Effect of Ecotype and Starch Isolation Methods on the Physicochemical, Functional, and Structural Properties of Ethiopian Potato (Plectranthus edulis) Starch
Abstract
:1. Introduction
2. Results and Discussion
2.1. Starch Yield
2.2. Physical Properties of EP Starches
2.3. Color
2.4. Starch Proximate Composition
2.5. X-ray Diffraction of EP Starches
2.6. Fourier Transform Infrared (FTIR) Analysis
2.7. Functional Properties of EP Starches
3. Materials and Methods
3.1. Materials
3.2. Starch Isolation and Yield
3.3. Starch Bulk Density
3.4. Color
3.5. Starch Proximate Compositions
3.6. Functional Properties
3.7. Crystalline Structure and Average Crystallite Size of EP Starches
3.8. Fourier Transform Infrared Analysis
3.9. Data Analysis
4. Conclusions and Recommendation
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Alcázar-alay, S.C.; Angela, M.; Meireles, A. Physicochemical properties, modifications and applications of starches from different botanical sources. Food Sci. Technol. 2015, 35, 215–236. [Google Scholar] [CrossRef]
- Dereje, B. Composition, morphology and physicochemical properties of starches derived from indigenous Ethiopian tuber crops: A review. Int. J. Biol. Macromol. 2021, 187, 911–921. [Google Scholar] [CrossRef]
- Egharevba, H.O. Chemical Properties of Starch and Its Application in the Food Industry; IntechOpen: Rijeka, Croatia, 2016; pp. 225–240. Available online: https://www.intechopen.com/chapters/68437 (accessed on 12 September 2023).
- Wang, S.; Li, C.; Copeland, L.; Niu, Q.; Wang, S. Starch Retrogradation: A Comprehensive Review. Compr. Rev. Food Sci. Food 2015, 14, 568–585. [Google Scholar] [CrossRef]
- Gulla, A.; Getachew, A.; Haile, T.G.; Molla, F. Evaluation of Acid-Modified Ethiopian Potato (Plectranthus edulis) Starch as Directly Compressible Tablet Excipient. BioMed Res. Int. 2020, 2020, 9325173. [Google Scholar] [CrossRef] [PubMed]
- Hellemans, T.; Abera, G.; De Leyn, I.; Van der Meeren, P.; Dewettinck, K.; Eeckhout, M.; De Meulenaer, B.; Van Bockstaele, F. Composition, Granular Structure, and Pasting Properties of Native Starch Extracted from Plectranthus edulis (Oromo dinich) Tubers. J. Food Sci. 2017, 82, 2794–2804. [Google Scholar] [CrossRef]
- Taye, M.; Lommen, W.J.M.; Struik, P.C. Seasonal light interception, radiation use efficiency, growth and tuber production of the tuber crop Plectranthus edulis. Eur. J. Agron. 2013, 45, 153–164. [Google Scholar] [CrossRef]
- Gifty, A.G.; De Meulenaer, B.; Olango, T.M. Variation in tuber proximate composition, sugars, fatty acids and amino acids of eight Oromo dinich (Plectranthus edulis) landraces experimentally grown in Ethiopia. J. Food Compos. Anal. 2018, 67, 191–200. [Google Scholar] [CrossRef]
- Garedew, W.; Tsegaye, A.; Tesfaye, B.; Mohammed, H. Diversity analysis in Plectranthus edulis (Vatke) Agnew collection in Ethiopia. Int. J. Biodivers. Conserv. 2013, 5, 549–554. [Google Scholar]
- Geleta, G.A.; De Meulenaer, B. The effect of peeling and cooking processes on nutrient composition of Oromo dinich (Plectranthus edulis) tuber. Food Res. Int. 2019, 116, 387–396. [Google Scholar] [CrossRef]
