca, L. Recombinant 3-hydroxy 3-methyl glutaryl-CoA reductase from Candida glabrata (Rec-CgHMGR) obtained by heterologous expression, as a novel therapeutic target model for testing synthetic drugs. Appl. Biochem. Biotechnol. 2017, 182, 1478–1490. [Google Scholar] [CrossRef] [PubMed]
- Pucheta, A.; Mendieta, A.; Madrigal, D.A.; Hernández-Benitez, R.I.; Romero, L.; Garduño-Siciliano, L.; Rugerio-Escalona, C.; Cruz-López, M.C.; Jiménez, F.; Ramírez-Villalva, A.; et al. Synthesis and biological activity of fibrate-based acyl- and alkyl-phenoxyacetic methyl esters and 1,2-dihydroquinolines. Med. Chem. Res. 2020, 29, 459–478. [Google Scholar] [CrossRef]
- Cuenca-Estrella, M.; Lee-Yang, W.; Ciblak, M.A.; Arthington-Skaggs, B.A.; Mellado, E.; Warnock, D.W.; Rodríguez-Tudela, J.L. Comparative evaluation of NCCLS M27-A and EUCAST broth microdilution procedures for antifungal susceptibility testing of Candida species. Antimicrob. Agents Chemother. 2002, 46, 3644–4647. [Google Scholar] [CrossRef]
- Sharma, S.; Ciufo, S.; Starchenko, E.; Darji, D.; Chlumsky, L.; Karsch-Mizrachi, I.; Schoch, C.L. The NCBI BioCollections Database. Database 2018, 2018, 1–8. [Google Scholar] [CrossRef]
- Webb, B.; Sali, A. Comparative protein structure modeling using Modeller. Curr. Protoc. Protein Sci. 2016, 86, 2.9.1–2.9.37. [Google Scholar] [CrossRef]
- Berman, H.M.; Westbrook, J.; Feng, Z.; Gilliland, G.; Bhat, T.N.; Weissig, H.; Shindyalov, I.N.; Bourne, P.E. The protein data bank. Nucleic Acids Res. 2000, 28, 235–242. [Google Scholar] [CrossRef]
- Laskowski, R.A.; MacArthur, M.W.; Moss, D.S.; Thornton, J.M. PROCHECK: A program to check the stereochemical quality of protein structures. J. Appl. Cryst. 1993, 26, 283–291. [Google Scholar] [CrossRef]
- Cousins, K.R. Computer review of ChemDraw Ultra 12.0. J. Am. Chem. Soc. 2011, 133, 8388. [Google Scholar] [CrossRef] [PubMed]
- O’Boyle, N.M.; Banck, M.; James, C.A.; Morley, C.; Vandermeersch, T.; Hutchison, G.R. Open Babel: An open chemical toolbox. J. Cheminform. 2011, 3, 33. [Google Scholar] [CrossRef] [PubMed]
- Irwin, J.J.; Tang, K.G.; Young, Y.; Dandarchuluun, C.; Wong, B.R.; Khurelbaatar, M.; Moroz, Y.S.; Mayfield, J.; Sayle, R.A. ZINC20—A free ultra large-scale chemical database for ligand discovery. J. Chem. Inf. Model. 2020, 60, 6065–6073. [Google Scholar] [CrossRef]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Montgomery, J.A., Jr.; Vreven, T.; Kudin, K.N.; Burant, J.C.; et al. Gaussian 98, version A.6; Gaussian, Inc.: Wallingford, CT, USA, 2004. [Google Scholar]
- Morris, G.M.; Huey, R.; Lindstrom, W.; Sanner, M.F.; Belew, R.K.; Goodsell, D.S.; Olson, A.J. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J. Comput. Chem. 2009, 30, 2785–2791. [Google Scholar] [CrossRef]
- Dassault Systèmes BIOVIA. Discovery Studio Modeling Environment; Release 2017 R2 Client; Dassault Systèmes: San Diego, CA, USA, 2017; Available online: https://discover.3ds.com/discovery-studio-visualizer-download (accessed on 8 October 2023).