- Assefa, A.; Belete, A.; Gebre-Mariam, T. Physicochemical Characterization of Starch Isolated From Ethiopian Potato (Plectranthus edulis). SINET Ethiop. J. Sci. 2016, 39, 11–20. [Google Scholar]
- Kim, J.; Ren, C.; Shin, M. Physicochemical properties of starch isolated from eight different varieties of Korean sweet potatoes. Starch-Stärke 2013, 65, 923–930. [Google Scholar] [CrossRef]
- Shi, L.; Li, Y.; Lin, L.; Bian, X.; Wei, C. Effects of variety and growing location on physicochemical properties of starch from sweet potato root tuber. Molecules 2021, 26, 7137. [Google Scholar] [CrossRef]
- Phogat, N.; Siddiqui, S.; Dalal, N.; Srivastva, A.; Bindu, B. Effects of varieties, curing of tubers and extraction methods on functional characteristics of potato starch. J. Food Meas. Charact. 2020, 14, 3434–3444. [Google Scholar] [CrossRef]
- Saleem, N.; Nidhi, S.; Anuradha, D.; Ashok, S.; Pathera, K. Physicochemical, morphological, functional, and pasting properties of potato starch as a function of extraction methods. J. Food Meas. Charact. 2021, 15, 2805–2820. [Google Scholar] [CrossRef]
- Babu, A.S.; Parimalavalli, R. Effect of Starch Isolation Method on Properties of Sweet Potato Starch. Ann. Univ. Dunarea Jos Galati. Fascicle VI Food Technol. 2014, 38, 48–63. [Google Scholar]
- Tessema, A.; Admassu, H. Extraction and characterization of starch from anchote (Coccinia abyssinica): Physico-chemical, functional, morphological and crystalline properties. J. Food Meas. Charact. 2021, 15, 3096–3110. [Google Scholar] [CrossRef]
- Xu, A.; Guo, K.; Liu, T.; Bian, X.; Zhang, L.; Wei, C. Effects of different isolation media on structural and functional properties of starches from root tubers of purple, yellow and white sweet potatoes. Molecules 2018, 23, 2135. [Google Scholar] [CrossRef]
- Chandra, R.A.I.; Hasanah, A.N.; Agustina, R. Optimization of Starch from Indonesian Local Corn with Concentration Variation of Sodium Metabisuphite and Drying Time. Int. J. Chem. Eng. Appl. 2016, 7, 89. [Google Scholar] [CrossRef]
- Kale, R.; Shere, D.M.; Sontakke, M.D.; Gadhe, K.S. Effect of isolation methods on physicochemical and functional properties of sweet potato (Ipomoea batatas L.) starch. J. Pharmacogn. Phytochem. 2017, 6, 37–41. [Google Scholar]
- Ocieczek, A.; Mesinger, D.; Toczek, H. Hygroscopic Properties of Three Cassava (Manihot esculenta Crantz) Starch Products: Application of BET and GAB Models. Foods 2022, 11, 1966. [Google Scholar] [CrossRef]
- Henney, J.E.; Taylor, C.L.; Boon, C.S. Taste and Flavor Roles of Sodium in Foods: A Unique Challenge to Reducing Sodium Intake. 2010. Available online: https://www.ncbi.nlm.nih.gov/books/NBK50952/ (accessed on 20 May 2023).
- Awol, A.M.; Waghray, K.; Prabhakara, R.P.G.; Rudrayya, M.G. Characterizing Physicochemical Properties of Enset Starch. J. Text. Polym. 2020, 8, 43–52. [Google Scholar]
- Yang, Z.; Hao, H.; Wu, Y.; Liu, Y.; Ouyang, J. Influence of moisture and amylose on the physicochemical properties of rice starch during heat treatment. Int. J. Biol. Macromol. 2021, 168, 656–662. [Google Scholar] [CrossRef]
- Martínez, P.; Peña, F.; Bello-Pérez, L.A.; Núñez-Santiago, C.; Yee-Madeira, H.; Velezmoro, C. Physicochemical, functional and morphological characterization of starches isolated from three native potatoes of the Andean region. Food Chem. X 2019, 2, 100030. [Google Scholar] [CrossRef] [PubMed]
- Tsakama, M.; Mwangwela, A.M.; Manani, T.A.; Mahungu, N.M. Physicochemical and pasting properties of starch extracted from eleven sweetpotato varieties. Afr. J. Food Sci. Technol. 2010, 1, 90–98. [Google Scholar]
- Julianti, E.; Rusmarilin, H.; Ridwansyah; Yusraini, E. Effect of Isolation Methods on Physicochemical Properties of Purple-fleshed Sweet Potato Starch. In Proceedings of the International Conference of Science, Technology, Engineering, Environmental and Ramification Researches (ICOSTEERR 2018)-Research in Industry, Medan, Indonesia, 30–31 August 2018; pp. 37–41. [Google Scholar] [CrossRef]
- Sembiring, A.T.B.; Nurminah, M.; Nainggolan, R.J. Effect of sodium metabisulphite concentration and salt concentration on the physicochemical properties of durian seed flour (Durio zibethinus Murr). IOP Conf. Ser. Earth Environ. Sci. 2020, 454, 012107. [Google Scholar] [CrossRef]
- Wang, J.; Guo, K.; Fan, X.; Feng, G.; Wei, C. Physicochemical properties of c-type starch from root tuber of apios fortunei in comparison with maize, potato, and pea starches. Molecules 2018, 23, 2132. [Google Scholar] [CrossRef] [PubMed]
- Wolde, Y.T.; Emire, S.A.; Abebe, W.; Ronda, F. Physicochemical, Morphological, Thermal, and Rheological Properties of Native Starches Isolated from Four Cultivars of Anchote (Coccinia abyssinica (Lam.) Cogn.) Tuber. Gels 2022, 8, 591. [Google Scholar] [CrossRef]
- Vanier, N.L.; Da Rosa Zavareze, E.; Pinto, V.Z.; Klein, B.; Botelho, F.T.; Dias, A.R.G.; Elias, M.C. Physicochemical, crystallinity, pasting and morphological properties of bean starch oxidised by different concentrations of sodium hypochlorite. Food Chem. 2012, 131, 1255–1262. [Google Scholar] [CrossRef]
- Liu, Y.; Xie, H.; Shi, M. Effect of ethanol–water solution on the crystallization of short chain amylose from potato starch. Starch/Staerke 2016, 68, 683–690. [Google Scholar] [CrossRef]
- Abdullah, A.H.D.; Chalimah, S.; Primadona, I.; Hanantyo, M.H.G. Physical and chemical properties of corn, cassava, and potato starchs. IOP Conf. Ser. Earth Environ. Sci. 2018, 160, 012003. [Google Scholar] [CrossRef]
- Pacia, M.Z.; Wiercigroch, E.; Szafraniec, E.; Czamara, K.; Pacia, M.Z.; Majzner, K.; Kochan, K.; Kaczor, A.; Baranska, M.; Malek, K. Raman and infrared spectroscopy of carbohydrates: A review. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2017, 185, 317–335. [Google Scholar] [CrossRef]
- Di Donato, F.; Di Cecco, V.; Torricelli, R.; D’Archivio, A.A.; Di Santo, M.; Albertini, E.; Veronesi, F.; Garramone, R.; Aversano, R.; Marcantonio, G.; et al. Discrimination of potato (Solanum tuberosum L.) accessions collected in majella national park (Abruzzo, italy) using mid-infrared spectroscopy and chemometrics combined with morphological and molecular analysis. Appl. Sci. 2020, 10, 1630. [Google Scholar] [CrossRef]