Entry | 1–3 | Z | T (°C) | t (h) | 4 (%) b |
---|---|---|---|---|---|
1 | 1a | CO2Me | 70 | 4 | 4a (90) |
2 | 1b | CO2Et | 80 | 3 | 4b (66) |
3 | 2a | COPh | 80 | 3 | 4c (87) |
4 | 2b | COC6H4-3-OMe | 70 | 4 | 4d (83) |
5 | 2c | COC6H4-4-OMe | 70 | 4 | 4e (84) |
6 | 2d | COC6H3-3,4-(OMe)2 | 70 | 4 | 4f (60) |
7 | 3a | CN | 70 | 4 | 4g (53) |
Compound | C. albicans | C. glabrata | C. dubliniensis | C. krusei | C. auris | C. haemulonii | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
MIC50 | MIC70 | MIC50 | MIC70 | MIC50 | MIC70 | MIC50 | MIC70 | MIC50 | MIC70 | MIC50 | MIC70 | |
µg/mL | µg/mL | µg/mL | µg/mL | µg/mL | µg/mL | |||||||
fluconazole | 1.40 | 1.80 | 5.60 | 7.20 | 1.40 | 1.80 | 5.60 | 7.20 | >44.8 | >57.6 | >44.8 | >57.6 |
simvastatin | 1.25 | 1.75 | 15.00 | 21.00 | 1.25 | 1.75 | 40.00 | 56.00 | 10.00 | 14.00 | 20.00 | 28.00 |
atorvastatin | 3.77 | 5.27 | 1.71 | 2.39 | 2.77 | 3.87 | 4.80 | 6.72 | 15.3 | 21.42 | 8.00 | 11.20 |
1a | 0.11 | 0.15 | 0.09 | 0.12 | 0.07 | 0.09 | 0.05 | 0.07 | 4.17 | 5.83 | 4.45 | 6.23 |
1c | 4.20 | 5.88 | 0.65 | 0.91 | 4.00 | 5.60 | 0.36 | 0.50 | 2.59 | 3.62 | 2.00 | 2.80 |
2a | 0.13 | 0.18 | 0.09 | 0.12 | 0.06 | 0.08 | 0.03 | 0.04 | 5.57 | 7.79 | 3.74 | 5.23 |
2b | 0.13 | 0.18 | 0.11 | 0.15 | 0.07 | 0.09 | 0.05 | 0.07 | 5.31 | 7.43 | 5.20 | 7.28 |
2c | 0.10 | 0.14 | 0.07 | 0.09 | 0.06 | 0.08 | 0.06 | 0.08 | 4.50 | 6.30 | 4.45 | 6.23 |
2d | 0.12 | 0.16 | 0.12 | 0.16 | 0.09 | 0.12 | 0.04 | 0.06 | 4.68 | 6.55 | 12.48 | 17.47 |
4a | 0.18 | 0.25 | 1.56 | 2.18 | 0.73 | 1.02 | 0.20 | 0.28 | 5.85 | 8.19 | 11.70 | 16.30 |
4b | 0.15 | 0.21 | 0.11 | 0.15 | 0.07 | 0.09 | 0.09 | 0.12 | 3.07 | 4.29 | 3.90 | 5.46 |
4c | 0.33 | 0.46 | 0.15 | 0.21 | 0.09 | 0.12 | 0.01 | 0.02 | 1.46 | 2.04 | 18.72 | 26.20 |
4d | 0.45 | 0.63 | 0.12 | 0.16 | 0.16 | 0.22 | 0.18 | 0.36 | 1.62 | 2.25 | 11.70 | 16.38 |
4e | 0.33 | 0.46 | 0.13 | 0.18 | 0.36 | 0.50 | 0.18 | 0.36 | 1.46 | 2.04 | 7.80 | 10.92 |
4f | 0.18 | 0.25 | 0.16 | 0.22 | 0.09 | 0.12 | 0.36 | 0.50 | 10.63 | 14.88 | 11.70 | 16.38 |
4g | 0.07 | 0.09 | 0.18 | 0.25 | 0.09 | 0.12 | 0.14 | 0.19 | 6.15 | 8.61 | 6.88 | 9.63 |
4h | 0.23 | 0.32 | 0.12 | 0.16 | 0.09 | 0.12 | 0.12 | 0.16 | 2.20 | 3.08 | 4.92 | 6.88 |
4i | 0.08 | 0.11 | 0.15 | 0.21 | 0.01 | 0.02 | 0.28 | 0.39 | 11.68 | 16.35 | 11.68 | 16.35 |