- Nandiyanto, A.B.D.; Oktiani, R.; Ragadhita, R. How to read and interpret ftir spectroscope of organic material. Indones. J. Sci. Technol. 2019, 4, 97–118. [Google Scholar] [CrossRef]
- Babu, A.S.; Parimalavalli, R.; Jagannadham, K.; Rao, J.S. Chemical and structural properties of sweet potato starch treated with organic and inorganic acid. J. Food Sci. Technol. 2015, 52, 5745–5753. [Google Scholar] [CrossRef]
- Warren, F.J.; Gidley, M.J.; Flanagan, B.M. Infrared spectroscopy as a tool to characterise starch ordered structure—A joint FTIR-ATR, NMR, XRD and DSC study. Carbohydr. Polym. 2016, 139, 35–42. [Google Scholar] [CrossRef]
- Singh, V.; Ali, S.Z.; Somashekar, R.; Mukherjee, P.S. Nature of crystallinity in native and acid modified starches. Int. J. Food Prop. 2006, 9, 845–854. [Google Scholar] [CrossRef]
- Oswal, M. Functional Characteristics of Starches from Indian Sweet Potato Cultivars. Int. J. Pure Appl. Biosci. 2019, 7, 80–85. [Google Scholar] [CrossRef]
- Azima, F.; Nazir, N.; Efendi, H.C. Characteristics of physico-chemical and functional properties of starch extracts from tubers. J. Phys. Conf. Ser. 2020, 1469, 012002. [Google Scholar] [CrossRef]
- Wijaya, C.; Do, Q.D.; Ju, Y.H.; Santoso, S.P.; Putro, J.N.; Laysandra, L.; Soetaredjo, F.E.; Ismadji, S. Isolation and characterization of starch from Limnophila aromatica. Heliyon 2019, 5, e01622. [Google Scholar] [CrossRef]
- Zhang, X.; Guo, D.; Xue, J.; Yanniotis, S.; Mandala, I. The effect of salt concentration on swelling power, rheological properties and saltiness perception of waxy, normal and high amylose maize starch. Food Funct. 2017, 8, 3792–3802. [Google Scholar] [CrossRef]
- Sandhu, K.S.; Singh, N. Relationships between selected properties of starches from different corn lines. Int. J. Food Prop. 2005, 8, 481–491. [Google Scholar] [CrossRef]
- Awolu, O.O.; Odoro, J.W.; Adeloye, J.B.; Lawal, O.M. Physicochemical evaluation and Fourier transform infrared spectroscopy characterization of quality protein maize starch subjected to different modifications. J. Food Sci. 2020, 85, 3052–3060. [Google Scholar] [CrossRef] [PubMed]
- Stasiak, M.; Molenda, M.; Horabik, J.; Mueller, P.; Opaliński, I. Mechanical properties of potato starch modified by moisture content and addition of lubricant Mechanical properties of potato starch modified by moisture content and addition of lubricant. Int. Agrophys. 2014, 28, 501–509. [Google Scholar] [CrossRef]
- Bitrus, J.; Amadi, O.C.; Nwagu, T.N.; Nnamchi, C.I.; Moneke, A.N. AACC Approved Methods of Analysis, Method 10-05.01. Guidelines for Measurement of Volume by Rapeseed Displacement. Food Nutr. Sci. 2001, 11, 1–4. Available online: http://methods.aaccnet.org/summaries/10-05-01.aspx (accessed on 5 June 2022).
- Dora, R.; Haron, H.; Shahar, S.; Phang, C.C.; Fauzi, M.F.M.; Noh, M.F.M. Macronutrients and sugar content in foods and beverages from three selected zones in Peninsular Malaysia. Sains Malays. 2018, 47, 1557–1562. [Google Scholar] [CrossRef]
- Bikila, A.M.; Tola, Y.B.; Esho, T.B.; Forsido, S.F.; Mijena, D.F. Starch composition and functional properties of raw and pretreated anchote (Coccinia abyssinica (Lam.) Cogn.) tuber flours dried at different temperatures. Food Sci. Nutr. 2022, 10, 645–660. [Google Scholar] [CrossRef] [PubMed]
- Shimelis, E.A.; Meaza, M.; Rakshit, S.K.; Ababa, A. Physico-chemical properties, pasting behavior and functional characteristics of flours and starches from improved bean (Phaseolus vulgaris L.) varieties grown in East Africa. Agric. Eng. 2006, 8, 1–19. [Google Scholar]
- Kaur, M.; Oberoi, D.P.S.; Sogi, D.S.; Gill, B.S. Physicochemical, morphological and pasting properties of acid treated starches from different botanical sources. J. Food Sci. Technol. 2011, 48, 460–465. [Google Scholar] [CrossRef] [PubMed]
Sample | Starch Yield % (db) | Bulk Density (g/cm3) | Water Activity (aw) | pH | Color | |||
---|---|---|---|---|---|---|---|---|
L* | a* | b* | Whiteness | |||||
CDW | 98.07 ± 0.07 ab | 0.746 ± 0.011 d | 0.605 ± 0.001 a | 5.82 ± 0.01 e | 95.6 ± 0.2 c | 0.70 ± 0.09 a | 3.4 ± 0.3 a | 94.4 ± 0.3 d |
CNaCl | 97.39 ± 0.53 b | 0.832 ± 0.001 a | 0.421 ± 0.002 e | 7.29 ± 0.01 b | 96.6 ± 0.2 b | −0.07 ± 0.04 c | 2.2 ± 0.2 c | 95.8 ± 0.4 b |
CSMS | 98.41 ± 0.55 ab | 0.806 ± 0.001 b | 0.572 ± 0.003 b | 7.23 ± 0.03 b | 96.5 ± 0.1 b | 0.18 ± 0.05 b | 2.6 ± 0.1 c | 95.7 ± 0.1 b |
LDW | 99.11 ± 0.09 a | 0.781 ± 0.001 c | 0.530 ± 0.003 c | 6.07 ± 0.12 d | 95.9 ± 0.2 c | 0.11 ± 0.06 d | 3.1 ± 0.1 b | 94.9 ± 0.2 c |
LNaCl | 98.65 ± 0.70 a | 0.852 ± 0.018 a | 0.380 ± 0.011 f | 7.39 ± 0.01 a | 97.6 ± 0.2 a | −0.38 ± 0.14 d | 1.2 ± 0.1 d | 96.9 ± 0.2 a |
LSMS | 99.26 ± 0.22 a | 0.806 ± 0.002 b | 0.441 ± 0.001 d | 7.01 ± 0.03 c | 97.4 ± 0.3 a | −0.25 ± 0.15 b | 1.9 ± 0.2 d | 96.8 ± 0.2 a |
Analysis of variance and significance (p-values) | ||||||||
Ecotype (A) | * | * | * | * | * | * | * | * |
Method (B) | * | * | * | * | * | * | * | * |
Interaction (A × B) | * | * | * | * | * | * | * | * |
Starch | Moisture | Fat | Protein | Crude Fiber | Ash | Carbohydrate |
---|---|---|---|---|---|---|
CDW | 14.80 ± 0.22 a | 0.31 ± 0.03 ab | 0.78 ± 0.15 ab | 0.199 ± 0.000 c | 0.64 ± 0.19 a | 83.46 ± 0.17 d |
CNaCl | 13.28 ± 0.08 b | 0.21 ± 0.01 c | 0.68 ± 0.01 b | 0.305 ± 0.009 b | 0.63 ± 0.03 a | 85.19 ± 0.19 c |
CSMS | 14.44 ± 0.51 a | 0.37 ± 0.19 a | 0.65 ± 0.06 b | 0.301 ± 0.003 b | 0.58 ± 0.21 ab | 83.93 ± 0.46 d |
LDW | 12.15 ± 0.10 c | 0.26 ± 0.03 bc | 0.95 ± 0.03 a | 0.202 ± 0.005 c | 0.51 ± 0.01 c | 86.11 ± 0.11 b |
LNaCl | 10.23 ± 0.10 d | 0.32 ± 0.01 ab | 0.72 ± 0.01 b | 0.298 ± 0.000 b | 0.59 ± 0.03 ab | 88.12 ± 0.08 a |
LSMS | 11.88 ± 0.11 c | 0.34 ± 0.01 a | 0.87 ± 0.09 ab | 0.398 ± 0.001 a | 0.55 ± 0.01 bc | 86.35 ± 0.18 b |
Analysis of variance and significance (p-values) | ||||||
Ecotype (A) | * | NS | * | * | * | * |
Method (B) | * | * | * | * | * | * |
Interaction (A × B) | * | * | * | * | * | * |
EP Starch | Major Peaks (2θ) | CI (%) | ||||
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 6 | ||
CDW | 5.65 | 15.37 | 17.29 | 22.21 | 23.71 | 38.49 |
CNaCl | 5.68 | 15.46 | 17.29 | 22.21 | 24.07 | 37.59 |
CSMS | 5.59 | 15.67 | 17.53 | 22.51 | 24.31 | 30.26 |