4j | 0.22 | 0.30 | 0.11 | 0.15 | 0.22 | 0.04 | 0.05 | 0.07 | 11.68 | 16.35 | 11.68 | 16.35 |
4k | 0.10 | 0.14 | 0.08 | 0.11 | 0.07 | 0.09 | 0.18 | 0.36 | 3.90 | 5.46 | 18.72 | 26.20 |
4l | 0.04 | 0.05 | 0.11 | 0.15 | 0.06 | 0.08 | 0.04 | 0.06 | 5.57 | 7.79 | 4.92 | 6.88 |
5a | 0.25 | 0.17 | 0.12 | 0.16 | 0.12 | 0.16 | 0.12 | 0.16 | 4.00 | 5.60 | 3.12 | 4.36 |
5b | 0.50 | 0.70 | 1.82 | 2.54 | 1.58 | 2.21 | 4.00 | 5.60 | 3.10 | 4.34 | 2.55 | 3.57 |
5c | 0.50 | 0.70 | 2.00 | 2.80 | 2.45 | 3.43 | 0.45 | 0.63 | 2.60 | 3.64 | 3.24 | 4.53 |
8a | 0.10 | 0.14 | 0.24 | 0.33 | 0.03 | 0.04 | 0.06 | 0.08 | 1.46 | 2.04 | 7.20 | 10.08 |
8b | 0.19 | 0.26 | 0.12 | 0.16 | 0.14 | 0.19 | 0.06 | 0.08 | 2.96 | 4.14 | 18.72 | 26.20 |
8c | 0.07 | 0.09 | 0.10 | 0.14 | 0.07 | 0.09 | 0.04 | 0.06 | 8.35 | 11.69 | 11.70 | 16.38 |
8d | 0.20 | 0.28 | 0.03 | 0.04 | 0.05 | 0.07 | 0.05 | 0.07 | 6.15 | 8.61 | 11.70 | 16.38 |
8e | 0.28 | 0.39 | 0.09 | 0.12 | 0.06 | 0.08 | 0.04 | 0.06 | 9.00 | 12.60 | 10.63 | 14.88 |
8f | 0.20 | 0.28 | 0.05 | 0.07 | 0.05 | 0.07 | 0.05 | 0.07 | 4.68 | 6.55 | 10.63 | 14.88 |
8g | 0.12 | 0.16 | 0.08 | 0.11 | 0.16 | 0.22 | 0.04 | 0.06 | 5.57 | 7.79 | 16.71 | 23.39 |
8h | 4.00 | 5.60 | 0.82 | 1.14 | 2.43 | 3.40 | 1.00 | 1.40 | 2.38 | 3.33 | 2.27 | 3.17 |
8i | 0.14 | 0.19 | 0.45 | 0.63 | 0.32 | 0.44 | 0.20 | 0.28 | 6.88 | 9.63 | 10.63 | 14.88 |
10a | 0.50 | 0.70 | 0.50 | 0.70 | 0.55 | 0.77 | 0.88 | 1.23 | 3.57 | 4.99 | 4.00 | 5.60 |
10b | 0.58 | 0.81 | 0.26 | 0.36 | 4.00 | 5.60 | 4.66 | 6.52 | 2.82 | 3.94 | 2.38 | 3.33 |
10c | 3.74 | 5.23 | 1.42 | 1.98 | 1.08 | 1.51 | 1.02 | 1.42 | 2.56 | 3.58 | 2.30 | 3.22 |
11 | 0.18 | 0.25 | 0.84 | 1.17 | 0.73 | 1.02 | 0.16 | 0.22 | 4.87 | 6.81 | 5.85 | 8.19 |
12a | 0.10 | 0.14 | 0.13 | 0.18 | 0.10 | 0.70 | 0.14 | 0.19 | 4.00 | 5.60 | 2.00 | 2.80 |
12b | 0.12 | 0.17 | 0.91 | 1.27 | 2.14 | 2.99 | 0.88 | 1.20 | 2.80 | 3.92 | 2.27 | 3.17 |
12c | 1.77 | 2.47 | 0.85 | 1.19 | 2.38 | 3.33 | 1.30 | 1.82 | 2.85 | 3.99 | 2.70 | 3.78 |
Compound | HMGR Enzymes of Candida spp. | |||||
---|---|---|---|---|---|---|
C. albicans | C. glabrata | C. dubliniensis | C. krusei | C. auris | C. haemulonii | |
simvastatin | −6.12 | −6.30 | −6.57 | −6.06 | −6.51 | −6.18 |
atorvastatin | −3.82 | −4.63 | −4.64 | −4.97 | −2.14 | −4.66 |
1a | −6.21 | −5.26 | −5.42 | −6.55 | −5.47 | −5.34 |
2a | −7.19 | −7.48 | −8.00 | −8.73 | −8.34 | −6.89 |
2c | −7.14 | −6.34 | −8.05 | −6.88 | −7.98 | −7.35 |
4b | −6.41 | −5.53 | −5.74 | −7.02 | −5.69 | −7.01 |
4g | −5.74 | −5.18 | −5.18 | −6.07 | −5.18 | −6.22 |
4l | −7.70 | −6.44 | −6.48 | −7.58 | −7.31 | −6.43 |
5a | −7.22 | −6.65 | −6.73 | −7.04 | −6.71 | −5.57 |
8a | −5.33 | −4.74 | −4.49 | −5.55 | −5.55 | −5.92 |
8c | −8.24 | −6.77 | −6.81 | −8.32 | −7.06 | −7.49 |
8g | −5.21 | −5.00 | −4.56 | −5.28 | −4.93 | −5.58 |
10a | −6.42 | −5.88 | −5.92 | −6.52 | −6.11 | −4.93 |
12a | −7.09 | −7.20 | −7.15 | −5.42 | −6.70 | −5.50 |
Compound | Residues of the Enzyme Interacting with the Ligand | Polar Interactions | Hydrophobic Interactions |
---|---|---|---|
simvastatin | Ala62, Thr95, Glu96, Gly97, Cys98, Arg127, Met192, Met194, Asn195, Asp227, Lys228, Gly302, Gln303, Asp304, Gln307, Gly343, Gly344 | Asp227, Lys228, Asp304 | - |
atorvastatin | Thr95, Glu96, Gly97, Met192, Met194, Asn195, Asp227, Lys228, Asn292, His289, Gly302, Gln303, Asp304, Gln307, Gly342, Gly343, Gly344, Leu389 | Asn195, Asp304 | Glu96, Met192, Met194, Lys228, Asp304 |
1a | Ala62, Cys63, Thr95, Glu96, Gly97, Met192, Gly302, Gln303, Asp304, Pro305, Gly343, Gly344 | Asp304 | Cys63, Glu96 |
2a | Glu96, Leu99, Arg127, Met194, Asn195, Ser221, Asp227, Lys228, Lys272, Ala288, His289, Ans292, Leu389 | Asp227, Lys228, Asn292 | Glu96, Met194, His289, Leu389 |
2c | Thr95, Glu96, Met192, Met194, Asn195, Asp227, Lys228, Gln303, Asp304, Pro305, Gly344 | Lys228 | Met192, Met194 |
4b | Thr95, Glu96, Met192, Gly302, Gln303, Asp304, Gln307, Glu337, Val338, Gly339, Ile341, Gly342, Gly343, Gly344, Thr345 | Gly339, Ile341, Gly344 | Met192, Asp304, Gly342, Gly343 |
4g | Leu73, Ala93, Thr94, Thr95, Glu96, Thr295, Ala 296, Leu299, Gln303, Asp304, Pro305 | Thr95 | Ala296, Pro305 |
4l | Leu73, Ala93, Thr94, Thr95, Glu96, Leu99, Asn292, Thr295, Ala296, Leu299, Gly302, Gln303, Asp304, pro305, Gly344 | Ala93, Thr94 | Leu73, Thr94, Ala296, Leu299, Pro305 |
5a | Thr95, Glu96, Met192, Met194, Asn195, Gly302, Gln303, Asp304, Gly339, Ile341, Gly342, Gly343, Gly344, Thr345 | Thr95, Asn195, Gly302, Gly343, Gly344 | Met192, Gly339, Gly342, Thr345 |