LDW | 5.66 | 15.41 | 17.29 | 22.31 | 23.73 | 33.72 |
LNaCl | 5.69 | 15.71 | 17.41 | 22.24 | 23.95 | 35.25 |
LSMS | 5.60 | 15.52 | 17.29 | 22.24 | 24.01 | 31.74 |
Chanqua | Loffo | Frequencies Region and Absorbing Features of Functional Groups Obtained from the Literature | References | |||||
---|---|---|---|---|---|---|---|---|
DW | NaCl | SMS | DW | NaCl | SMS | |||
3578 | 3529 | 3500 | 3466 | 3586 | 3556 | 3600–3300, 3750–2800 cm−1 | O-H stretching | [37] |
2933 | 2935 | 2930 | 2931 | 2930 | 2929 | 3000–2900, 2930 | C-H stretching | |
1665 | 1654 | 1649 | 1655 | 1647 | 1660 | 1637 | C-O bending associated with OH | [32] |
1430 | 1551 | 1558 | 1547 | 1552 | 1552 | 1458 | CH2 symmetric deformation | |
1423 | 1442 | 1441 | 1450 | 1435 | 1435 | 1415 | CH2 symmetric scissoring | [33] |
1333 | 1306 | 1335 | 1348 | 1351 | 1362 | 1385–1375 | C-H symmetric bending | |
1144 | 1148 | 1140 | 1147 | 1151 | 1141 | 1149, 1300–1000 cm−1 | C-O-C asymmetric stretching | [34] |
985 | 983 | 995 | 997 | 993 | 998 | 1200–800 | C-O stretching | |
852 | 921 | 930 | 936 | 936 | 852 | 920 | C-O-C vibration of carbohydrate | [35] |
765 | 854 | 853 | 856 | 853 | 760 | 856 | [38] | |
711 | 761 | 769 | 765 | 758 | [39] |
EP Starch | WAC (g/g) | OAC (ml/g) | SP (g/g) | Solubility (%) |
---|---|---|---|---|
CDW | 1.039 ± 0.005 a | 1.196 ± 0.001 a | 6.68 ± 0.12 a | 6.83 ± 0.09 b |
CNaCl | 0.932 ± 0.009 b | 0.796 ± 0.001 c | 5.36 ± 0.15 b | 7.30 ± 0.05 a |
CSMS | 0.908 ± 0.020 b | 0.995 ± 0.001 b | 6.52 ± 0.33 a | 6.22 ± 0.05 c |
LDW | 1.028 ± 0.008 a | 0.796 ± 0.000 c | 6.53 ± 0.09 a | 6.20 ± 0.15 c |
LNaCl | 0.785 ± 0.000 c | 0.798 ± 0.001 c | 5.77 ± 0.08 b | 7.12 ± 0.04 a |
LSMS | 0.691 ± 0.002 d | 0.798 ± 0.001 c | 6.28 ± 0.01 a | 6.83 ± 0.05 b |
Analysis of variance and significance (p-values) | ||||
Ecotype (A) | * | * | NS | NS |
Methods (B) | * | * | * | * |
Interaction (A × B) | * | * | * | * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Milkias, M.; Emire, S.A.; Abebe, W.; Ronda, F. Effect of Ecotype and Starch Isolation Methods on the Physicochemical, Functional, and Structural Properties of Ethiopian Potato (Plectranthus edulis) Starch. Molecules 2023, 28, 7260. https://doi.org/10.3390/molecules28217260
Milkias M, Emire SA, Abebe W, Ronda F. Effect of Ecotype and Starch Isolation Methods on the Physicochemical, Functional, and Structural Properties of Ethiopian Potato (Plectranthus edulis) Starch. Molecules. 2023; 28(21):7260. https://doi.org/10.3390/molecules28217260
Chicago/Turabian StyleMilkias, Misikir, Shimelis Admassu Emire, Workineh Abebe, and Felicidad Ronda. 2023. "Effect of Ecotype and Starch Isolation Methods on the Physicochemical, Functional, and Structural Properties of Ethiopian Potato (Plectranthus edulis) Starch" Molecules 28, no. 21: 7260. https://doi.org/10.3390/molecules28217260
APA StyleMilkias, M., Emire, S. A., Abebe, W., & Ronda, F. (2023). Effect of Ecotype and Starch Isolation Methods on the Physicochemical, Functional, and Structural Properties of Ethiopian Potato (Plectranthus edulis) Starch. Molecules, 28(21), 7260. https://doi.org/10.3390/molecules28217260