8a | Thr95, Glu96, Met192, Gly302, Gln303, Asp304, Gln307, Glu337, Val338, Gly339, Ile341 Gly342, Gly343, Gly344, Thr345 | Asp304, Thr95, Val338, Gly344 | Met192 |
8c | Thr95, Glu96, Met192, Met194, Asn195, Lys228, Gly302, Gln303, Asp304, Gly339, Ile341 Gly342, Gly343, Gly344, Thr345 | Thr95, Gly344 | Glu96, Met192 |
8g | Thr94, Thr95, Ala93, Glu96, Leu99, Asn292, Thr295, Ala296, Gln303, Pro305 | Thr94, Thr95, Thr295 | Ala296, Pro305 |
10a | Leu73, Ala93, Thr94, Thr95, Glu96, Leu99, Asn292, Thr295, Ala296, Leu299, Gln303, Asp304, Pro305, Ala306 | Asn292, Thr295, Asp304 | Leu73, Thr94, Ala296, Leu299, Pro305 |
12a | Ala62, Thr95, Glu96, Gly97, Met192, Gly193, Met194, Asn195, Gly302, Gln303, Asp304, Ile341, Gly342, Gly343, Gly344 | Ala62, Gly97, Ile341 | Met192, Met194 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Miranda-Sánchez, D.; Escalante, C.H.; Andrade-Pavón, D.; Gómez-García, O.; Barrera, E.; Villa-Tanaca, L.; Delgado, F.; Tamariz, J. Pyrrole-Based Enaminones as Building Blocks for the Synthesis of Indolizines and Pyrrolo[1,2-a]pyrazines Showing Potent Antifungal Activity. Molecules 2023, 28, 7223. https://doi.org/10.3390/molecules28207223
Miranda-Sánchez D, Escalante CH, Andrade-Pavón D, Gómez-García O, Barrera E, Villa-Tanaca L, Delgado F, Tamariz J. Pyrrole-Based Enaminones as Building Blocks for the Synthesis of Indolizines and Pyrrolo[1,2-a]pyrazines Showing Potent Antifungal Activity. Molecules. 2023; 28(20):7223. https://doi.org/10.3390/molecules28207223
Chicago/Turabian StyleMiranda-Sánchez, Diter, Carlos H. Escalante, Dulce Andrade-Pavón, Omar Gómez-García, Edson Barrera, Lourdes Villa-Tanaca, Francisco Delgado, and Joaquín Tamariz. 2023. "Pyrrole-Based Enaminones as Building Blocks for the Synthesis of Indolizines and Pyrrolo[1,2-a]pyrazines Showing Potent Antifungal Activity" Molecules 28, no. 20: 7223. https://doi.org/10.3390/molecules28207223
APA StyleMiranda-Sánchez, D., Escalante, C. H., Andrade-Pavón, D., Gómez-García, O., Barrera, E., Villa-Tanaca, L., Delgado, F., & Tamariz, J. (2023). Pyrrole-Based Enaminones as Building Blocks for the Synthesis of Indolizines and Pyrrolo[1,2-a]pyrazines Showing Potent Antifungal Activity. Molecules, 28(20), 7223. https://doi.org/10.3390/molecules28207223